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Abstract: The cumulative sum (CUSUM) chart, well-known to be sensitive in de-
tecting small and moderate parameter changes, is proposed here for monitoring
a high yield process. The sensitivities of the CUSUM charts based on geometric,
Bernoulli and binomial counts are compared. Based on the comparisons, recom-
mendations for the selection of a chart are provided. Simple procedures are given
for optimal design of CUSUM charts based on geometric and Bernoulli counts.
An application of CUSUM charts in monitoring an actual high yield process is
demonstrated.
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1. Introduction

In the manufacturing industry, many processes are producing very low levels
of nonconforming items due to the advent of technological advancement and man-
ufacturing automation. The fraction p of nonconforming items for such processes
is usually on the order of parts-per-million (ppm) and one speaks of high yield
processes. A high yield process is defined here as a process with an in-control pg
of at most 0.001, or 1000 ppm. The Shewhart np or p chart, commonly used for
monitoring the fraction of nonconforming items, is not suitable for monitoring
high yield processes. Goh (1987) showed that use of this chart results in high
false alarm rates and inability to detect process improvements. In the quality
control literature, most charts for monitoring high yield processes are based on
a geometric count, the count of items inspected until a nonconforming item is
found.

Indeed, most are based on transformed geometric counts. Calvin (1987) was
the first to propose the Shewhart chart based on geometric counts; Nelson (1994)
proposed a Shewhart chart based on X 56 where X is a geometric count; Quesen-
berry (1995) proposed several charts based on Q = —®~1{1 — (1 —py)*}, ®~1(")
the inverse distribution function of the standard normal random variable; Mc-
Cool and Motley (1998) considered Shewhart and exponentially weighted moving
average (EWMA) charts based on Y = X 55 and Z = In(X). The main argu-
ment for using a transformation of geometric counts is to obtain an approximate
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normal distribution. Shewhart, CUSUM and EWMA charts which have been
developed for normally distributed data can then be used.

The main disadvantage in implementing a chart based on transformed mea-
surements is the difficulty in interpretation. In addition, some transformations
involve complicated calculations not easily done without the use of a computer.
Design procedures for CUSUM charts based on nontransformed geometric counts
have not been developed. Even though Bourke (1991) has given a design proce-
dure for the geometric CUSUM charts, it is only meant for an in-control pgy of
at least 0.002. Bourke (1991) noted that for very small in-control pg, the use of
the Markov chain approach in determining average run length (ARL) results in
a very large matrix for inversion and is computationally prohibitive.

Reynold and Stoumbos (1999) proposed the monitoring of p using a Bernoulli
CUSUM chart, using the corrected diffusion (CD) approach for approximating
the average number of items sampled (ANIS) until a signal is issued. The CD
approach is found to work well for p > 0.01. However, the accuracy of the CD
approach for p < 0.01 has not been evaluated. They provided a procedure for
designing an upper-sided Bernoulli CUSUM chart for an in-control pg > 0.001.
A comparison of the run length performances given by Reynold and Stoumbos
(1999) showed that the Bernoulli CUSUM chart is more sensitive in detecting
increases in p than the Shewhart and CUSUM charts based on binomial counts
for an in-control py of 0.01. They also noted, without proof, that an upper-sided
CUSUM chart with head start based on Bernoulli counts is equivalent to an
upper-sided CUSUM chart based on geometric counts without head start.

The main objective of this paper is to provide procedures for designing opti-
mal CUSUM charts for monitoring a high yield process. CUSUM charts based on
nontransformed geometric and Bernoulli counts are developed. Explicit formu-
lae for determining the exact ANIS of both the upper- and lower-sided Bernoulli
CUSUM charts are given. These formulae are based on the Markov chain ap-
proach. The accuracy of the CD approach for calculating the ANIS for p less
than 0.01 is evaluated for both the upper- and lower-sided charts. The conditions
for an upper-sided Bernoulli CUSUM chart to be equivalent to an upper-sided
geometric CUSUM chart is also given. The run length performances of CUSUM
charts based on geometric, Bernoulli and binomial counts in detecting both in-
creases and decreases in p are evaluated. Based on our comparisons, recommen-
dations for the selection of a chart are provided. Optimal design procedures
for the CUSUM charts are also given. An application of the CUSUM charts in
monitoring the fraction of nonconforming items of a specific high yield process
is demonstrated.
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2. The CUSUM Charts
2.1. CUSUM charts based on Bernoulli and binomial counts

