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Abstract: A multivariate subset (or ‘partially’) reduced-rank regression model is

considered as an extension of the usual multivariate reduced-rank model. In the

model, the reduced-rank coefficient structure is specified to occur for a subset of

the response variables only, which allows for more general situations and can lead

to more efficient modeling than the usual reduced-rank model. The maximum

likelihood estimation of parameters, likelihood ratio testing for rank, and large

sample properties of estimators for this partially reduced-rank model are developed.

An empirical procedure to aid in identification of the possible subset reduced-rank

structure is suggested. Two numerical examples are examined to illustrate the

methodology for the proposed model.
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1. Introduction and Partially Reduced-Rank Regression Model

We consider the multivariate linear regression model that relates a set of m

response variables Yk = (y1k, . . . , ymk)
′ to a set of n predictor variables Xk =

(x1k, . . . , xnk)
′ through the model

Yk = CXk + εk, k = 1, . . . , T, (1.1)

where C is a m × n regression matrix. The m × 1 vectors of errors εk are

assumed to be distributed as iid multivariate normal with mean vector 0 and

m × m nonsingular covariance matrix Σ = cov(εk). We focus on situations

where the number m of response variables is moderately large and so we assume

that m ≥ n, although this is not necessary for the subsequent developments.

To accommodate problems associated with the large number of parameters in

C and the possibility of similarities in relationships with the predictor variables

Xk among different response variables yik, the reduced–rank multivariate lin-

ear regression model has been proposed and examined extensively by Anderson

(1951, 1999), Izenman (1975), Reinsel and Velu (1998, Chap.2), and many other
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authors. Related methodology occurs in other dimension reduction contexts,

such as work on parametric inverse regression by Bura and Cook (2001) and

on model-free tests for reduced dimension (rank) in multivariate regression by

Cook and Setodji (2003). The main feature of the reduced-rank linear model is

that it imposes a reduced-rank restriction on the coefficient matrix C in (1.1)

of the form rank(C) = r < min(m,n), which also yields the decomposition

C = AB, where A is m × r and B is r × n. One interpretation provided by

this decomposition is that the lower-dimensional set of r predictors X∗

k = BXk

contains all the relevant information in the original set of predictors Xk for rep-

resenting the variations in the response variables Yk.

Standard reduced-rank regression methods may not be adequate to identify

more specialized structure in the coefficient matrix C however. For example,

suppose the regression structure of (1.1) were such that the (m− 1)-dimensional

subset Y1k = (y1k, . . . , ym−1,k)
′ has reduced-rank structure of rank 1, E(Y1k) =

α1β
′

1Xk, and E(ymk) = β′

mXk, where β1 and βm are linearly independent n× 1

vectors. Then the model for Yk has reduced-rank structure of rank 2, of the

form

E(Yk) =

[
α1β

′

1

β′

m

]
Xk =

[
α1 0

0 1

] [
β′

1

β′

m

]
Xk ≡ A∗B∗Xk.

Since A∗B∗ =
(
A∗P

−1
)
(PB∗) for any nonsingular 2 × 2 matrix P, standard

reduced-rank estimation of a rank 2 model might not reveal the more specialized

structure that actually exists. There might be considerable gains in estimation

of the model with the more specialized structure specified over estimation of the

general form of rank 2 model. Hence, it would be desirable to have a methodology

to identify the existence of such specialized structure, and to properly account for

it in efficient estimation of regression parameters. Thus, as a variant of the usual

reduced-rank model, we consider a somewhat more general situation as above in

which the reduced-rank coefficient structure occurs for (or is concentrated on)

only a subset of the response variables.

As illustrated, the usual reduced-rank specification may be somewhat re-

strictive, since it requires that all response variables have regressions that are

expressible in terms of a lower-dimensional set of linear combinations of the pre-

dictor variables in Xk. In practice, it may be that this feature does not hold for

a (small) subset of the response variables, but for the remaining set of response

variables it does, possibly with few relevant linear combinations of the predictor

variables. In fact, in such cases the usual reduced-rank procedures may not be

very effective or efficient, since the lower-rank feature of the submatrix of C may

not be revealed if the requirement is that the reduced-rank specification be deter-

mined on the entire set of response variables. For these cases, the reduced-rank
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structure should be imposed on a partitioned (row-wise) submatrix of C for more

proper modeling.

Initially, for estimation, it will be assumed that the components of Yk =

(Y′

1k,Y
′

2k)
′ have a known arrangement so that the first m1 components Y1k

possess a reduced-rank feature separate from the remaining components Y2k.

We partition the regression coefficient matrix C in (1.1) as

C =

[
C1

C2

]
, (1.2)

where C1 is m1 × n and C2 is m2 × n, with m1 + m2 = m, and assume the

reduced-rank feature that

rank(C1) = r1 < min(m1, n) (1.3)

and C2 is of full rank, and the rows of C2 are not linearly related to the rows

of C1. Thus, for now it is assumed that the subset of response variables that

is of reduced rank is known, but the more practical case where the subset is to

be determined will be addressed later. Note these assumptions imply rank(C) =

r1 + m2(≤ n) in (1.1). We can write C1 = AB, where A is a m1 × r1 matrix

and B is a r1 × n matrix, both of full ranks, and note that C has the ‘overall

factorization’ C = diag(A, Im2
)[B′,C′

2]
′. We consider the estimation of A, B,

and hence of C1 and C2, and other related inference procedures for this ‘partially’

reduced-rank model. In Section 4 we discuss the practical issue of procedures to

identify the subset of response variables for which a reduced-rank structure as in

(1.2)−(1.3) may hold.

2. Maximum Likelihood Estimation of Parameters

We now obtain the maximum likelihood (ML) estimators of parameters for

the model (1.1) with the (partially) reduced-rank restriction (1.3). We represent

the m × T data matrix Y as Y = [Y′

1,Y
′

2]
′, where Y1 and Y2 are m1 × T and

m2×T matrices of values of the response vectors Y1k and Y2k, respectively. The

full-rank or least squares (LS) estimators of C1 and C2 are C̃1 = Y1X
′(XX′)−1

and C̃2 = Y2X
′(XX′)−1, where X = [X1, . . . ,Xn]. We partition the error

vectors as εk = (ε′1k, ε
′

2k)
′ and partition the error covariance matrix Σ = cov(εk)

such that Σ11 = cov(ε1k), Σ12 = cov(ε1k, ε2k), and Σ22 = cov(ε2k).

