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Abstract: In this paper D-optimal designs for free knot least squares spline esti-

mation are investigated. In contrast to most of the literature on optimal design

for spline regression models it is assumed that the knots of the spline are also

estimated from the data, which yields to optimal design problems for nonlinear

models. In some cases local D-optimal designs can be found explicitly. Moreover,

it is shown that the points of minimally supported D-optimal designs are increasing

and real analytic functions of the knots; these results are used for the numerical

construction of local D-optimal designs by means of Taylor expansions. In order

to obtain optimal designs which are less sensitive to a specification of the unknown

knots, a maximin approach is proposed and standardized maximin D-optimal de-

signs for least square splines with estimated knots are determined in the class of all

minimally supported designs.

Key words and phrases: Free knot least squares splines, D-optimal designs, nonlin-

ear models, local optimal designs, robust designs, saturated designs.

1. Introduction

Polynomial regression models have been widely used to analyze functional

relations between real-valued predictors and response variables. However, in

many practical applications a good fit to the data using polynomial models can
only be achieved by high degree polynomials. Because a polynomial function

possessing all derivatives at all locations is not flexible enough for approximat-

ing a curve with different degrees of smoothness at different locations, many
authors propose fitting piecewise polynomials, or splines, to the data (see e.g.,

De Boor (1978), Dierckx (1995) or Eubank (1999), among many others). Smooth-

ing splines owe their origin to Wittaker (1923) and have been further devel-
oped by Schoenberg (1964) and Reinsch (1967). As an alternative several au-

thors propose least squares splines (see e.g., Hartley (1961), Gallant and Fuller

(1973) or Eubank (1999), among many authors). If the knots are assumed fixed,
this approach is particularly attractive because of its computational simplic-

ity. In this case several authors have studied the problem of constructing opti-

mal designs for the corresponding segmented polynomial regression models (see

e.g., Studden and VanArman (1969), Studden (1971) Murty (1971), Park (1978),
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Kaishev (1989), Heiligers (1998), among others). While in numerical analysis

splines are used to approximate functions, experimental design optimality con-

siderations require that the assumed model be true.

On the other hand, if the knots are also estimated from the data, the es-

timation problem is a nonlinear least squares problem and the computation of

the estimate and appropriate designs is substantially more difficult; several au-

thors have worked on the nonlinear estimation problem (see e.g., Jupp (1978),

Seber and Wild (1989) or Mao and Zhao (2003), among others). In particular -

to the knowledge of the authors − optimal designs for least squares splines with

estimated knots have not been investigated extensively in the literature. Pazman

(2002) discussed the problem of optimal design for nonlinear models with con-

straints on the parameters, and put the free knot spline in this context. However,

he did not determine optimal designs for free knot splines. Woods (2005) and

Woods and Lewis (2006) considered a mean squared error criterion which ad-

dresses model misspecification when both the number and location of the knots

are unknown, but did not consider the problem of estimating the knots.

The present paper is devoted to the D-optimal design problem for spline re-

gression models with estimated knots; this is introduced in Section 2. In Section

3 we discuss local D-optimal designs; these depend on the unknown knots and

have to be found numerically in nearly all applications of practical interest. It

is demonstrated that in most cases the support points of minimally supported

D-optimal designs are increasing and real analytic functions of the knots. This

allows us to represent these designs by means of Taylor expansions, and effi-

cient algorithms for their numerical construction are presented and illustrated

in several examples. In applications of spline regression models with estimated

knots there is usually not much prior information regarding their location, and

the application of local D-optimal designs could be not robust with respect to a

misspecification of the unknown knots. For these reasons a standardized max-

imin approach is proposed as a robust alternative; this does not require exact

knowledge of the knots before any observations are available. Some theoretical

results on minimally supported standardized maximin D-optimal designs are de-

rived and can be used to construct these designs by means of Taylor expansions.

The results are illustrated by several examples, while the more technical details

are presented in an on-line supplement.