The CUSUM chart is more sensitive to small and moderate parameter
changes than the Shewhart chart. The CUSUM chart is also known to be compa-
rable to the EWMA chart in terms of run length performance for many processes.
The traditional approach of monitoring p involves taking samples at regular in-
tervals with the binomial count of nonconforming items taken to be the mea-
surement of quality. A large binomial count indicates a possible deterioration in
quality and, on the other hand, a small count indicates a possible improvement
in quality. The upper-sided CUSUM chart for detecting an increase in p plots
Sy = max{0,S;—1 + X; — kg} against ¢ for t = 1,2, ..., where X; is the count of
nonconforming items obtained for sample number t. Here kg is a constant and
the starting value Sy = u, 0 < u < hg. A signal is issued at the first ¢ for which
S¢ > hg. Similarly, the lower-sided CUSUM chart for detecting a decrease in p
plots T; = min{0,T;_1 + X; — kr} against ¢ for t = 1,2, ..., where kr is a constant
and Ty = v, —hp < v < 0. A signal is issued at the first ¢ for which T; < —hyp.
A two-sided CUSUM chart is obtained by running the two one-sided CUSUM
charts simultaneously.

The reference values kg and kp are obtained from the sequential probability
ratio test (SPRT) approach for testing Hg : p = pg versus H; : p = p1, where pg
is the in-control p and p; is the out-of-control p. Then

_nin{(1 —po)/(1 = p1)}
In{p1(1 —po)/po(1 —p1)}

Moustakides (1986) showed that such a choice is optimal in terms of run length
performance. Reynold and Stoumbos (1999) suggested that for the Bernoulli
CUSUM chart, the reference value k can be approximated to 1/c where ¢ is an
integer. With this approximation, the head starts and the possible CUSUM’s
will be integer multiples of 1/c and this is convenient for plotting the chart. This
approach is adopted here.

2.2. CUSUM charts based on geometric counts

Another approach to the monitoring of p is based on the geometric count,
the count of items inspected until a nonconforming item is found: a small count
indicates a possible deterioration in quality, a large count indicates a possible
improvement in quality. The upper-sided CUSUM chart for detecting an increase
in p plots H; = max{0, H,_1 + kg — Y;} against t for t = 1,2, ..., where Y; is the
tth geometric count. Here kg is a constant and the starting value Hy = u, 0 <
u < hp. A signal is issued at the first ¢ for which Hy > hy. Similarly, the lower-
sided CUSUM chart for detecting decreases in p plots Ly = min{0, L;_1 +k; —Y;}



794 T. C. CHANG AND F. F. GAN

against ¢ for ¢t = 1,2, ..., where kr, is a constant and Ly = v, —hy <v < 0. A
signal is issued at the first ¢ for which L; < —hyp. A two-sided CUSUM chart
is obtained by running the two one-sided CUSUM charts simultaneously. The
reference values ky and kj are based on the SPRT approach as

_ In{pi (1 —po)/po(1 —p1)}
In{(1 = po)/(1 —p1)}

Note that for the Bernoulli CUSUM charts, kg and kp are the inverse of ky and
kr, of the geometric CUSUM charts, respectively.

The upper-sided Bernoulli CUSUM chart with parameters kg = 1/¢, hg = h
and head start v = (w + ¢ — 1)/c is equivalent to the upper-sided geometric
CUSUM chart with parameters kg = ¢, hg = ch — ¢+ 1 and head start u = w.
(The proof of equivalence can be found in the Appendix.) Then, the ANIS of an
upper-sided geometric CUSUM chart can be obtained from the ANIS of the cor-
responding upper-sided Bernoulli CUSUM chart. For the lower-sided geometric
CUSUM chart, a decrease in p will be signalled only when a nonconforming item
is detected whereas, for the lower-sided Bernoulli CUSUM chart, a decrease in p

will be signalled when sufficient conforming items are detected. Thus, these two
charts are not equivalent in detecting a decrease in p.