We first note that the decomposition C1 = AB is not unique. Therefore we

need to impose some normalization conditions, chosen as follows:

BΣ̂xxB
′ = Λ2 and A′Σ−1

11 A = Ir1
, (2.1)
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where Σ̂xx = (1/T )XX′, Λ2 = diag(λ2
1, . . . , λ

2
r1

), and Ir1
denotes an r1 × r1

identity matrix. We select these because in the basic multivariate reduced–rank

regression model, the estimator of A and B can be related to eigenvectors as-

sociated with the ‘r’ largest canonical correlations (see (Reinsel and Velu (1998,

p.28)). Thus the number of free parameters in the regression coefficient matrix

structure of the model is r1(m1 + n − r1) + m2n compared to mn parameters in

the full-rank model. Also note that the number of free parameters in the usual

reduced-rank model, which considers only that the rank of the overall matrix C

is r = r1 +m2, is r(m+n− r) = r1(m1 +n− r1)+m2(m1 +n− r1). Hence if m1

is relatively large, there can be substantial reductions in the number of model

parameters.

Assuming the εk are iid, following a multivariate normal distribution with

mean vector 0 and covariance matrix Σ, apart from irrelevant constants the

log-likelihood is

L (C1,C2,Σ) =

(
T

2

)[
log

∣∣Σ−1
∣∣ − tr

(
Σ−1W

)]
, (2.2)

where W = (1/T )(Y − CX)(Y − CX)′ and |Σ−1| is the determinant of the

matrix Σ−1. Maximizing (2.2) with respect to Σ yields Σ̂ = W. Hence, the

concentrated log-likelihood is L(C1,C2, Σ̂) = −(T/2)(log |W| + m). We can

proceed to directly derive the ML estimates of C1 = AB and C2 as values

that minimize |W|, but as an alternative we consider an argument based on a

conditional distribution approach for additional insight.

Consider maximizing the likelihood expressed in terms of the marginal dis-

tribution for Y1 and the conditional distribution for Y2 given Y1. The model

for Y1 is of course the reduced rank model Y1k = C1Xk + ε1k, k = 1, . . . , T ,

with parameters C1 = AB and Σ11 = cov(ε1k), and the conditional model for

Y2, given Y1, is representable as

Y2k = C2Xk + Σ21Σ
−1
11 (Y1k −C1Xk) + ε∗2k ≡ C∗

2Xk + D∗Y1k + ε∗2k (2.3)

with parameters C∗

2 = C2 − Σ21Σ
−1
11 C1, D∗ = Σ21Σ

−1
11 , and Σ∗

22 = cov(ε∗2k) =

Σ22 −Σ21Σ
−1
11 Σ12, and cov(ε1k, ε

∗

2k) = 0. The two sets of parameters {C1,Σ11}

and {C∗

2,D
∗,Σ∗

22} are functionally independent, so ML estimation can be per-

formed separately on them.

ML estimation for C1 and Σ11 is the same as ML estimation of the stan-

dard reduced-rank model, and is equivalent to simultaneously minimizing the

eigenvalues of Σ̃
−1/2

11 (C̃1 − AB)Σ̂xx (C̃1 − AB)′Σ̃
−1/2

11 , where C̃ = [C̃′

1, C̃
′

2]
′ =

YX′(XX′)−1 is the (full-rank) LS estimate of C, and Σ̃11 is the upper-left block
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of the corresponding estimate Σ̃ = (1/T )(Y − C̃X)(Y − C̃X)′. From results

given by Reinsel and Velu (1998, p.30), this yields the ML estimators of A and

B as

Â = Σ̃
1

2

11V̂(r1), B̂ = V̂′

(r1)Σ̃
−

1

2

11 C̃1, (2.4)

where V̂(r1) = [V̂1, . . . , V̂r1
], and V̂j is the (normalized) eigenvector that corre-

sponds to the jth largest eigenvalue λ̂2
j of the matrix R̂1 = Σ̃

−1/2

11 C̃1Σ̂xxC̃
′

1Σ̃
−1/2

11 .

The ML estimator of C1 is Ĉ1 = ÂB̂, and the ML estimator of Σ11 under the

reduced-rank structure is given by Σ̂11 = (1/T )(Y1 − Ĉ1X)(Y1 − Ĉ1X)′.

For the conditional model (2.3), notice that the parameters C∗

2 and D∗ are

full rank by assumption, so ML estimation in the conditional model simply yields

the usual full- rank LS estimates. These can be expressed in a convenient form

(e.g., see Reinsel and Velu (1998, p.7)) as

Ĉ∗

2 = C̃2 − Σ̃21Σ̃
−1

11 C̃1, D̂∗ = Σ̃21Σ̃
−1

11 , (2.5)

with Σ̂
∗

22 = Σ̃22 − Σ̃21Σ̃
−1

11 Σ̃12. The MLE of C2 = C∗

2 + D∗C1 can then be

obtained as

Ĉ2 = Ĉ∗

2 + D̂∗Ĉ1 = C̃2 − Σ̃21Σ̃
−1

11 (C̃1 − Ĉ1). (2.6)

The MLEs of Σ21 and Σ22 can be obtained accordingly, from Σ̂21 = D̂∗Σ̂11 =

Σ̃21Σ̃
−1

11 Σ̂11 and

Σ̂22 = Σ̂
∗

22 + Σ̂21Σ̂
−1

11 Σ̂12 = Σ̃22 − Σ̃21Σ̃
−1

11 Σ̃12 + Σ̃21Σ̃
−1

11 Σ̂11Σ̃
−1

11 Σ̃12.

Thus the MLEs Ĉ1 and Ĉ2 can be obtained using matrix routines for eigenvector

(or singular value) decompositions in a non-iterative fashion. The ML estimation

strategy essentially corresponds to the usual reduced-rank estimation to obtain

Ĉ1 followed by ‘covariance-adjustment’ estimation (2.6) to obtain Ĉ2, where the

LS estimator C̃2 is adjusted by the ‘covariates’ Y1 − Ĉ1X.