2. Spline Regression Models with Estimated Knots

The general form of a spline regression model is given by

E[Y | x] =

k
∑

i=1

θix
i−1 +

r
∑

i=1

ki−1
∑

j=0

θij(x− λi)
m−j
+ , (2.1)
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where the explanatory variable x varies in a compact interval, say [a, b], λ1 <
λ2 < · · · < λr denote r knots located in the interval [a, b], ki ≤ m − 1 (i =
1, . . . , r), k ≤ m+1, and θ1, . . . , θk, θ10, . . . , θ1k1−1, . . . , θr0, . . . , θrkr−1, λ1, . . . , λr

are unknown parameters which have to be estimated from the data. Here z+ =
max{0, z}. Note that the model (2.1) is nonlinear in the parameters λ = (λ1, . . .,
λr)

T , and linear in the remaining parameters θ = (θ1, . . . , θk, θ10, . . . , θrkr−1)
T

(see Seber and Wild (1989)). Note also that we use the truncated power basis,
but there are other bases for which similar results as ours could be derived. We
prefer to work with the truncated power basis, because of its similarity to that
of ordinary polynomials.

Following the common convention, we measure the worth of a design by
its Fisher information matrix (see Silvey (1980) or Pukelsheim (1993)). To be
precise we define a (approximate) design ξ as a probability measure with fi-
nite support on the interval [a, b] (see Kiefer (1974)). Here the support points
x1, . . . , xn represent the locations where observations are taken, and the masses
w1, . . . , wn give the proportions of total observations to be taken at the par-
ticular points. If N independent observations with constant variance σ2 > 0
can be made, an appropriate rounding procedure is applied to determine the
number of observations nj = Nwj, taken at each point xj; (j = 1, . . . , n) (see
e.g., Pukelsheim (1992)). Under the assumption of normality, the covariance
matrix of the maximum likelihood estimate of the parameters (θ, λ) is approxi-
mately (σ2/N)(CθM(ξ, λ)CT

θ )−1 ∈ R
µ×µ, where Cθ ∈ R

µ×µ denotes a nonsingu-
lar matrix that depends on the parameters θ10, . . . , θrkr−1, but not on the knots
λ1, . . . , λr nor the design ξ. Here µ = k+

∑r
i=1 ki+r is the number of parameters,

M(ξ, λ) =
∫ b
a f(x, λ)fT (x, λ)dξ(x) is the information matrix of the design ξ, and

the components of f(x, λ) = (f1(x, λ), . . . , fµ(x, λ))T are defined by

fℓ(x, λ) =































xℓ−1; ℓ = 1, . . . , k

(x− λ1)
m+α0−ℓ+1
+ ; ℓ = α0 + 1, . . . , α1

(x− λ2)
m+α1−ℓ+1
+ ; ℓ = α1 + 1, . . . , α2

...

(x− λr)
m+αr−1−ℓ+1
+ ; ℓ = αr−1 + 1, . . . , αr

(2.2)

(ℓ = 1, . . . , µ), and αj = k +
∑j

s=1(ks + 1) for j = 0, . . . , r. Usually optimal
or efficient designs maximize an appropriate function of the Fisher information
matrix. In our particular model this matrix depends on the nonlinear parameter
λ, that is the vector of knots. There are many optimality criteria proposed in
the literature (see Silvey (1980) or Pukelsheim (1993)); in the present paper we
concentrate on D-optimal designs that minimize the determinant of the matrix
in (CθM(ξ, λ)CT

θ )−1. This is equivalent to minimizing the determinant of the
matrix M−1(ξ, λ), because the matrix Cθ does not depend on ξ.



1050 HOLGER DETTE , VIATCHESLAV B. MELAS, ANDREY PEPELYSHEV

Following Chernoff (1953), we call a design ξ∗D,λ local D-optimal if it max-

imizes detM(ξ, λ). For the case of least squares estimation with given knots,

D-optimal designs have been considered by Park (1978), Kaishev (1989) and

Lim (1991). Pazman (2002) discussed the problem of optimal design for nonlin-

ear models with constraints on the parameters, and put the free knot spline in

this context. However, no explicit results seem to be available for the situation

where the knots have also to be estimated from the data. Note that the concept

of local D-optimality requires a prior guess for the vector of knots, and that local

optimal designs are not necessarily robust with respect to a misspecification of

the unknown parameters. Therefore this methodology may result in an inefficient

design if the (unknown) knots are misspecified. The problem of non-robustness

has been mentioned in many publications in the context of nonlinear regression

models, and several authors propose the use of a Bayesian or maximin optimal-

ity criterion to obtain robust designs (see e.g., Chaloner and Verdinelli (1995) or

Imhof (2001) among many others). The Bayesian approach requires the specifi-

cation of a prior for the nonlinear parameters in the models. Because the knots

of a spline usually do not have a concrete interpretation it is difficult to specify

such a prior in a concrete situation. As an alternative, we propose a maximin

approach based on the D-optimality criterion; this only requires the specifica-

tion of a certain range for the unknown knots of the spline regression model.