3. Computation of ANIS of Bernoulli CUSUM Charts
3.1. The exact ANIS of Bernoulli CUSUM chart

The ANIS is used to measure the run length performance of charts. Based
on the Markov chain approach, explicit formulae for computing the ANIS of the
upper- and the lower-sided Bernoulli CUSUM charts can be obtained. (Details
for the upper-sided Bernoulli CUSUM chart are given in the Appendix.) Let
g = 1 —p. For the upper-sided Bernoulli CUSUM chart with ks = 1/¢ and
hs = (i + ¢)/c where i and ¢ are constants, for u = 0,

2{1 — ¢ ip+ 1)} + ¢!

ANIS, =
’ p(1 =gt —ipge?)

, for0<i<c—1,

ANISg =a/b, forec<i<2c—1,
where
a=q" 43¢ =3¢"+pg* H{(1+¢ ) (c—i—1)+(c—1)}

i—c+2 c—2( ¢ i iy c—1¢; ; ;
+< ) )qu 2(¢°=3¢"T)+3pg {¢"  (i—c+1)(p(i—c+1)+1)—i},
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b:p3qi+c—1{(0_i_1)2_ (i_;“‘Q)}

+(e—i—1)p*q (1 — ¢ ) +pg'(¢" ¢ — ple— 1) — 1).

For the upper-sided CUSUM with head start u = (c — 1)/c, ANIS(._)/. =

ANISy — 1/p. For the lower-sided Bernoulli CUSUM chart with k7 = 1/c and

hr = (i+c¢)/c, for v =0,

14 qc o 2qc+i o Z'pqc—l
pqc+i

ANISg = s/t, forc+1<i<2e,

ANISy =

, for0<i<gc,

where t = pg¢t* and

o ) _ t—c+2 .
s=1—1ipg“ " +q¢°(¢° — 3¢ +1) + pg* 2{( ) )p+(c—2)Q}-

These formulae are valid as long as hg < 3 — 1/c and hy < 3 are satisfied,
common for high yield processes.

3.2. The CD approach for approximating the ANIS

Reynold and Stoumbos (1999) proposed using the corrected diffusion (CD)
approach for approximating the ANIS of the Bernoulli CUSUM chart. Sieg-
mund (1979, 1985) originally developed the CD approximation of the ANIS of
CUSUM charts by replacing the random walk of the control statistic of a CUSUM
chart with a continuous Brownian motion process. The CD approximation works
well for the exponential family of continuous distributions. Reynold and Stoum-
bos (1999) extended the work of Siegmund (1979, 1985) by standardising the
Bernoulli random variable and approximating the standardised variable using a
Brownian motion process. They showed that for p at least 0.01, the CD approach
works well.

Comparisons of the CD approximation with the exact ANIS for p less than
0.01 are performed for both the upper- and lower-sided Bernoulli CUSUM charts.
For the upper-sided Bernoulli CUSUM chart with kg = 1/69315, hg = 100807
/69315 and u = 0.0, the ANIS is 1799 when p = 0.001 based on the CD approach,
as compared to the exact value of 2000. For the lower-sided Bernoulli CUSUM
chart with kr = 1/2773, hy = 3230/2773 and v = 0.0, the ANIS is 3729 when
p = 0.00001 based on the CD approach, as compared to the exact value of 3282.
The relative error of the CD approximation can be as large as 13.6%, due mainly
to the fact that the Bernoulli distribution with a very small p is highly skewed
and the standardised Bernoulli variable is not well approximated by a Brownian



796 T. C. CHANG AND F. F. GAN

motion process. The CD approximation is thus unsatisfactory for a high yield
process.

4. The Run Length Performance of CUSUM Charts
4.1. Upper-sided charts

The ANIS profiles of upper-sided CUSUM charts based on geometric,
Bernoulli and Bernoulli binomial counts for monitoring high yield processes are
given in Table 1. The geometric Shewhart chart is also included for comparison.
All CUSUM charts have an in-control py of 0.0001 and are designed to be opti-
mal in detecting a p value of 0.0003. Due to the discrete nature of the sample
statistics, chart parameters are chosen such that the in-control ANIS is as close
to 70,000 as possible. Among all charts, the geometric CUSUM chart is found to
be more sensitive in detecting increases in p, except for very large ones for which
the geometric Shewhart chart is more sensitive. It can be observed from Table
1 that the sensitivity of a binomial CUSUM chart increases as the sample size
decreases. Between the CUSUM charts based on Bernoulli and binomial counts,
the Bernoulli CUSUM chart is more sensitive. This is due to the fact that the
Bernoulli CUSUM chart is able to declare the status of the process after each
item is checked.