Note that C̃1 − Ĉ1 = (I − P̂1)C̃1 and C̃2 − Ĉ2 = Σ̃21Σ̃
−1

11 (C̃1 − Ĉ1) =

Σ̃21Σ̃
−1

11 (I − P̂1)C̃1, where P̂1 = Σ̃
1/2

11 V̂(r1)V̂
′

(r1)Σ̃
−1/2

11 is an idempotent matrix

of rank r1. Hence, C̃− Ĉ = Q̃(I− P̂1)C̃1, where Q̃′ = [Im1
, Σ̃

−1

11 Σ̃12], and then

from basic results we get

Σ̂ = Σ̃ + (C̃− Ĉ)Σ̂xx(C̃− Ĉ)′

= Σ̃ + Q̃(I− P̂1)C̃1Σ̂xxC̃
′

1(I− P̂1)
′Q̃′

= Σ̃ + Q̃Σ̃
1

2

11

[
I− V̂(r1)V̂

′

(r1)

]
R̂1

[
I− V̂(r1)V̂

′

(r1)

]
Σ̃

1

2

1 1Q̃′. (2.7)
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3. Likelihood Ratio Test for Rank and Inference Results

We consider the likelihood ratio (LR) test of the hypothesis H0 : rank(C1) ≤

r1. The LR test statistic for testing rank(C1) = r1 is λ = UT/2, where U =

|S|/|S0| ≡ |Σ̃|/|Σ̂|, S = (Y − C̃X)(Y − C̃X)′ is the residual sum of squares

matrix from fitting the full-rank model, while S0 = (Y − Ĉ(r)X)(Y − Ĉ(r)X)′

is the residual sum of squares matrix from fitting the model under the rank

condition on C1. Here Ĉ(r) denotes the estimate of C under rank condition

(1.3). It is known that |Σ̂| = |Σ̂11||Σ̂
∗

22| = |Σ̂11||Σ̃
∗

22| and |Σ̃| = |Σ̃11||Σ̃
∗

22|,

where Σ̂
∗

22 ≡ Σ̃
∗

22 since reduced-rank estimation in the model for Y1 does not

affect the LS estimation for the conditional model (2.3). Therefore, we have

U = |Σ̃11|/|Σ̂11|. It follows that the LR testing procedure is the same as in the

usual reduced-rank regression model for Y1, and does not involve the response

variables Y2. Therefore, the criterion λ = U T/2 is such that (e.g., Reinsel and

Velu (1998, Sec. 2.6))

−2 log(λ) = T

m1∑

j=r1+1

log
(
1 + λ̂2

j

)
= −T

m1∑

j=r1+1

log
(
1 − ρ̂2

j

)
, (3.1)

where λ̂2
j , j = r1 + 1, . . . ,m1 are the (m1 − r1) smallest eigenvalues of R̂1 , and

1 + λ̂2
j = 1/(1 − ρ̂2

j), where the ρ̂2
j are the squared sample canonical correlations

between Y1k and Xk (adjusting for sample means if constant terms are allowed

for). Then (3.1) follows asymptotically the χ2
(m1−r1)(n−r1) distribution under the

null hypothesis (see Anderson (1951, Them. 3). A simple correction factor for

the LR statistic in (3.1), to improve the approximation to the χ2
(m1−r1)(n−r1)

distribution, is given by M = −2{[T − n + (n − m1 − 1)/2]/T} log(λ) = −[T −

n + (n − m1 − 1)/2]
∑m1

j=r1+1 log(1 − ρ̂2
j). This approximation is known to work

well when T is large (see Anderson (1984, Chap.8)).

The alternative hypothesis in the above testing procedure is that the matrix

C is of full rank. There may be situations where r1 + m2 = r < min(m,n) so

that the matrix C would still have reduced rank r to begin with. We might want

to test the subset reduced-rank model assumptions of (1.2)−(1.3) against the

alternative of the usual reduced-rank model, rank(C) = r = r1 + m2. The form

of the LR statistic for this test can readily be developed, and

−2 log(λ) = −T

[
m1∑

j=r1+1

log
(
1 − ρ̂2

j

)
−

m∑

j=r+1

log
(
1 − ρ̃2

j

)
]
, (3.2)

where ρ̃2
j , j = r + 1, . . . ,m, are the (m − r) ≡ (m1 − r1) smallest squared

sample canonical correlations between Yk and Xk, with −2 log(λ) distributed as

χ2
m2(m1−r1)

asymptotically.
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Concerning distributional properties of the ML estimators Ĉ1 and Ĉ2, the

approximate normal distribution and approximate covariance matrix of the

reduced-rank estimator Ĉ1 follow directly from results by Anderson (1999) and

Reinsel and Velu (1998, Secs. 2.5 and 3.5). In particular, the results from Ander-

son (1999, pp.1147-1148) imply that the large sample (as T → ∞) approximate

covariance matrix of Ĉ1 is given by

cov[vec(Ĉ1)] = Σ11 ⊗
(
XX′

)
−1

−
[
Σ11 −A

(
A′Σ−1

11 A
)
−1

A′

]

⊗
[(

XX′
)
−1

−B′
(
B

(
XX′

)
B′

)
−1

B
]
. (3.3)

For the general case, arguments similar to those by Ahn and Reinsel (1988)

and (Reinsel and Velu (1998, Sec. 3.5)) establish that the asymptotic covariance

matrix of the joint ML estimator γ̂ = [vec(Ĉ′

1), vec(Ĉ
′

2)]
′ is given by

cov (γ̂) = M
[
M′

(
Σ−1 ⊗XX′

)
M

]
−1

M′, (3.4)

where M = diag (M1, Im2n) and M1 = ∂γ1/∂θ′, with γ1 = vec(C′

1) ≡ vec(B′A′)

and θ = [vec(A′)′, vec(B′)′]′. It can be verified that this approach yields the

same result for cov[vec(Ĉ′

1)] as the expression given in (3.3) and, furthermore,

that we obtain the asymptotic expression

cov[vec(Ĉ′

2)] = Σ∗

22 ⊗ (XX′)−1 + (Σ21Σ
−1
11 ⊗ In)cov[vec(Ĉ′

1)](Σ
−1
11 Σ12 ⊗ In),

(3.5)

where cov[vec(C′

1)] is given by the expression in (3.3), and Σ∗

22 =Σ22−Σ21Σ
−1
11 Σ12.