The method determines a design that maximizes a minimum of D-efficiencies

(see Müller (1995), Dette (1997) and Imhof (2001)), and is motivated by the fact

that, in the case of free knot least squares splines, it is difficult to specify an

r-dimensional prior for the (unknown) knots before any data is available.

A standardized maximin D-optimal design maximizes

min
λ∈Ω

detM(ξ, λ)

detM(ξ∗D,λ, λ)
, (2.3)

where Ω ⊂ {z = (z1, . . . , zr)
T ∈ R

r | a < z1 < · · · < zr < b} is a given compact

set for the knots λ1, . . . , λr, and ξ∗D,λ is the local D-optimal design for a fixed

parameter λ. We also consider the corresponding optimization problems in the

class of all minimally supported or saturated designs, i.e., the class of all designs

with µ support points. In this case the local D-optimal design in the numerator of

the expression in (2.3) is also determined in the class of all minimally supported

designs.

3. Local D-Optimal Designs

In most circumstances, local D-optimal designs for free knot least squares

spline estimation in model (2.1) have to be found numerically. However, in

some situations it is possible to derive explicit solutions of the D-optimal design
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problem. Moreover, it is also possible to derive some analytical properties (such

as smoothness or monotonicity) of the support points of minimally supported

designs.

3.1. Explicit solutions

An explicit solution of the local D-optimal design problem for the least

squares spline estimation problem is possible if the regression function in (2.1) has

exactly one continuous derivative at the knots λ1, . . . , λr. The following results

presents the details.

Theorem 3.1. Consider the (nonlinear) regression model (2.1) with ki = m −
1; i = 1, . . . , r. There exists a unique local D-optimal design ξ∗D,λ with exactly µ

support points, say x1 < · · · < xµ and equal weights ξ∗D,λ(xj) = 1/µ, j = 1, . . . , µ.

The support points are given by

xi = a+ (γi,k + 1)
(λ1 − λ0

2

)

; i = 1, . . . , k, (3.1)

xi−1+k+(ℓ−1)m = λℓ+(γi,m+1+1)
(λℓ+1−λℓ

2

)

; i=2, . . . ,m+ 1; ℓ=1, . . . , r, (3.2)

where λ0 = a, λr+1 = b, γ1,s, . . . , γs,s are the ordered roots of the polynomial

(x2 − 1)L′
s−2(x) and Ls(x) denotes the sth Legendre polynomial orthogonal to all

polynomial of degree less or equal than s− 1 with respect to Lebesgue measure.

Proof of Theorem 3.1. Let x∗1, . . . , x
∗
n and w∗

1, . . . , w
∗
n denote the support

points and corresponding weights of a local D-optimal design ξ∗D,λ for least

squares estimation in the nonlinear model (2.1). It is easy to see that there must

be at least k support points in the interval [a, λ1] and at least m support points

in the intervals (λj , λj+1] (j = 1, . . . , r), because otherwise the determinant of

the corresponding information matrix would vanish. Moreover, the equivalence

theorem of Kiefer and Wolfowitz (1960) shows that ξ∗D,λ is local D-optimal if and

only if the inequality

g(x) = fT (x, λ)M−1(ξ∗D,λ, λ)f(x, λ) − µ ≤ 0 (3.3)

holds for all x ∈ [a, b], where the vector of regression functions is defined by (2.2).

Consequently, it follows that

g(x∗i ) = 0 i = 1, . . . , n (3.4)

g′(x∗i ) = 0 i = 2, . . . , n − 1. (3.5)

Note that g is a polynomial of degree 2k−2 on the interval [λ0, λ1] = [a, λ1], and

a polynomial of degree 2m on the interval [λ1, λr+1] = [λ1, b]. If ξ∗D,λ would have

more than µ = k+rm support points there would exist at least one interval with
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more than k (for the interval [λ0, λ1]) or more than m support points (for the

remaining intervals (λj , λj+1]; j = 1, . . . , r). Both cases would yield a contradic-

tion and, as a consequence, we have n = k +mr. Moreover, the same argument

yields

λ0 = x∗1 < . . . < x∗k = λ1

λ1 < x∗k+1 < . . . < x∗k+m = λ2
...