Table 1. The ANIS profiles of upper-sided geometric Shewhart, geometric
CUSUM, Bernoulli CUSUM and binomial CUSUM charts with respect to
various p. The in-control pg is 0.0001 and the CUSUM charts are optimal in
detecting p; = 0.0003.

Geometric Geometric Bernoulli  Binomial  Binomial

Shewhart CUSUM CUSUM CUSUM CUSUM

n=1 n =101 n = 1759

kg =5493 ks ==  ks=2  ks=

H=1543 hyg =4662 hg=238  hg=2  hg=4

p u=20 u=0.0 u=0.0 u=0.0
0.00010 69934.1 69959.2 69732.8 69732.5 69561.2
0.00015 32263.6 29789.4 32947.5 32997.9 33004.2
0.00020 18829.0 16898.6 20157.0 20208.1 20359.3
0.00025 12496.4 11196.7 14128.2 14176.3 14406.8
0.00030 8994.7 8158.1 10743.4 10789.2 11065.0
0.00035 6846.1 6329.1 8615.3 8659.8 8963.0
0.00040 5427.5 5129.9 7167.9 7211.5 7532.3
0.00045 4438.4 4292.3 6125.1 6168.4 6500.4
0.00050 3719.1 3678.4 5340.4 5383.6 5723.0
0.00100 1271.6 1445.8 2293.5 2339.0 2682.2
0.00500 200.1 203.1 400.4 450.4 843.9
0.10000 10.0 10.0 20.0 101.0 759.0
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4.2. Lower-sided charts

The ANIS profiles of lower-sided CUSUM chart based on geometric, Bernoulli
and binomial counts are given in Table 2. The geometric Shewhart chart is also
included for comparison. All CUSUM charts have an in-control py of 0.0001
and are designed to be optimal in detecting a p value of 0.00005. Due to the
discrete nature of the sample statistics, chart parameters are chosen such that
the in-control ANIS is as close to 40,500 as possible. Table 2 reveals that the
charts based on geometric counts are not effective in detecting decreases in p,
due mainly to the fact that when p decreases the geometric count will tend to be
very large. It can be observed from Table 2 that a binomial CUSUM chart based
on a larger sample is more sensitive in detecting decreases in p than a binomial
CUSUM chart based on a smaller sample.

Table 2. The ANIS profiles of lower-sided geometric Shewhart, geometric
CUSUM, Bernoulli CUSUM and binomial CUSUM charts with respect to
various p. The in-control pg = 0.0001 and the CUSUM charts are optimal in
detecting p; = 0.00005.

Geometric Geometric Bernoulli  Binomial  Binomial

Shewhart CUSUM CUSUM CUSUM CUSUM

n=1 n =100 n = 992

kL =13862 kr =1  kr=15 kr=1g

h = 13986 hy =125 hy =188 hp =18 pp =18

p v=20 v=0.0 v=0.0 v=0.0
0.000100 40498.1 740468.0 40501.4 40542.8 40515.2
0.000090 39124.2 39159.0 36599.9 36618.7 36538.2
0.000080 38269.5 38288.0 33143.7 33147.8 33017.8
0.000070 38027.7 38018.2 30078.7 30074.6 29898.3
0.000060 38574.7 38529.0 27357.4 27350.4 27130.7
0.000050 40247.6 40297.2 24938.4 24952.9 24672.6
0.000040 43742.8 43806.2 22785.7 22785.1 22486.6
0.000030 50711.1 50730.5 20867.6 20874.4 20540.4
0.000020 66138.2 66172.1 19156.2 19172.7 18805.3
0.000010 115011.4 115104.7 17627.5 17655.2 17256.4
0.000005 214486.7 214547.1 16924.8 16958.5 16544.9

* The ANISs of the lower-sided geometric CUSUM charts are simulated such
that the standard error of ANIS is less than 0.1% of the ANIS.