Consider, for instance, the extreme case in which r1 = rank(C1) is taken as 0,

so that C1 = 0 and estimation of C1 is not involved. Then, in (2.6), Ĉ2 = Ĉ∗

2

and (3.5) collapses to cov[vec(Ĉ′

2)] = Σ∗

22 ⊗ (XX′)−1. This can be recognized as

a familiar result in the context of ‘covariance-adjustment’, where in this case the

entire set of response variables in Y1k would be used as covariates for Y2k since

C1 = 0 implies that the complete vector of responses Y1k is entirely unrelated

to Xk.

For the covariance matrix of Ĉ2, it may also be instructive to mention a more

direct argument. Since Σ̃ is consistent for Σ, we can write the ML estimator Ĉ2

as

Ĉ2 = C̃2 − Σ̃21Σ̃
−1

11 (C̃1 − Ĉ1) = C̃2 −Σ21Σ
−1
11 (C̃1 − Ĉ1) + op

(
T−

1

2

)

= (C̃2 −Σ21Σ
−1
11 C̃1) + Σ21Σ

−1
11 Ĉ1 + op

(
T−

1

2

)

= HC̃ + Σ21Σ
−1
11 Ĉ1 + op

(
T−

1

2

)
, (3.6)
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where H =
[
−Σ21Σ

−1
11 , I

]
is such that HΣH′ = Σ∗

22. Because (C̃2 −Σ21Σ
−1
11 C̃1)

and C̃1 have zero covariance, it follows that the two terms in (3.6) that comprise

Ĉ2 are uncorrelated (independent) asymptotically. So we obtain the asymp-

totic covariance matrix of Ĉ2 using (3.6) from cov[vec(Ĉ′

2)] = cov[vec(C̃′H′)] +

cov[vec(Ĉ1Σ
−1
11 Σ12)], the result in (3.5).

Finally, we can compare the distributional properties of the ML estimators

Ĉ1 and Ĉ2 under the subset reduced-rank model assumptions of (1.2)−(1.3)

with those for ML estimators obtained under the usual or standard reduced-rank

model assumptions. As noted in Section 1, (1.2)−(1.3) imply that rank(C) =

r1 +m2 = r in (1.1) with an overall factorization as C = diag(A, Im2
)[B′,C′

2]
′ ≡

A∗B∗. When r = min(m,n) there is no reduced rank overall and one would

consider the usual LS estimator C̃ with cov[vec(C̃′)] = Σ ⊗ (XX′)−1. When

r < min(m,n), however, one may still obtain the ML estimator of C for the usual

reduced-rank model, denoted as C = A∗B∗ with components C1 and C2. Using

similar methods as previously, it can be shown that the asymptotic covariance

matrices of vec(C
′

1) and vec(C
′

2) are of the same form as the ML estimators

in (3.3) and (3.5) under the subset reduced-rank model, but with (XX′)−1 −

B′

∗
(B∗(XX′)B′

∗
)−1B∗ in place of (XX′)−1 − B′(B(XX′)B′)−1B. These results

can thus be directly compared with the results in (3.3) and (3.5) to indicate the

increase in the covariance matrix relative to the subset reduced-rank model.

4. Procedures for Identification of Subset Reduced-Rank Structure

In practice, we typically would not know or be able to specify a priori the

subset of response variables for which (1.2)−(1.3) holds. In (1.1) with m > n,

however, there will exist m − n linear combinations `′jYk such that `′jC = 0.

When (1.2)−(1.3) holds, m1−r1 of the vectors `j can take the form `′j = [`′1j ,0
′],

with `1j such that `′1jC1 = 0. As described by Reinsel and Velu (1998, Chap.2),

the `j can be estimated by ˆ̀
j = Σ̃

−1/2
V̂j, j = n + 1, . . . ,m, where the V̂j are

normalized eigenvectors of the matrix R̂ = Σ̃
−1/2

C̃Σ̂xxC̃
′Σ̃

−1/2
associated with

its m − n smallest (zero) eigenvalues. If a certain number (m1 − r1 > m1 − n)

of the estimates ˆ̀
j satisfy ˆ̀′

j ≈ [ˆ̀′1j ,0
′], for a particular partition of the response

variables, then this feature can serve as a preliminary tool to identify the existence

and nature of the partially reduced-rank structure for C.

If desired, one can also systematically examine all possible subsets of the

response variables for each given dimension m1 < m, and compute the LR statis-

tics for tests of rank and other summary statistics for each subset case. An

information criterion such as AIC could then be used to select the ‘best’ subset

of response variables that exhibits the most desirable (partially) reduced-rank
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regression features. The procedure of examining all possible subsets of the re-

sponse variables for tests of rank and other features may not be practical or

desirable when the dimension m is relatively large. Thus we suggest and de-

scribe briefly a stepwise “backward-elimination” procedure. In this, we start

with all m(≥ n) response variables included in Y1k ≡ Yk and carry out the LR

test procedure for reduced rank. Assume that r is identified as the rank of the

overall coefficient matrix C by the LR test at this stage, that is, r is the small-

est value such that the hypothesis H0 : rank(C) ≤ r is not rejected by the LR

test procedure. Then we consider each of the m distinct subsets of Yk, of the

form (y1k, . . . , yi−1,k, yi+1,k, . . . , ymk)
′, obtained by excluding one response vari-

able (the ith variable) at a time. For each (m−1)-dimensional subset we calculate

the LR statistic for testing the corresponding hypothesis that rank(C1) = r − 1.