...
...

...

λr < x∗k+(r−1)m+1 < . . . < x∗k+rm = λr+1.

(3.6)

A standard argument (see Silvey (1980)) now shows that the weights of the local

D-optimal design are all equal, that is ξ∗D,λ(x∗j) = 1/µ; j = 1, . . . , µ. This implies

detM(ξ∗D,λ, λ) =
( 1

µ

)µ
(detF )2, (3.7)

where F = diag(F1, F2, . . . , Fr+1) denotes a block triangular matrix with blocks

in the diagonal given by F1 =(fi(x
∗
j , λ))ki,j=1∈R

k×k , Fℓ =(fi(x
∗
j , λ))k+ℓm

i,j=k+(ℓ−1)m+1

∈ R
m×m, ℓ = 2, . . . , r+1. As a consequence, we obtain from (3.7) that detM(ξ∗D,λ,

λ) = (1/µ)µ
∏r+1

j=1(detFj)
2, and the blocks can be maximized separately. The

first block is a classical Vandermonde determinant with x∗1 = λ0 = a, x∗k = λ1 = b,

and consequently is maximized for the support points of the local D-optimal de-

sign on the interval [a, λ1], which are given by (3.1) (see e.g., Hoel (1958)). The

other determinants are of the form

(detFℓ)
2 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

(z1 − λℓ)
m . . . (zm−1 − λℓ)

m (λℓ+1 − λℓ)
m

...
...

...

(z1 − λℓ)
2 . . . (zm−1 − λℓ)

2 (λℓ+1 − λℓ)
2

(z1 − λℓ) . . . (zm−1 − λℓ) (λℓ+1 − λℓ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

= (λℓ+1 − λℓ)
2

m−1
∏

j=1

(zj − λℓ)
2(λℓ+1 − zj)

2
∏

1≤i<j≤m−1

(zi − zj)
2,

where zj = x∗k+(ℓ−1)m+j (j = 1, . . . ,m − 1; ℓ = 1, . . . , r). Now the results of

Hoel (1958) show again that this expression is maximized if z1, . . . , zm−1 are the

interior support point of the D-optimal design for a polynomial regression of

degree m on the interval [λℓ, λℓ+1], which are given by (3.2).

Note that Theorem 3.1 generalizes a result of Lim (1991), who considered

model (2.1) in the special case k = m+1, where the knots are known and do not

have to be estimated from the data.
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Example 3.2. Consider the model

E[Y | x] = θ1 + θ2x+ θ3x
2 +

r
∑

j=1

θ3+j(x− λj)
2
+; x ∈ [a, b], (3.8)

where we have k = 3;m = 2; kj = 1 (j = 1, . . . , r). According to Theorem 3.1

the local D-optimal design is given by (λ0 = a, λr+1 = b)

ξ∗D,λ =

(

λ0
λ0+λ1

2 λ1 . . . λr
λr+λr+1

2 λr+1

1
2r+3

1
2r+3

1
2r+3 . . .

1
2r+3

1
2r+3

1
2r+3

)

. (3.9)

Table 1. The non-trivial support points of the local D-optimal designs in

the regression model (3.10). The local D-optimal design is given by ξ∗ =

{0, x∗2(λ), . . . , x
∗

5(λ), 1; 1/6, . . . , 1/6}.

λ x∗2(λ) x∗3(λ) x∗4(λ) x∗5(λ)

0.1 0.033 0.094 0.345 0.750

0.2 0.065 0.180 0.410 0.775

0.3 0.095 0.258 0.473 0.799
0.4 0.124 0.330 0.536 0.824

0.5 0.151 0.398 0.602 0.849

0.6 0.176 0.464 0.670 0.876

0.7 0.201 0.527 0.742 0.904
0.8 0.225 0.590 0.820 0.935

In general, optimal designs for least squares splines with estimated knots

have to be found numerically. Consider, as a typical example, a cubic spline

regression model (with r = 1 and continuous first and second derivative)

E[Y |x] = θ1 + θ2x+ θ3x
2 + θ4x

3 + θ5(x− λ)3+; x ∈ [0, 1]. (3.10)

Some local D-optimal designs have been calculated numerically for various

values of λ. The results are presented in Table 1 and indicate that the support

points of the local D-optimal design are strictly increasing functions of the knots.

