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Abstract: In regression analysis, covariate measurement error occurs in many ap-

plications. If a covariate variable of interest for a subject is the long–term average

of some measurements, then in practice repeated measurements are considered sur-

rogates for the true covariate. Surrogate variables, which are longitudinal, may be

modeled as the sum of the unobserved true covariate and longitudinal errors, where

the errors are dependent with a continuous correlation function of time. In this pa-

per, we consider a flexible modeling of the correlation of the surrogate variable.

This proposed polynomial correlation modeling is not as sensitive as an exponen-

tial type autocorrelation. A refined regression calibration estimator is studied for

logistic regression. Simulation studies were conducted to examine the finite sample

performance of a cubic correlation–based regression calibration estimator for expo-

nential and piecewise–linear correlation models. The asymptotic covariance of the

proposed estimator is given. The proposed method is applied to a study of adult

obesity in relation to childhood body mass index.
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gression, regression calibration.

1. Introduction

The problem of covariate measurement error has been reviewed in Fuller
(1987) for linear regression and Carroll, Ruppert and Stefanski (1995) for non-
linear regression. It occurs in many applications (Carroll, Spiegelman, Lan, Bai-
ley and Abbott (1984), Rosner, Willett and Spiegelman (1989), Pierce, Stram,
Vaeth and Schafer (1992), Prentice (1996)). Consider a regression model with
a univariate outcome variable Y and covariate X. One problem of interest is
that, instead of observing true covariate Xi (i = 1, . . . , n), longitudinal surro-
gate variables Wij ≡ Wi(tij), j = 1, . . . , ki are available. In an additive error
model Wi(tij) = Xi + Ui(tij), Xi usually denotes a long–term average of Wi(t),
i.e.,

∑ki
i=1 Wi(tij)/ki for ki → ∞. If the Wi(tij) are independent, then it is well

known that using observed averages of Wi(tij) may have an attenuation effect.
Methods for independent Wi(tij) have been well-addressed; see the related papers
cited in the two monographs described above.
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A motivating example of this work is a study of childhood growth. Consider
adult obesity as the outcome variable, and let the covariate variable be the long–
term average body mass index (BMI) z–score between ages 1 and 4. Measurement
error analysis is needed in connection with the long–term average. Furthermore,
a dependent error structure is required since Wi(t) is a continuous function of
time.

Wang, Carroll and Liang (1996) described estimation with a special covari-
ance matrix Σu, assuming equally–spaced times and an autocorrelation model.
A more general setting for unequally–spaced times with an autoregression model
was discussed in Wang and Pepe (2000). However, an autoregression error model
will not hold in general. Furthermore, even if the autoregression model holds, a
divergence problem may occur when the sample size is moderate (say n = 100).

In this paper, we consider estimation based on a more flexible regression
model for the correlation of the error, which leads to a more flexible modeling of
the correlation of Wi(t1) and Wi(t2) for times t1 and t2. Although this modeling
of correlation may be applied to other methods, the focus of this paper is on
the application to the regression calibration approach; see Carroll, Ruppert and
Stefanski (1995, Chapter 3) for a general review. The idea in this paper is to
model the correlation process as a moderate order polynomial function so the
goodness of fit of the modeling can be examined with available data.

Section 2 describes the model and reviews some previously developed meth-
ods. In Section 3, a more flexible model for the correlation of observed surrogate
variables is investigated. The simulation results are given in Section 4 for both
linear and logistic regression. In Section 5, analyses of data from the study of
childhood predictors of adult obesity are presented.

2. Model and Existing Methods

2.1. The model

Let Yi be the outcome variable for the ith of n subjects, Xi be a correspond-
ing covariate variable which is measured with error, and Zi be a covariate vector
which is measured without error. The regression model of interest is written
as Pβ(Y |X,Z) for some unknown parameter β. Let the longitudinal surrogates
be denoted by W̃i = (Wi(ti1), . . . ,Wi(tiki