If yi′k is the response variable that yields the smallest value of the LR statistic

for testing rank(C1) = r − 1 and if this value leads to not rejecting this null

hypothesis, then the subset Y1k with variable yi′k excluded is chosen. After ex-

cluding yi′k, we test if it is reasonable to reduce the rank of C1 without discarding

any more y-variables. At the next step we consider each of the m − 1 distinct

subsets of this Y1k obtained by excluding a remaining response variable one at

a time. For each (m − 2)-dimensional subset we calculate the LR statistic for

testing the corresponding hypothesis rank(C1) ≤ r − 2. If yi′′k is the response

variable that yields the smallest value of the LR test statistic and if this leads to

not rejecting this null hypothesis, then the new (m − 2)-dimensional subset Y1k

with variable yi′′k excluded (in addition to the previously excluded variable yi′k)

is chosen. The stepwise procedure continues until no further response variables

can be ‘eliminated’.

5. Illustrative Examples

In this section we present two numerical examples to illustrate our (par-

tially) reduced-rank methods. The first example involves chemometrics data for

which ignoring the subset structure leads to no rank reduction. The second ex-

ample involves macroeconomic time series data for which consideration of subset

structure leads to further rank reduction.

Chemometrics Data. We first consider a multivariate chemometrics data set

obtained from simulation of a low-density polyethylene tubular reactor. The

data are from Skager, MacGregor and Kiparissides (1992), who used partial

least squares (PLS) multivariate regression modeling applied to these data both

for predicting properties of the produced polymer and for multivariate process

control. The data were also considered by Breiman and Friedman (1997) and

Reinsel (1999) to illustrate the relative performance of different multivariate
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prediction methods, and by Reinsel and Velu (1998, Sec. 3.3) to illustrate the

use of partial canonical correlation methods in reduced-rank modeling.

The data set consists of T = 56 multivariate observations, with m = 6

response variables and 22 ‘original’ predictor (or process) variables. The re-

sponse variables are the following output properties of the polymer produced:

y1, number-average molecular weight; y2, weight-average molecular weight; y3,

frequency of long chain branching; y4, frequency of short chain branching; y5,

content of vinyl groups in the polymer chain; y6, content of vinylidene groups in

the polymer chain. The process variable measurements employed consist of the

wall temperature of the reactor (x1) and the feed rate of the solvent (x2) that also

acts as a chain transfer agent, complemented with 20 different temperatures mea-

sured at equal distances along the reactor. For interpretational convenience, the

response variables y3, y5, and y6 were rescaled by the multiplicative factors 102,

103, and 102, respectively, for the analysis presented here, so that all six response

variables would have variability of the same order of magnitude. The predictor

variable x1 was also rescaled by the factor 10−1. The temperature measurements

in the temperature profile along the reactor are expected to be highly correlated

and therefore methods to reduce the dimensionality and complexity of the input

or predictor set of data may be especially useful. Reinsel and Velu (1998, Sec.

3.3) used partial canonical correlation analysis between the response variables

and the 20 temperature measurements, given x1 and x2, to exhibit that only the

first two (partial) canonical variates of the temperature measurements were nec-

essary for adequate representation of the six response variables y1 through y6. We

denote these two (partial) canonical variates of the temperature measurements

as x3 and x4, and suppose that these two (partial canonical) variables together

with the two original variables x1 and x2 represent the set of predictor variables

available for modeling of the six response variables, for purposes of illustration

of the partially reduced-rank modeling methodology.

We consider a multivariate linear regression model for the kth vector of

responses of the form

Yk = D + DXk + εk, k = 1, . . . , T, (5.1)

with T = 56, where Yk = (y1k, . . . , y6k)
′ is a 6× 1 vector, Xk = (x1k, . . . , x4k)

′ is

a 4× 1 vector (hence n = 4), and D allows for the 6× 1 vector of constant terms

in the regression model. For convenience of notation, let Ỹ and X̃ denote the

6× 56 and 4× 56 data matrices of response and predictor variables, respectively,

after adjustment by subtraction of overall sample means. Then the least squares
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estimate of the 6 × 4 regression coefficient matrix C is

C̃ = ỸX̃′(X̃X̃′)−1 =




−0.36855 5.47679 0.03961 0.06727

(0.04151) (0.07792) (0.00300) (0.00894)

−0.21289 27.65198 0.10804 0.03777

(0.13960) (0.26210) (0.01008) (0.03007)

−1.20633 −0.80070 −0.04714 0.45245

(0.14690) (0.27570) (0.01060) (0.03164)

−1.02840 −1.40210 0.19635 0.22933

(0.09776) (0.18350) (0.00706) (0.02106)

−0.37562 −0.49059 0.07631 0.08210

(0.05658) (0.10620) (0.00409) (0.01219)

−0.39426 −0.54438 0.07415 0.09133

(0.04133) (0.07759) (0.00298) (0.00890)




,

with estimated standard errors of the individual elements of C̃ displayed in

parentheses below the estimates, and D̃ = [24.525, 18.930, 109.556, 97.631, 41.281,

40.722]′. The ML estimate Σ̃ = (1/56)(Ỹ − C̃X̃)(Ỹ − C̃X̃)′ of the 6 × 6 covari-

ance matrix Σ of the errors εk has diagonal elements σ̃jj, j = 1, . . . , 6, given

by 0.026194, 0.296424, 0.328035, 0.145301, 0.048671, 0.025973, with log(|Σ̃|) =

−16.6529. Moderate sample correlations, of the order of 0.5, are found between

most of the pairs of residual variables ε̂jk, j = 1, . . . , 6, except for residuals ε̂2k

for the second response variable y2k which exhibit little correlation with residuals

from response variables y3k through y6k. By comparison with these (partial) cor-

relations among the yjk after adjustment for Xk, the original response variables

y1k and y2k show a correlation of about 0.985, variables y4k, y5k and y6k form

another strongly correlated group with correlations of about 0.975, while y3k has

moderate negative correlations with y4k, y5k and y6k of the order of −0.5.