4.3. Recommendation of charts for high yield processes

Based on the comparisons of the charts in the previous section, the upper-
sided geometric CUSUM chart is recommended for detecting increases in p only.
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A decrease in p indicates a possible process improvement. Therefore, if a pro-
cess engineer is also interested in detecting decreases in p, a two-sided Bernoulli
CUSUM chart is recommended. Although the upper-sided geometric and the
upper-sided Bernoulli CUSUM charts have the same run length properties (see
the Appendix), there is a significant difference between them in terms of im-
plementation. The Bernoulli CUSUM chart plots on every item checked and
therefore the “health” of a process is closely monitored, a geometric CUSUM
chart is slower to react. On the other hand, a Bernoulli CUSUM chart requires
continuous plotting while the geometric CUSUM chart does not.

5. Optimal Design of CUSUM Charts
5.1. The upper-sided geometric CUSUM charts

The following three steps are proposed for the design of an optimal upper-
sided geometric CUSUM chart:
Step 1. Determine the in-control pg and the out-of-control p; for which quick
detection is desired.
Step 2. Decide on the in-control ANIS.
Step 3. Based on the information given in Steps 1 and 2, the chart parameters
kg and hy can be obtained from Table 3.
The in-control py can be estimated using the sample fraction of nonconforming
items produced when the process is in-control. The out-of-control p; can be
taken as the fraction of nonconforming items where a quick detection is needed.
The in-control ANIS is often determined by considering the production rate and
the costs associated with machine downtime and false alarms.

5.2. The upper- and lower-sided Bernoulli CUSUM charts

The procedure for designing an optimal upper- or lower-sided Bernoulli
CUSUM chart is similar to the one for upper-sided geometric CUSUM charts.
For Step 3, the chart parameters for an upper- or lower-sided Bernoulli CUSUM
chart can be obtained from Table 4 or Table 5 respectively. The parameter kg
or kr is obtained as kg = 1/c or kp = 1/c. The two-sided Bernoulli chart can be
obtained by running the upper- and lower-sided charts simultaneously. Finally,
the ANIS of a two-sided CUSUM chart can be approximated as

ANIS;, - ANISy
ANISL =+ ANISU ’

where ANISy and ANISy, are the ANIS’s of the upper- and lower-sided charts
respectively. The conditions for the ANIS formula to be exact is similar to that
of Lucas (1985).

ANISQ ~



CUMULATIVE SUM CHARTS FOR HIGH YIELD PROCESSES

Table 3. The optimal chart parameters of upper-sided geometric CUSUM
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charts.
Do P kum hy