)), assumed available. Assume that
Pβ(Y |X, W̃ , Z) = Pβ(Y |X,Z). This has been called the surrogacy condition and
it means that W̃ offers no additional information regarding the outcome Y given
data on the true covariate (X,Z). For notational simplicity, we suppress the
notation for Z but note that conditioning on Z is assumed throughout. We con-
sider the additive model Wi(t) = Xi + Ui(t), where Xi has a normal distribution
with mean µx and variance σ2

x. The error process Ui is assumed to be Gaussian
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with E{Ui(t)} = 0 and E[Ui(t1)Ui(t2)] = σ2
uρu(t2 − t1) for some correlation func-

tion ρu with unknown nuisance parameters. This implies that Wi is a Gaussian
process with mean µx1ki

and variance–covariance matrix σ2
wGi, where 1ki

is an
identity vector of length ki, σ2

w = σ2
x + σ2

u, and the (k, l)th element of matrix Gi

is ρw(tik − til), where ρw(ti2 − ti1) = {σ2
x + σ2

uρu(ti2 − ti1)}/(σ2
x + σ2

u).
The goal is to estimate β in the presence of some nuisance parameters, in-

cluding σ2
u, µx, σ2

x and the related parameters in modeling ρu(t). The main
point of the repeated measurements is to understand the variance of the mea-
surement errors. Assume that ρu(t) = ρu(−t), which implies that the correlation
of Wi(t1) and Wi(t2) is a function of |t2 − t1|. In the classical additive model,
ρu(t) is assumed to be zero. This is usually not the case for longitudinal mea-
surements because if Wi(t) is continuous, then Wi(t) → Wi(t0) if t → t0 and
hence ρw(t − t0) → 1, or equivalently ρu(t − t0) → 1.

One approach to this problem is to replace Xi by the sample average W i·. To
demonstrate the bias problem of this naive estimator, we consider linear regres-
sion E(Yi|Xi) = β0 + β1Xi. It is easily seen that E(Yi|W i·) = β0 + β1E(Xi|W i·).
Write cov(Ũi) = σ2

uMi, then E(Xi|W i) = λiW i· + (1 − λi)µx, where λi =
σ2

x{σ2
x + (σ2

u/k2
i )1

t
ki

Mi1ki
}−1. As a result, E(Yi|W i·) = β0∗ + β1∗W i·, where

β1∗ = λiβ1, and β0∗ = β0 +(1−λi)µxβ1. Therefore, there is an attenuation effect
if one ignores the measurement error problem. Wang, Carroll and Liang (1996)
discuss the effect due to the ignorance of correlated Ui(t1) and Ui(t2).

2.2. Expected estimating equation approach

The likelihood–based approach has been proposed by Schafer and Purdy
(1996) for a general measurement error problem, but they did not specifically
consider the correlated error process. In this special problem if the estimating
score is obtained directly from the likelihood, then it is equivalent to the expected
estimating equation (EEE) approach proposed by Wang and Pepe (2000). These
authors also considered the covariate measurement error problem in marginal or
partly conditional regression of longitudinal data. It is noted that the likelihood–
based score is ∂/(∂β)logP (Y |W̃ ) = E{∂/(∂β)logP (Y |X)|Y, W̃ }. Thus, the max-
imum likelihood (ML) estimator solves

n∑
i=1

E{Sβ(Yi,Xi)|Yi, W̃} = 0. (1)

Note that P (Yi|Xi, W̃i)P (W̃i|Xi)P (Xi) = P (Yi|Xi)P (W̃i|Xi)P (Xi). Hence, (1)
may be written as

n∑
i=1

∫
Sβ(Yi, x)Pβ(Yi|x)Px(W̃i)P (x)dx∫

Pβ(Yi|x)Px(W̃i)P (x)dx
= 0.
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One finds that, (1) requires numerical integration in nonlinear regression
settings, but it is not needed in linear regression with a normally distributed
error. In an illustration, Wang and Pepe (2000) considered ρu(t) = ρ|t|. The
estimation of the nuisance parameters may be based on the maximum likelihood
estimator or the method of mements. They applied the method to marginal or
partly conditional regression of longitudinal outcome and covariate variables.

2.3. Regression calibration

An alternative approach to this problem is regression calibration, where one
replaces the unobservable Xi by E(Xi|W̃i). Under the Gaussian process model
described in Section 2.1, we have(

Xi

W̃i

)
∼ N

((
µx

µx1ki

)
, σ2

w

(
1 σ2

xσ−2
w 1ki

σ2
xσ−2

w 1t
ki

Gi

))
.