From the values and significance of the elements in C̃, the regression coeffi-

cients corresponding to variables y4 through y6 share strong similarities, indicat-

ing that rank one may be possible for this (sub)set of response variables. But with

the inclusion of response variables y1 through y3, the rank of C might be four,

that is, full rank. In fact, a LR test of rank(C) ≤ 3 versus rank(C) = 4 gives a

chi-squared test statistic value of M = 10.172 with 3 degrees of freedom, so a hy-

pothesis of reduced rank of three or less for C is rejected. Moreover, the estimated

vectors ˆ̀′
j = V̂′

jΣ̃
−1/2

, j = 5, 6, associated with the zero eigenvalues of R̂ =

Σ̃
−1/2

C̃Σ̂xxC̃
′Σ̃

−1/2
are found to be ˆ̀′

5 = [0.23983,−0.05415, 0.01428,−2.20349,
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3.73557, 1.95009] and ˆ̀′
6 = [−0.24202, 0.04324, 0.12969, 0.67320, 4.13553,

−5.88991]. These vectors have the feature that coefficients corresponding to the

first three response variables y1, y2, and y3 are close to zero, with relatively

large nonzero coefficients corresponding to variables y4, y5, and y6. Based on

the discussion at the beginning of Section 4, this feature is highly suggestive of

a reduced-rank structure for the coefficient matrix associated with variables y4

through y6. The stepwise backward-elimination procedure discussed in Section 4

also performs quite well in this example. In particular, at the first stage the LR

statistics M for testing rank(C1) ≤ 3 give extremely small and nonsignificant

values of 0.025, 0.024, and 0.243, each with 2 degrees of freedom, when the sin-

gle response variable y1k, y2k, or y3k, respectively, is excluded from Yk. As the

procedure continues, it leads to clearly retaining only the variables y4k, y5k, and

y6k in Y1k and identification of coefficient structure of rank one for this subset.

We now rearrange the response variables with Y1k = (y4k, y5k, y6k)
′ and

Y2k = (y1k, y2k, y3k)
′, and let C1 denote the upper 3 × 4 submatrix of C cor-

responding to the (rearranged) response variables in Y1k. The LR test of H0 :

rank(C1) ≤ 2 gives the test statistic value of M = 0.032 with 2 degrees of free-

dom, and the LR test of H0 : rank(C1) ≤ 1 gives the test statistic value of

M = 2.285 with 6 degrees of freedom, so the hypothesis of reduced rank of one

for C1 is quite acceptable. The hypothesis that C1 = 0 has a LR statistic value

of M = 201.310 with 12 degrees of freedom, so we should clearly retain the rank

one hypothesis. We mention that the squared sample canonical correlations be-

tween Y1k and Xk (adjusting for sample means) are ρ̂2
1 = 0.97981, ρ̂2

2 = 0.04322,

and ρ̂2
3 = 0.00063.

To obtain the ML estimate Ĉ1 = ÂB̂ under the rank one hypothesis, we

find the normalized eigenvector of the matrix R̂1 = Σ̃
−1/2

11 C̃1Σ̂xxC̃
′

1Σ̃
−1/2

11 asso-

ciated with the largest eigenvalue λ̂2
1 ≡ ρ̂2

1/(1 − ρ̂2
1) = 48.52315. This normal-

ized eigenvector is V̂1 = [0.77466, 0.23619, 0.58661]′. So as in (2.4) we compute

Â = Σ̃
1/2

11 V̂1 and B̂ = V̂′

1Σ̃
−1/2

11 C̃1 to obtain Â = [0.321726, 0.126565, 0.121561],

B̂ = [−3.22504, −4.42765, 0.610427, 0.731985], so that the reduced-rank ML es-

timate of C1 is

Ĉ1 = ÂB̂ =



−1.03758 −1.42449 0.19639 0.23550

−0.40818 −0.56039 0.07726 0.09264

−0.39204 −0.53823 0.07420 0.08898


 .

This rank-one estimate quite accurately recovers the corresponding LS estimates,

displayed previously as the last three rows of C̃ in the original ordering of re-

sponse variables. The associated ML estimate of C2 (last three rows of C under



PARTIALLY REDUCED-RANK MULTIVARIATE REGRESSION MODELS 911

rearrangement) is

Ĉ2 =



−0.37690 5.45910 0.03987 0.06973

−0.21307 27.65157 0.10805 0.03785

−1.26164 −0.91897 −0.04551 0.47003


 .

The corresponding ML estimate Σ̂ of the error covariance matrix Σ has diag-

onal elements, corresponding to the original ordering of the response variables,

of 0.026266, 0.296424, 0.331456, 0.145592, 0.049883, 0.026013, with log(|Σ̂|) =

−16.6081, which are very close to values from Σ̃ under (full-rank) LS estimation.

For graphical illustration in support of the reduced-rank feature among the sub-

set of response variables y4, y5 and y6, Figure 1 displays scatter plots of each

of the response variables against the single predictive index variable x∗

1k = B̂Xk

determined from the rank one modeling of the coefficient matrix C1 for the vari-

ables y4, y5 and y6. (The linear fits of each of y4, y5 and y6 with x∗

1 obtained

from the reduced-rank model are also indicated in the graphs.) This illustration

confirms that each of y4, y5 and y6 has a quite strong linear relationship with

the single index x∗

1, whereas response variables y1, y2 and y3 do not show any

particular relationship with x∗

1, consistent with the modeling results.

UK Macroeconomic Data. We now consider UK macroeconomic data originally

presented and analyzed by Klein, Ball, Hazlewood and Vandome (1961). The

data were also previously considered by Gudmundsson (1977) and Reinsel and

Velu (1998, Chap.4). Klein, Ball, Hazlewood and Vandome presented a detailed

description of an econometric model based on an extensive data base (more than

twenty macroeconomic time series) including the data used in our analysis. The

endogenous (response) variables considered are y1 = index of industrial produc-

tion, y2 = consumption of food, drinks, and tobacco at constant prices, y3= total

unemployment, y4 = index of volume of total imports, y5 = index of volume of

total exports. The exogenous variables are x1 = total civilian labor force, x2 =

index of weekly wage rates, x3 = price index of total imports, x4 = price index

of total exports, x5 = price index of total consumption. The relationships be-

tween these two sets of variables can be taken to reflect the demand side of the

macrosystem of the UK economy. The observations are quarterly for 1948-1956.