In-Control

ANIST 300000 400000 500000 600000 700000 800000

0.00001 0.000015 81093 45886 62639 73081 80338 94102 106269

0.000020 69315 31493 46783 56163 62599 67324 74086

0.000030 54931 15072 28764 37009 42587 46636 49719

0.000040 46210 5771 18595 26239 31371 35072 37876
In-Control

ANIS 60000 80000 100000 120000 160000 200000

0.00005 0.000075 16219 9178 12528 14617 16068 21255 25086

0.000100 13863 6299 9357 11233 12520 14817 17995

0.000150 10986 3014 5753 7402 8517 9943 10823

0.000200 9242 1154 3719 5248 6274 7575 8371
In-Control

ANIS 30000 50000 70000 90000 110000 150000

0.0001 0.000150 &109 4588 7308 9409 11650 13339 16127

0.000200 6931 3149 5616 6732 8267 9628 11573

0.000300 5493 1507 3701 4663 5215 5751 7246

0.000400 4621 577 2624 3507 4008 4332 4994
In-Control

ANIS 20000 30000 40000 50000 60000 70000

0.0002 0.000300 4055 3132 4017 5314 6272 7038 7723

0.000400 3466 2340 3130 3705 4499 5095 5576

0.000600 2746 1438 2129 2485 2705 3096 3465

0.000800 2310 929 1568 1893 2092 2227 2358
In-Control

ANIS 15000 20000 25000 30000 40000 50000

0.0003 0.000450 2703 2279 2678 3349 3883 4691 5375

0.000600 2310 1731 2086 2308 2755 3394 3856

0.000900 1831 1111 1420 1609 1738 2065 2415

0.001200 1540 761 1045 1218 1335 1484 1664
In-Control

ANIS 10000 15000 20000 25000 30000 35000

0.0004 0.000600 2027 1566 2008 2655 3134 3517 3859

0.000800 1733 1170 1565 1852 2249 2547 2788

0.001200 1373 719 1064 1243 1352 1548 1732

0.001600 1155 465 784 947 1046 1113 1179
In-Control

ANIS 8000 12000 16000 20000 25000 30000

0.0005 0.000750 1622 1253 1607 2125 2509 2885 3226

0.000100 1386 935 1252 1481 1798 2088 2314

0.001500 1099 576 852 995 1083 1280 1450

0.002000 924 372 627 757 837 901 998

"Due to the discrete nature of the geometric distribution, chart parameters
are given such that the in-control ANIS is as close to the stated value as

possible.
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Table 4. The optimal chart parameters of upper-sided Bernoulli CUSUM

charts.
Po P1 c* hs

In-Control

ANIST 300000 400000 500000 600000 700000 800000

0.00001 0.0000015 81093 1.1444 1.5658 1.7724 1.9012 1.9907 2.1604

0.000020 69315 — 1.4543 1.6749 1.8102 1.9031 1.9713

0.000030 54931 — 1.2744 1.5236 1.6737 1.7753 1.8490

0.000040 46210 — 1.1249 1.4024 1.5678 1.6789 1.7589
In-Control

ANIS 60000 80000 100000 120000 160000 200000

0.00005 0.000075 16219 1.1494 1.5658 1.7724 1.9012 2.1604 2.4367

0.000100 13863 — 1.4543 1.6749 1.8102 1.9712 2.1928

0.000150 10986 — 1.2743 1.5236 1.6737 1.8489 1.9492

0.000200 9242 — 1.1248 1.4023 1.5677 1.758% 1.8672
In-Control

ANIS 30000 50000 70000 90000 110000 150000

0.0001 0.000150 &109 1.1493 1.7724 1.9905 2.3103 2.5464 2.9165

0.000200 6931 — 1.6748 1.9029 2.0685 2.2978 2.6084

0.000300 5493 — 1.5234 1.7752 1.9050 1.9849 2.2622

0.000400 4621 — 1.4023 1.6786 1.8195 1.9054 2.0210
In-Control

ANIS 20000 30000 40000 50000 60000 70000

0.0002 0.000300 4055 1.5657 1.9011 2.1603 2.4365 2.6449 2.8210

0.000400 3466 1.4541 1.8099 1.9711 2.1927 2.3889 2.5421

0.000600 2746 1.2739 1.6733 1.8485 1.9490 2.0462 2.1981

0.000800 2310 1.1242 1.5671 1.7584 1.8667 1.9368 1.9861
In-Control

ANIS 15000 20000 25000 30000 40000 50000

0.0003 0.000450 2703 1.6826 1.9009 2.0725 2.3100 2.6445 2.9038

0.000600 2310 1.5797 1.8095 1.9390 2.0680 2.3883 2.6078

0.000900 1831 1.4167 1.6734 1.8143 1.9044 2.0464 2.2616

0.001200 1540 1.2831 1.5669 1.7214 1.8188 1.9364 2.0201
In-Control

ANIS 10000 15000 20000 25000 30000 35000

0.0004 0.000600 2027 1.5654 1.9008 2.1593 2.4356 2.6443 2.8199

0.000800 1733 1.4541 1.8096 1.9706 2.1922 2.3883 2.5418

0.001200 1373 1.2739 1.6730 1.8478 1.9483 2.0459 2.1981

0.001600 1155 1.1238 1.5671 1.7576 1.8667 1.9368 1.9853
In-Control

ANIS 8000 12000 16000 20000 25000 30000

0.0005 0.000750 1622 1.5654 1.9007 2.1597 2.4359 2.6905 2.9038

0.000100 1386 1.4538 1.8095 1.9704 2.1919 2.4293 2.6075

0.001500 1099 1.2739 1.6733 1.8480 1.9481 2.0883 2.2611

0.002000 924 1.1234 1.5671 1.7576 1.8658 1.9502 2.0195

*kg is obtained as ks=1/c.
"Due to the discrete nature of the Bernoulli distribution, chart parameters
are given such that the in-control ANIS is as close to the stated value as
possible.
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Table 5. The optimal chart parameters of lower-sided Bernoulli CUSUM