Note that if Y given X is normal and all the nuisance parameters were known,
then the RC estimator is the ML estimator. Wang and Pepe (2000) assumed an
autoregression model with ρu(t) = ρt for some positive ρ. Then we have

E(Xi|W̃i) = µx + (σ2
x1ki

)t{σ2
xIki

+ σ2
uMi}−1(W̃i − µx1ki

),

where the (l,m)th element of Mi is ρ|til−tim| and Iki
is the ki×ki identity matrix.

Let W ∗
ij = Wi(j+1) − Wij . The RC estimator may be obtained by solving the

estimating equations for Θ = (β0, β1, σu, ρ, µx, σx)t:



n∑
i=1

Sβ{Yi, E(Xi|W̃i)};
n∑

i=1

ki(W i· − µx);

n∑
i=1

ki

{
(W i· − µx)2 − σ2

x − (1t
ki

σ2
uMi1ki

)/k2
i

}
;

n∑
i=1

[ki−1∑
j=1

{
W ∗2

ij − 2σ2
u(1 − ρ|ti(j+1)−tij |)

}]
;

n∑
i=1

[ki−2∑
j=1

{
W ∗

ijW
∗
i(j+1) − σ2

u(ρ|ti(j+2)−ti(j+1)| − 1 − ρ|ti(j+2)−tij | + ρ|ti(j+1)−tij |)
}]

.

(2)

In (2), the last four equations are from moment calculations for (σu, ρ, µx, ρx).
The advantage of the RC estimator is that it is efficient in linear regression and
it has good performance with small mean square error in logistic regression if the
relative risk is not too large. However, there are two associated problems: (i) a
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bias problem especially when the relative risk is large; (ii) it is very sensitive to
the assumed model ρu(t) = ρ|t|. The first problem will be addressed next, the
second later.

2.4. Refined RC estimator for binary outcome

For binary outcome regression, the RC estimator may have a bias problem
when either β1 or var(X|W̃ ) is large, and especially in the former case. The
bias problem of the RC estimator for nonlinear regression can be seen from the
following Taylor series expansion. Assume E(Yi|Xi) = Ψ(β0 + β1Xi) for some
function Ψ. Let (∂2/∂2x)Ψ(x) = Ψ′′(x). Then E(Yi|W̃i) = E{Ψ(β0 + β1Xi)|W̃i}
≈ Ψ{β0 + β1E(Xi|W̃i)}+ (β2

1/2)Ψ′′{β0 + β1E(Xi|W̃i)}E[{Xi −E(Xi|W̃i)}2|W̃i].
To reduce this bias problem, a refined analysis seeks a more precise approxima-
tion of E(Yi|W̃i), as a function of E(Xi|W̃i) and var(Xi|W̃i). First, we consider
probit regression: pr(Y = 1|X) = Φ(β0 + β1X) where Φ is a standard normal
distribution function. As in Carroll, Spiegelman, Lan, Bailey and Abbott (1984),
Zeger, Liang and Albert (1988) and Liang and Liu (1991),

pr{Yi = 1|W̃i} =
∫

Φ(β0 + β1x)f(x|W̃i)dx =
∫

Φ(β0 + β1x)dΦ

(
x − µx|W̃i

σx|W̃i

)
,

where µx|W̃i
= E(X|W̃i) and σ2

x|W̃i
= (σ2

x)− (σ2
x1ki

)t{σ2
xIki

+ σ2
uMi}−1(σ2

x1ki
). If

Φ(
x − µx|W̃i

σx|W̃
) = s, it can be shown that

pr(Yi = 1|W̃i) =
∫ 1

0
Φ(β0 + β1Φ−1(s)σx|W̃i

+ β1µx|W̃i
)ds

= Φ
(
(β0 + β1µx|W̃i

)/(1 + β2
1σ2

x|W̃i
)1/2

)
.