The first three response variable series are seasonally adjusted, and time series

plots of the resulting endogenous and exogenous variables are given by Reinsel

and Velu (1998, p.96).

From preliminary LS regression of each response variable yik on the predictor

variables xik, some moderate degree of autocorrelation is noted in the residuals,

particularly for the second and third response variables. Therefore, based on
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LS estimation of a model which included a lagged response variable in these two

equations, in the analysis described below we use the ‘adjusted’ response variables

y∗2k = y2k + 0.6y2,k−1 and y∗3k = y3k − 0.635y3,k−1 to account for autocorrelation.
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Figure 1. Response variables y1, . . . , y6 for the chemometrics data versus

the single index predictor variable x∗1 = B̂X determined from the partially

reduced-rank regression model.

Then we consider a multivariate linear regression model of the form Yk =

D + CXk + εk, k = 1, . . . , T , with T = 36, where Yk = (y1k, y
∗

2k, y
∗

3k, y4k, y5k)
′,

Xk = (x1k, . . . , x5k)′, and D allows for the 5 × 1 vector of constant terms in the

regression model. For convenience of notation, let Ỹ and X̃ denote the 5 × 36

data matrices of response and predictor variables, respectively, after adjustment

by subtraction of overall sample means. The least squares estimate of the 5 × 5
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regression coefficient matrix C is

C̃ = ỸX̃′(X̃X̃′)−1 =




5.5010∗ −0.8392∗ 0.3044 −0.8910∗ 2.0452∗

1.9134∗ −0.1506 0.2745∗ −0.5852∗ 0.9334∗

−2.7096 0.6824 −1.2594∗ 2.4762∗ −2.5368∗

4.4956∗ −0.5684 0.4521 −0.8408∗ 1.5797∗

8.9506∗ −0.1536 0.4797 −0.4363 −0.1680




,

where the entries with asterisk indicate that the usual t-ratios of these estimates

are greater than 1.65 in absolute value. The ML estimate Σ̃ = (1/36)(Ỹ −

C̃X̃)(Ỹ − C̃X̃)′ of the 5 × 5 covariance matrix Σ of the errors εk has diagonal

elements σ̃jj, j = 1, . . . , 5, given by 10.0280, 2.7598, 69.5145, 25.1619, 34.1522,

with log(|Σ̃|) = 13.5484.

From the values and significance of the elements in C̃, the regression coef-

ficients corresponding to certain of the response variables yik share strong simi-

larities. For example, possible similarities among y1k, y∗2k, and y4k, indicate that

reduced rank may be possible for the set of response variables and/or for some

subset of these variables. We perform LR tests of rank(C) ≤ r for r = 4, 3, 2, 1.

For reference, the squared sample canonical correlations between Yk and Xk

(adjusting for sample means) are ρ̂2
1 = 0.96921, ρ̂2

2 = 0.40003, ρ̂2
3 = 0.31975,

ρ̂2
4 = 0.11723, and ρ̂2

5 = 0.01675. For r = 3 the LR test gives a chi-squared

test statistic value of M = 4.176 with 4 degrees of freedom, so a hypothesis of

reduced rank of three or less for C is clearly not rejected. For r = 2, the value

M = 15.543 with 9 degrees of freedom is obtained, which hints that a reduced

rank of two could even be possible. For the present, however, we adopt the more

conservative conclusion that rank(C) ≤ 3 with r = 3.

ML estimates of the matrix factors Â and B̂ in Ĉ = ÂB̂ under the rank 3

model are obtained in the standard way, similar to (2.4). These estimates are

Â′ =




2.144∗ 1.292∗ −0.574∗ 1.966∗ 2.230∗

0.907 −0.001 −3.829∗ 1.044 4.964∗

0.631 0.785∗ −7.272∗ −0.073 −2.049


 ,

B̂ =




1.845 −0.187 0.125 −0.303 0.669

0.875 0.015 0.090 −0.069 −0.171

−0.274 −0.060 0.117 −0.273 0.344


 ,

and the corresponding ML estimate Σ̂ of the error covariance matrix Σ has

diagonal elements σ̂jj, j = 1, . . . , 5, given by 10.5321, 2.8166, 69.6403, 25.6354,

34.1685, quite similar to the full-rank LS results, with log(|Σ̂|) = 13.6900. For
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reference, ML estimates under the rank 2 model (r = 2) would merely consist of

the first two columns and first two rows of Â and B̂, respectively. Notice that, in

particular, from the estimate Â there may still be some strong similarities among

its rows of coefficients, except that the third row of estimates, corresponding to

response variable y∗

3, does seem to show substantial differences from the remaining

rows. We examine the estimated vectors ˆ̀′
j = V̂′

jΣ̃
−1/2

, j = 4, 5, associated with

the ‘near’ zero eigenvalues λ̂2
j = ρ̂2

j/(1 − ρ̂2
j) of R̂ = Σ̃

−1/2
C̃Σ̂xxC̃

′Σ̃
−1/2

(such

that ˆ̀′
jC̃ ≈ 0), which are ˆ̀′

4 = [−0.3362, 0.4722, 0.0029, −0.0199, 0.0678] and
ˆ̀′
5 = [0.1334, 0.0432, 0.0109, −0.2004, 0.0262]. These vectors have the feature

that coefficients corresponding to the response variable y∗

3 are close to zero, there

are only moderate values corresponding to variable y5, and some relatively large

nonzero coefficients corresponding to variables y1, y∗2, and y4. Based on the

discussion at the beginning of Section 4, the above features are highly suggestive

of a further reduced-rank structure for the coefficient matrix associated with

variables y1, y∗2 , y4, and y5, with variable y∗

3 excluded. The stepwise backward-

elimination procedure discussed in Section 4 also performs quite well in revealing

this feature in this example. In particular, at the first stage the LR statistic M

for testing rank(C1) ≤ 2 gives a relatively small and nonsignificant value of 4.363

with 6 degrees of freedom, when the single response variable y∗

3k is excluded from

Yk, and this LR test statistic value is smaller than when any of the other single

response variables yik, i 6= 3 is excluded.