charts.
Do D1 c hr

In-Control

ANIST 300000 400000 500000 600000 700000 800000

0.00001 0.000007 118892 1.1710 1.3762 1.5533 1.7100 1.8511 1.9802

0.000005 138629 — 1.1654 1.3068 1.4308 1.5413 1.6412

0.000003 171996 — — 1.0420 1.1339 1.2154 1.2885

0.000002 201180 — — — — 1.0338 1.0933
In-Control

ANIS 60000 80000 100000 120000 160000 200000

0.00005 0.000035 23778 1.1710 1.3762 1.5533 1.7100 1.9801 2.2107

0.000025 27726 — 1.1653 1.3068 1.4308 1.6412 1.8167

0.000015 34399 — — 1.0420 1.1339 1.2885 1.4158

0.000010 40236 — — — — 1.0932 1.1965
In-Control

ANIS 30000 50000 70000 90000 110000 150000

0.0001 0.000070 118%89 1.1709 1.5533 1.8511 2.0994 2.3149 2.6789

0.000050 13863 — 1.3068 1.5412 1.7324 1.8949 2.1635

0.000030 17199 — 1.0420 1.2154 1.3550 1.4720 1.6618

0.000020 20118 — — 1.0337 1.1471 1.2419 1.3947
In-Control

ANIS 20000 30000 40000 50000 60000 70000

0.0002 0.000140 5945 1.3759 1.7097 1.9798 2.2103 2.4128 2.5941

0.000100 6931 1.1653 1.4308 1.6412 1.8166 1.9681 2.1020

0.000060 8600 — 1.1338 1.2884 1.4157 1.5241 1.6185

0.000040 10059 — — 1.0932 1.1963 1.2839 1.3601
In-Control

ANIS 15000 20000 25000 30000 40000 50000

0.0003 0.000210 3963 1.4676 1.7098 1.9167 2.0992 2.4128 2.6788

0.000150 4621 1.2385 1.4306 1.5921 1.7323 1.9678 2.1634

0.000090 5733 — 1.1338 1.2527 1.3548 1.5240 1.6616

0.000060 6706 — — 1.0641 1.1470 1.2839 1.3946
In-Control

ANIS 10000 15000 20000 25000 30000 35000

0.0004 0.000280 2927 1.3762 1.7100 1.9801 2.2106 2.4132 2.5945

0.000200 3466 1.1650 1.4305 1.6408 1.8162 1.9677 2.1013

0.000120 4300 — 1.1337 1.2881 1.4156 1.5240 1.6184

0.000080 5029 — — 1.0933 1.1965 1.2840 1.3601
In-Control

ANIS 8000 12000 16000 20000 25000 30000

0.0005 0.000350 2378 1.3755 1.7094 1.9794 2.2098 2.4596 2.6779

0.000250 2773 1.1648 1.4302 1.6405 1.8161 2.0022 2.1626

0.000150 3440 — 1.1337 1.2881 1.4154 1.5485 1.6613

0.000100 4023 — — 1.0932 1.1964 1.3040 1.3947

*kr is obtained as kp=1/c.
"Due to the discrete nature of the Bernoulli distribution, chart parameters
are given such that the in-control ANIS is as close to the stated value as

possible.
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6. Example of a High Yield Process

The wire bonding process in an integrated circuit (IC) assembly is a high
yield process that provides an electrical connection between a semiconductor die
and the external leads. The machine used for wire bonding is a highly advanced
machine with a closed loop control system which is able to detect and rectify any
deviation generated during the wire bonding process. With this highly capable
and stable machine, nonconformities generated from this process are rare.