Therefore, for probit regression, a refined estimator may be obtained by solving

n−1/2
n∑

i=1

(
ai

bi

)
{Yi − Φ(aiβ0 + biµ̂x|W̃i

β1)} = 0,

where ai = (1 + β2
1 σ̂2

X|W̃i
)−1/2, bi = (ai − β2

1a3
i σ̂

2
X|W̃i

)µ̂X|W̃i
− β0β1a

3
i σ̂

2
X|W̃i

.
For logistic regression, pr(Yi = 1|Xi) = H(β0 + β1Xi), where H(u) = {1 +

exp(−u)}−1. As in Liang and Liu (1991) and Carroll, Ruppert and Stefanski
(1995, p.65), Φ(x) ≈ H(1.7x), so

pr(Yi = 1|W̃i) ≈ H
( β0 + β1µXi|W̃i

(1 + β2
1σ2

X|W̃i
/2.89)1/2

)
.
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Let µ̂x|W̃i
and σ̂2

x|W̃i
be consistent estimators of µx|W̃i

and σx|W̃i
respectively.

Let ci = {1 + β2
1 σ̂2

X|W̃i
/2.89}−1/2, di = (∂/∂β1)(ciβ0 + ciβ1µ̂X|W̃i

) = (ci −
β2

1c3
i σ̂

2
X|W̃i

/2.89)µ̂X|W̃i
− β0β1c

3
i σ̂

2
X|W̃i

/2.89. Then the refined regression calibra-
tion (RRC) solves

n−1/2
n∑

i=1

(
ci

di

)
{Yi − H(ciβ0 + ciµ̂x|W̃i

β1)} = 0.

This analysis can reduce the bias significantly for large relative risk. However,
the sensitivity due to the assumption that ρu(t) = ρ|t| needs to be considered and
we turn to that.

3. Polynomial Correlation Regression

Modeling the correlation ρu(t) of the error process, or ρw(t) of W (t), is
essential in our approach. In this section we consider a more flexible model for
the correlation by modeling ρw(|t2 − t1|) as a polynomial function of |t2 − t1|,
for example, a cubic or quartic correlation regression. Two advantages are as
follows:
(i) A cubic function or a quartic function can reasonably model an exponentially

correlated model, i.e., ρw(|t2− t1|) = (σ2
x +σ2

uρ|t2−t1|)/(σ2
x +σ2

u), but not vice
versa.

(ii) Although a nonparametric smoother may relax the model assumption on
ρw(t), it is technically difficult to solve finite sample difficulties when esti-
mating β. A cubic or quartic function may be enough to approximate the
correlation curve, and is simple to implement.

We now consider estimation of the correlation function ρw(t). It can be
shown that E{Wi(t)−µx}2 = σ2

u + σ2
x = σ2

w and E[{Wi(t1)− µx}{Wi(t2)−µx}]
= σ2

wρw(t2 − t1). Let W ·· =
∑n

i=1 kiW i·/N , where N =
∑n

i=1 ki. Note that
µ̂x = W ·· is a consistant estimator of µx. By some algebra, as n → ∞,

E{Wi(t) − W ··}2 = σ2
w + O(n−1);

E[{Wi(t1) − W ··}{Wi(t2) − W ··}] = σ2
wρw(|t1 − t2|) + O(n−1). (3)

A consistent estimator of σ2
w is σ̂2

w = N−1∑n
i=1

∑ki
j=1{Wi(tij) − W ··}2. Let

tij,m = |tij − tim|, Vij,m = {Wi(tij)−W ··}{Wi(tim)−W ··}/σ̂2
w. By (3), it is easily

seen that E(Vij,m|tij,m) = ρw(tij,m) + O(n−1). The proposal here is to model ρw

by a polynomial function of order q based on the correlation regression:

ρw(t) = 1 +
q∑

s=1

γst
s. (4)
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The choice of q depends on the problem of interest, but in practice it should
not be too large, say larger than the maximum of the number of replicates. On
the other hand, if there are lots of replicates, a naive estimator will work since
the sample average W i· would estimate E(X|W̃ ) well in this case. Here, the
intercept in (4) is restricted to 1 because ρw(0) = 1. Applying the least squares
estimate of γ in (4) using data {Vij,m, tij,m}, ρ̂w(t) = 1 +

∑q
s=1 γ̂st

s. We further
note that σ2

x = σ2
wlimt→∞ρw(t). Hence σ2

x can be consistently estimated without
the moment calculations similar to the last three equations of (2), as long as
max{tij,m : i = 1, . . . , n; j,m = 1, . . . , ki} ≡ T ∗ is large enough such that the
correlation of ρu(T ∗) is ignorable. This is probably true in lots of applications.
For example, in an autoregression model if the errors are moderately correlated
with ρ = 0.2 for equally–spaced data and ki = 4, then the correlation between
Ui1 and Ui4 would be only .008. In general, one could draw the curve ρ̂w(t) to
examine this assumption. If this is not the case then it is necessary to apply the
method of moments similar to (2), replacing ρt with a polynomial function of t.