We rearrange the response variables with Y1k = (y1k, y
∗

2k, y4k, y5k)
′ and

Y2k = (y∗3k), and let C1 denote the upper 4 × 5 submatrix of C correspond-

ing to the (rearranged) response variables in Y1k. As indicated, the LR test of

H0 : rank(C1) ≤ 2 gives the test statistic value of M = 4.363 with 6 degrees

of freedom, whereas the LR test of H0 : rank(C1) ≤ 1 gives M = 18.542 with

12 degrees of freedom. The hypothesis of reduced rank of two for C1 is clearly

acceptable, while reduced rank of one might also be plausible but again the more

conservative value r1 = 2 is taken. ML estimates of the factors Â and B̂ in

Ĉ1 = ÂB̂ for this subset reduced-rank model under r1 = 2 are obtained from

(2.4) and, in particular, the estimate Â is

Â′ =

[
2.372∗ 1.429∗ 2.172∗ 2.475∗

0.391 −0.439 0.837 5.260∗

]
.

From these results we see that the coefficient estimates for the second predictive

factor (second column of Â) are generally small (and nonsignificant) for response

variables y1k, y∗2k, and y4k, but much more substantial for the last response

variable y5k. This suggests an even further reduced-rank feature for the coefficient
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matrix associated with y1, y∗2 , and y4, with variable y5 excluded (in addition to

the previously exclude y∗

3). Thus we entertain continuation of the backward

elimination procedure for reduced rank, leading to eliminating y5k and retaining

only y1k, y∗2k, and y4k in Y1k, and identification of coefficient structure of rank

one for this subset.

Finally, we rearrange the response variables with Y1k = (y1k, y
∗

2k, y4k)
′,

Y2k = (y∗3k, y5k)
′, and let C1 denote the upper 3 × 5 submatrix of C corre-

sponding to the (rearranged) response variables in Y1k. The squared sample

canonical correlations between Y1k and Xk (adjusting for sample means) are

ρ̂2
1 = 0.96244, ρ̂2

2 = 0.16460, and ρ̂2
3 = 0.02684. The LR test of H0 : rank(C1) ≤ 1

gives M = 6.315 with 8 degrees of freedom, so the hypothesis of reduced rank

of one for C1 is clearly acceptable. We obtain the ML estimate Ĉ1 = ÂB̂

under this rank one model, with Â = [2.3808∗, 1.4350∗, 2.1792∗]′ and B̂ =

[1.7153, −0.1984, 0.1738, −0.3951, 0.7226]. The associated reduced rank-one

ML estimate Ĉ1 rather accurately represents the corresponding LS estimates of

C, displayed previously as the first, third, and fourth rows of C̃ in the original

ordering of response variables. The associated ML estimate of C2 (last two rows

of C under rearrangement) is obtained from (2.6) as

Ĉ2 =

[
−2.4660 0.6212 −1.2741 2.4845 −2.4863

7.7977 0.1343 0.5454 −0.4755 −0.4024

]
.

The corresponding ML estimate Σ̂ of the error covariance matrix Σ has diagonal

elements, corresponding to the original ordering of the response variables, of

10.6964, 2.8908, 69.5369, 26.3046, 34.6696, with log(|Σ̂|) = 13.7554, which are

close to values from Σ̃ under (full-rank) LS estimation and from the earlier

‘general’ reduced rank 3 model for C. Taking into account the magnitudes of

variation of the five predictor variables and (approximate) standard errors of

elements of B̂, the single predictive index variable x∗

1k = B̂Xk in the above rank

one subset model is composed most prominently of strong contributions from x1k,

x4k, and x5k, with much lesser relative weight given to x2k and x3k. Graphical

illustration in support of the reduced-rank one model feature can be provided

(similar to Figure 1, but not displayed) by scatter plots of each of the response

variables against the single predictive index variable x∗

1k = B̂Xk determined from

the rank one modeling of the coefficient matrix C1 for the variables y1, y∗2, and

y4. Such illustration further confirms that each of y1, y∗2 , and y4 has a quite

strong linear relationship with the single index x∗

1, whereas response variables y∗

3

and y5 (especially y∗3) do not show as strong of relationship with x∗

1 because they

are also influenced by other factors within the set of predictor variables.
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6. Discussion and Extension

The model considered in this paper might be viewed as complementary to

the original reduced-rank model of Anderson (1951), wherein for the regression

of Yk the set of predictor variables Xk was separated into a subset X1k whose

coefficient matrix was taken to be of reduced rank and another subset X2k with

full-rank coefficient matrix. This division into separate sets could be based on

knowledge of the subject matter. In the current model the role is reversed in that

the set of response variables is divided into one subset Y1k having reduced-rank

coefficient matrix in its regression on Xk and so being influenced by only a small

number of predictive variables constructed as linear combinations of Xk, and

another subset Y2k having full-rank coefficient matrix with separate predictors

that are linearly independent of those influencing Y1k.

An extended version of the original reduced-rank model was considered by

Velu (1991), where each subset X1k and X2k of the predictors has coefficient

matrix of reduced rank and hence each subset can be represented by a smaller

number of linear combinations to describe the relationship with Yk. As an analo-

gous extension of the current ‘partially’ reduced-rank model introduced in Section

1, one could also easily envision situations where the two subsets Y1k and Y2k

of response variables each have separate reduced rank structures, instead of only

Y1k having reduced rank. As a motivating example, in an economic system it

might be postulated that a certain subset of the endogenous (response) economic

variables are influenced by only a few indices of the exogenous (predictor) eco-

nomic variables in the system, while another subset of the endogenous variables is

influenced only by a few different indices of the exogenous variables. Hence, each

subset is influenced by a small number of different (linearly independent) linear

combinations of Xk. Such a model adds flexibility to the current model and may

be useful in various applications. It would be interesting to explore the statistical

procedures of ML estimation and LR testing for ranks associated with models of

this form. In particular, we anticipate that simultaneous ML estimation of the

two separate components of reduced-rank structure will involve a feature, which

we might refer to as “seemingly unrelated reduced-rank regression”, analogous

to the aspect that occurs in simultaneous estimation of “seemingly unrelated

(full-rank) regression” systems.
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