This phenomenon will be further investigated in Section 3.2.

It might be also of interest to study the sensitivity of the local D-optimal

design with respect to a misspecification of the initial knots. For this purpose

we present in Figure 3.1 the D-efficiencies of the of the local D-optimal design

in the spline regression model (3.8) for the values λ = 0.25 and λ = 0.5. We

observe that the D-efficiencies decrease very rapidly if the knot is misspecified.
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Figure 3.1. The D-efficiencies of the local D-optimal design in the spline
regression model (3.8), where λ = 0.5 (left panel) and λ = 0.25 (right panel).

3.2. Some properties of local D-optimal designs

In this section we discuss two important features of local D-optimal designs
for free knot least squares splines. It is indicated in Example 3.2 that the support

points of local D-optimal designs are increasing and analytic functions of the
knots (see Table 1), and this property will be proved for the case where the local
D-optimal design is minimally supported (see Theorem 3.4 below). Secondly, we
prove a symmetry property of local D-optimal designs for least squares splines
with estimated knots in the case where there is the same degree of smoothness
at each knot. We begin our investigations with a symmetry result.

Theorem 3.3. Consider the spline regression model (2.1) with knots λ =
(λ1, . . . , λr)

T and let ξ∗D,λ denote a local D-optimal design with masses w∗
1, . . . , w

∗
n

at the points x∗1, . . . , x
∗
n, respectively. The design ξ̃D,λ with masses w∗

1, . . . , w
∗
n at

the points x̃1, . . . , x̃n with x̃i = b − a− x∗i (i = 1, . . . , n) is local D-optimal for

least squares spline estimation in the model (2.1), with knots λ̃ = (λ̃1, . . . , λ̃r)
T =

(b− a− λr, . . . , b− a− λ1)
T .

Proof of Theorem 3.3. The assertion follows from a basic property of the D-

optimality criterion observing that the functions 1, b−a−x, . . . , (b−a−x)k−1, (x−
λ̃1)

m−k1
+ , . . . (x − λ̃1)

m
+ , . . . , (x − λ̃r)

m−kr
+ , . . . , (x − λ̃r)

m
+ and 1, x, . . . , xk−1, (x −

λ1)
m−k1
+ , . . . , (x−λ1)

m
+ , . . . , (x−λr)

m−kr
+ , . . . , (x−λr)

m
+ generate the same space.

Numerical results indicate that local D-optimal designs for free knot least

squares splines are minimally supported. In such cases it follows by a standard
convexity argument that the local D-optimal design is unique and the following
theorems show that in this case the corresponding support points are increasing
and analytic functions of the knots, provided

m− k − 2 ≤ k1 = k2 = . . . = kr ≤ m− 1 . (3.11)
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The proofs are complicated and are therefore presented in an on-line supplement.

Theorem 3.4. Consider the spline regression model (2.1) satisfying (3.11). If

any local D-optimal design is minimally supported, then the local D-optimal de-

sign ξ∗D,λ is unique and its support points, which do not coincide with the knots

a = λ0 < λ1 < · · · < λr < λr+1 = b, are strictly increasing functions of any

component of the vector λ = (λ1, . . . , λr)
T . Moreover, the boundary points a and

b of the design space are support points of the local D-optimal design ξ∗D,λ.

Theorem 3.5. Under the assumptions of Theorem 3.4 let

Ω := {(λ1, . . . , λk)
T | a < λ1 < · · · < λk < b} =

j∗
⋃

j=1

Ωj (3.12)

denote a partition of the set of possible knots such that Ωi ∩Ωj 6= ∅ and that, for

all λ ∈ Ωj , the number of suppport points of the (unique) local D-optimal design

in each interval (λi, λi+1) (i = 0, . . . , r) is fixed. The support points of the local

D-optimal design, which do not coincide with the knots a = λ0 < λ1 < · · · <
λr < λr+1 = b, are real analytic functions on Ωj (for each j = 1, . . . , j∗).