A two-sided Bernoulli CUSUM chart was used to monitor the wire bonding
process. The upper-sided chart with parameters kg = 1/3466 and hg = 2.1927
and the lower-sided chart with parameters kr = 1/6931 and hy = 1.8166 are
displayed in Figures 1 and 2 respectively. The upper-sided chart gives a “stepped”
plot due to the fact that a nonconforming IC increases the CUSUM by 3465/3466
while a conforming IC decreases the CUSUM by 1/3466. The lower-sided chart
also showed a “stepped” plot. Both the upper- and lower-sided charts found the
process in statistical control.

oe—p<g 2nCO

|
60 70 80 90 100 110 120 130 140 150

Sample Number

. _—
0 10 20 30 40

Figure 1. An upper-sided Bernoulli CUSUM chart for monitoring the fraction
of nonconforming integrated circuits produced.
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Figure 2. A lower-sided Bernoulli CUSUM chart for monitoring the fraction
of nonconforming integrated circuits produced.
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Appendix
Equivalence between the bernoulli and geometric CUSUM charts

Denote the Bernoulli and geometric CUSUM charts by B(kg,hg,u) and
G(kg, hg,w) respectively. We claim that B(1/c, h,u(w)) and G(¢,ch —c+1,w)
are equivalent for all w where u(w) = (¢ 4+ w — 1)/c. To see this, first note that
the upper-sided Bernoulli chart can issue a signal only when a nonconforming
item is found.

Suppose that the first nonconforming item appears at the mth position. If
¢+ w—m <0, then the values of B(1/¢, h,u(w)) and G(¢,ch — ¢+ 1,w) upon
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inspecting the mth item are (¢ — 1)/c and 0, respectively. Viewing the mth
position as the “origin”, the two charts become B(1/c, h,u(0)) and G(c,ch —c+
1,0) with respective “head start” «(0) and 0. If ¢ +w — m > ch — ¢+ 1, then
both charts issue a signal upon inspecting the mth item. If 0 < c+w —m <
ch — c+ 1, then the values of B(1/¢, h,u(w)) and G(c,ch — ¢+ 1,w) at the mth
item are (¢ + (¢ +w —m) — 1)/c and (¢ + w — m). Again, viewing the mth
position as the “origin”, the two charts become B(1/¢, h,u(c + w — m)) and
G(e,ch — ¢+ 1,¢ + w — m), respectively. We have shown that upon detecting
the first nonconforming item, both charts either issue a signal or become two
“new” charts with “head starts” «’ and w’ satisfying v’ = u(w’). Thus the claim
is proved.

ANIS of upper-sided Bernoulli CUSUM chart

The ANIS of an upper-sided CUSUM chart with parameters kg=1/c and
hs=(i + ¢)/c can be obtained using the Markov chain approach described by
Brook and Evans (1972) and Page (1955). The matrix of in-control states R is
given as

1 2 ... 4 t+1 ... ¢ c+1 ... c+i—1 c+i

1 qg 0 ... 0 0 R ) 0 0 0

qg 0 ... 0 0 0 P 0 0

i+1(0 O q 0 0 0 p

i+2(0 O 0 0 0 0 0

c+:\0 O ... O 0 ... 0 0 q 0
where p is the fraction of nonconforming items and ¢ = 1 —p. Let p =

(1, - .-, pire) be the vector of ANIS with p; be the ANIS with initial state i.
Note that pq is the ANIS with head start w = 0. The equations corresponding
to (I — R)u = 1 can be written as

pr =1+ qui + ppe,
Mj:1+QMj—l+pMc+j—l7 j:273772+17
pi=1+quj—1, j=1it+2,1+3,...,1+c

Thus, p1 can be obtained recursively as

21— ip+ 1)} 4 g
 p(l—get —ipget)

p1 , for0<i<c—1,
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ur =a/b, forc<i<2c-—1,

where
a=q""4+3¢" =3¢ +pg“ H{(1+¢" ) (c—i—1)+(c—1)}

i—c+2 c—2( c i iy c—1¢; ; ;
+< ) >p2q 2(¢°=3¢"T)+3pg {¢" H(i—c+1)(p(i—c+1)+1)—i},

b:p3qi+c—1{(c_i_1)2_ (i—;+2>}

(c—i—1p’q'(1—¢") +pq'(¢" ¢ = plc —1) — 1)
The ANIS with head start u = (¢ — 1)/c is given as p. = pu1 — 1/p.
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