3.3. Taylor expansions for local D-optimal designs

The analytic properties of local D-optimal designs for spline regression mod-
els allow an elegant numerical calculation of the support points which is briefly
indicated in this paragraph. The numerical results presented in Example 3.2 were
already obtained by this method. To be precise let the assumptions of Theorem
3.5 be satisfied, then the local D-optimal design ξτ∗ is unique and has equal
masses 1/µ at the points a, τ∗1 , . . . , τ

∗
µ−2, b, where the support points τ∗(λ) =

(τ∗1 , . . . , τ
∗
µ−2) are real analytic functions of the vector of knots λ = (λ1, . . . , λr)

on each set Ωj defined in (3.12). For the sake of simplicity consider the case
r = 1, define λ = λ1, and denote by τ∗(0) the vector of support points of the local
D-optimal design for the knot λ(0) ∈ Ωj (for some j = 1, . . . , j∗). From Theorem
3.5 it follows that a Taylor expansion of the form

τ∗(λ) = τ∗(0) +

∞
∑

i=1

τ∗(i)(λ− λ0)
i (3.13)

is valid, where the coefficients are given by τ∗(s) = (1/s!)(ds/dλs)τ∗(λ)
∣

∣

∣

λ=λ0

;

s = 0, 1, 2, . . . The region of convergence of this series depends on the specific
model under consideration (see Example 3.6). Moreover, the coefficients in the
expansion can be calculated recursively (see Melas (2006)) using the recursive
relations

τ∗(s+1) = −
1

(s+ 1)!
J−1

(0)

{( ds+1

dλs+1

)

g(τ∗<s>(λ), λ)
}
∣

∣

∣

λ=λ0,
s = 0, 1, . . . , (3.14)
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Figure 3.3. The interior points τ∗j = τ∗j (u) of the local D-optimal design for

the spline regression model (3.10), considered as a function of the parameter u.

where J(0) =
(

∂2

∂τi∂τj
ψ(τ, λ0)

∣

∣

τ=τ∗

(0)

)µ−2

i,j=1
, g(τ, λ) =

(

∂2

∂τi∂λψ(τ, λ)
)µ−2

i=1
, ψ(τ, λ) =

{

detM(ξτ , λ)
}1/µ

, and we define, for any (sufficiently differentiable) function h,

h〈s〉(λ) =
s
∑

i=0

1

i!

( di

dλi
h(λ)

)∣

∣

∣

λ=λ0

(λ− λ0)
i. (3.15)

We finally note that in the case of at least two knots, an extension of formula

(3.13) is given in Melas (2006). The details are omitted for the sake of brevity.

Example 3.6. Consider the cubic spline regression model (3.10) of Example 3.2.

The support points of the local D-optimal designs in Table 1 have been calculated

by a Taylor expansion at the point λ = 0.5. To be precise note that the support

points satisfy x∗2(λ) = 1− x∗5(1−λ), x∗3(λ) = 1− x∗4(1−λ) (see Theorem 3.3). In

the following we construct Taylor expansions for the support points of the local

D-optimal design at the point λ = 0.5. The radius of convergence for this series

is ρ = 0.5, which was obtained by numerical calculations. In principle one can

construct coefficients corresponding to an arbitrary large order in the expansion,

using the recursive relations. For the determination of the support points with

a precision 10−2 an expansion of order 10 is sufficient in the present example.

With the notation τ∗i = x∗i+1 (i = 1, . . . , 4), u = λ− 0.5 we obtain

τ∗1 (u) = 0.151 + 0.261u − 0.0689u2 + 0.0692u3 + 0.0595u4 − 0.0425u5

+0.0400u6 + 0.0333u7 + 0.0184u8 + 0.0285u9 + 0.0647u10,

τ∗2 (u) = 0.398 + 0.664u − 0.153u2 + 0.216u3 + 0.0204u4 + 0.0408u5

+0.00556u6 + 0.127u7 + 0.0175u8 + 0.146u9 + 0.0569u10 ,

τ∗3 (u) = 1 − τ∗2 (−u), τ∗4 (u) = 1 − τ∗1 (−u). The support point are depicted in

Figure 3.3 as a function of the knot λ. Note that all support points are in-

creasing functions of the nonlinear parameter λ (see Theorem 3.4). We finally
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note that if λ → 0 , then u → −0.5 and limu→−0.5(τ1(u), τ2(u), τ3(u), τ4(u)) =

(0, 0, x∗, y∗), where x∗, y∗ maximize the function xy(y − x)(1 − x)(1 − y) in the

set {(x, y)|0 < x < y < 1}. Similarly, if λ → 1, it follows by symmetry that

limu→0.5(τ1(u), τ2(u), τ3(u), τ4(u)) = (y∗, x∗, 1, 1).

4. Standardized maximin D-optimal designs

If the knots of the spline regression model are estimated from the data there

is usually not too much knowledge available with respect to their location. At

the same time the numerical results of Section 3 indicate that local D-optimal

designs are rather sensitive to the specification of the knots. The standardized

maximin optimality criterion (2.3) might be more appropriate for the construc-

tion of efficient designs in least squares spline estimation. In the simplest case of

model (3.8) with one knot, the standardized maximin D-optimal design can be

found explicitly in the class of all minimally supported designs.

Example 4.1. Consider the spline regression model

E[Y | x] = θ0 + θ1x+ θ2x
2 + θ3(x− λ)2+, (4.1)

where (without loss of generality) x ∈ [0, 1]. The local D-optimal design is given

by (3.9) with r = 1, and it is easy to see that the minimally supported standard-

ized maximin D-optimal design must contain the points 0 and 1 in its support

(see the proof of Lemma 5.2 in the on-line supplement). In the following we

consider the set Ω = [u, 1− u] with u ∈ (0, 1/2) in the optimality criterion (2.3),

then it follows by similar arguments as given in the proof of Theorem 3.3 that the

minimally supported standardized maximin D-optimal design ξ∗ has masses 1/5

at the points 0, x, 1/2, 1 − x, 1, where x ∈ (0, 1/2). Consequently, the optimality

criterion (2.3) reduces for minimally supported designs to

min
λ∈[u,1−u]

detM(ξ∗, λ)

detM(ξ∗λ, λ)
= 4

x2(x− u)(2x+ 1)

(1 − u)3u2
.

Now a straightforward calculation shows that the function on the right hand

side is maximal for x∗(u) = 3/16 + 3/8u −
√

(6u− 3)2 + 8u/16. The non-trivial

support point of the minimally supported design is displayed in Figure 4.1 for

various values of u ∈ (0, 1/2). In the right part of the Figure we display the

minimal efficiency of the minimally supported standardized maximin D-optimal

design in the interval [u, 1 − u], which decreases rapidly as the length of the

interval increases.

In the remaining part of this section we discuss the numerical construction

of minimally supported standardized maximin D-optimal designs. In order to
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Figure 4.1. The non-trivial support point x∗ = x(u) of the minimally sup-
ported standardized maximin D-optimal design (left panel) for the spline

regression model (4.1) and its minimal efficiency in the interval [u, 1 − u]

(right panel).

derive a Taylor expansion for such designs we consider the following set Ω in the

optimality criterion (2.3):

Ω = Ωδ = {(λ1, . . . , λr)
T | (1 − δ)ci ≤ λi ≤ (1 + δ)ci; i = 1, . . . , r}, (4.2)

where c = (c1, . . . , cr)
T , with c1 < · · · < cr, is a fixed vector (considered as

preliminary guess for the unknown vector of knots), and δ ∈ (0, 1) is the relative

error of this approximation. The following result shows that for sufficiently small

δ and minimally supported designs, the minimization in the optimality criterion

(2.3) can be replaced by a minimization with respect to a two point set. For this

purpose let Ξ̄ denote the set of all minimally supported designs for the spline

regression model (2.1) on the interval [a, b]. The proof of the next theorem is

complicated and therefore presented in an on-line supplement.

Theorem 4.2.

(a) If Ωδ is defined by (4.2), then there exists a number δ∗ > 0 such that, for any

δ ∈ [0, δ∗),

max
ξ∈Ξ̄

min
λ∈Ωδ

detM(ξ, λ)

supη∈Ξ̄ detM(η, λ)
= max

ξ∈Ξ̄
min
λ∈Ω̄δ

detM(ξ, λ)

supη∈Ξ̄ detM(η, λ)
,

where Ω̄δ ∈ R
r is a two point set defined by Ω̄δ = {(1 − δ)c, (1 + δ)c}.

(b) For any δ ∈ [0, δ∗), the support points of the minimally supported standardized

maximin D-optimal design are real analytic functions of the parameter λ ∈
Ωδ.

Note that Theorem 4.2 allows us to calculate minimally supported standard-

ized maximin D-optimal designs by means of a Taylor expansion, as was illus-

trated in Section 3.3 for the case of local D-optimal designs. The corresponding
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recursive relations are obtained, by a slight modification, from those presented

in Section 3.3. The details are omitted for the sake of brevity. It is difficult to

determine δ∗ theoretically, but in all our numerical examples we observed that

δ∗ = 1. We conclude this section with a continuation of Example 4.1.

Table 2. The support points of the minimally supported standardized max-

imin D-optimal design with respect to the set Ω = [u, v] in the regression

model (4.1). The right column shows the minimal efficiency calculated over

the set Ω

u v x1 x2 x3 x4 x5 min eff

0.4 0.6 0 0.220 0.5 0.780 1 0.796

0.3 0.7 0 0.178 0.5 0.822 1 0.636

0.2 0.8 0 0.125 0.5 0.875 1 0.494

0.1 0.9 0 0.065 0.5 0.935 1 0.346
0.05 0.95 0 0.033 0.5 0.967 1 0.253

0.5 0.6 0 0.261 0.545 0.789 1 0.890
0.5 0.7 0 0.270 0.581 0.833 1 0.794

0.5 0.8 0 0.274 0.604 0.882 1 0.702

0.5 0.9 0 0.272 0.599 0.937 1 0.594

0.5 0.95 0 0.264 0.564 0.967 1 0.510

Example 4.3. The concrete values for the support points of the minimally sup-

ported standardized maximin D-optimal designs for the spline regression model

(4.1) are presented in Table 2, which also shows results for a non-symmetric pa-

rameter space Ω = [u, v]. In this case there exists no analytical solution and the

designs have been derived by means of the Taylor expansion, as described before.

In its last row the table also contains the minimal efficiency of the minimally

supported standardized maximin D-optimal design. We observe that these min-

imal efficiencies decrease substantially if the range for the free knot λ1 becomes

large. For example, if Ω = [u, v] = [0.1, 0.9], the minimally supported standard-

ized maximin D-optimal design has efficiency only 34.6 % at some points of the

parameter space Ω (note that this is the worst efficiency in the set Ω, and that

other values λ ∈ Ω can yield substantially larger efficiencies). On the other hand,

if the prior information for the knot λ1 is rather precise (that is the length v− u

of the set Ω is small), the minimally supported designs are rather efficient for all

values of the set Ω. It is also worthwhile to mention that for fixed u the efficien-

cies, as function of v, are nearly linear, and a similar statement can be made if

the efficiency is considered as a function of v, where u = 1 − v.

The reason for the loss of efficiency in the situation where the length of

the interval v − u approaches 1 is that, in this case, the standardized maximin

D-optimal designs have substantially more support points than the number of
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parameters in the model. In fact it can be proved using the techniques recently

developed by Braess and Dette (2007) that the number of support points of the

standardized maximin D-optimal design becomes arbitrary large if v − u → 1.

These designs are calculated numerically, increasing successively the number of

support points of the designs under consideration until there is no further im-

provement in the value of the optimality criterion. Two illustrative examples are

given in Table 3, which shows the standardized maximin D-optimal designs for

the parameter spaces Ω = [0.45, 0.55] and Ω = [0.4, 0.6], which have already 8

and 10 support points, respectively. If the interval is not symmetric, the num-

ber of support points grows rapidly with the length of the set Ω. For example,

if Ω = [0.3, 0.5], the standardized maximin D-optimal design has 14 support

points. However designs with a moderate number of support points yield usually

reasonable efficiencies. For example, if Ω = [0.3, 0.5], the 8-point designs with

masses 0.198, 0.170, 0.074, 0.050, 0.045, 0.082, 0.181, 0.199 at the points 0, 0.170,

0.312, 0.372, 0.428, 0.490, 0.725, 1, respectively, is not globally optimal, but its

minimal efficiency over the set Ω = [0.3, 0.5] is 0.880.

Table 3. Globally standardized maximin D-optimal designs with respect to
the set Ω = [u, v] in the regression model (4.1). The right column shows the
minimal efficiency of the set Ω.

u v x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 min eff

0.45 0.55 xi 0 0.238 0.452 0.484 0.516 0.548 0.762 1 0.923

wi 0.201 0.191 0.073 0.036 0.036 0.073 0.191 0.201

0.4 0.6 xi 0 0.225 0.406 0.451 0.484 0.516 0.549 0.594 0.775 1 0.883

wi 0.201 0.174 0.069 0.029 0.026 0.026 0.029 0.069 0.174 0.201
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