The RC estimator can be implemented by noting

Ê(Xi|W̃i)= µ̂x+(σ̂2
x1ki

)t{σ̂2
wĜi}−1(W̃i−µ̂x1ki

)= µ̂x+{ρ̂w(T ∗)1ki
}tĜ−1

i (W̃i−µ̂x1ki
),

where µ̂x and T ∗ = max{tij,m; i = 1, . . . , n; j,m = 1, . . . , ki} were defined above,
and Ĝi is a ki × ki matrix with the (j,m)th element being ρ̂w(tij,m). Similarly,
for logistic regression a refined RC estimator can be obtained by the procedure
described in Section 2.4.

The limiting distribution of the RC estimator is given in the Appendix.
When Y given X is linear, the asymptotic covariance of n1/2(β̂ − β) is given
in (7). The corresponding formula for logistic regression is given in (8). The
asymptotic covariance of the RRC estimator is omitted because it is similar to
that of the RC estimator.

4. Simulation Studies

The small sample behavior of the proposed estimator is examined in some
Monte-Carlo studies. The regression models for Y given X were linear and
logistic, respectively. There were four replicates of Wij , Wij = Xi + Ui(tij),
where Xi is normal with mean µx and variance σ2

x; tij were randomly distributed
in [0,4]. The error process Ui will be described later. In Tables 1–5, the true
parameters and sample sizes n used in each simulation study are shown. In the
tables, “bias” was calculated by taking the average of β̂ − β from 500 replicates,
“s.d.” denotes the sample standard deviation of the estimates, “mean(s.e.)”
denotes the average of the estimated standard errors of the estimates. The 95%
confidence interval coverage probabilities are also included.
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4.1. Linear regression

Tables 1 and 2 consider linear regression. The methods considered are (i)
a naive estimator which replaces Xi by W i·; (ii) the RC estimator assuming
ρu(t) = ρ|t|, denoted by RCar; (iii) the RC estimator using a cubic correlation
regression model, denoted by RCcu. The RCar estimates were obtained using
estimating equations in (2) and the RCcu estimates were obtained from the cubic
correlation function described in Section 3. To avoid a finite sample performance
problem in estimating σ2

x ≡ σ2
wρw(T ∗), we used the 90th percentile point of

{tij,m; i = 1, . . . , n; j,m = 1, . . . , ki} as T ∗, since the polynomial correlation may
have poor estimation in the upper 10% of the tij,m points. In Table 1, the error
process Ui(tij) is an autoregression (AR) model such that corr{Ui(t1), Ui(t2)} =
ρ|t2−t1|. Observe that the RCar is a pseudo–ML estimator since we consider linear
regression of Y given X, and the RC estimator is obtained from the likelihood
of Yi on W̃i. The parameters are β = (−1, 1), (σu, µx, σx) = (0.5, 0, 1) and
ρ = 0.2. The naive estimator underestimates β1 but not β0 because µx = 0 in
our setting. The RC estimator assuming a cubic correlation coefficient is almost
as good as the RC estimator assuming a correctly specified AR model. Note that
although RCar was obtained under a correct error model, the Newton Raphson
algorithm solving (2) did not converge in about 5% of the cases with n = 100.
The results for RCar with n = 100 were calculated from 500 data sets in which
RCar converged. The divergence problem occurred mainly because the ρ|t| value
involved in the computing algorithm came with a negative ρ and a non–integer
t.

Table 1. Linear regression with exponential correlation.

n = 300 n = 100

Naive RCar RCcu Naive RCar RCcu

β0 bias 0.003 0.003 0.003 -0.005 -0.004 -0.003
s.d. 0.058 0.058 0.059 0.103 0.104 0.104

mean(s.e.) 0.060 0.060 0.060 0.104 0.104 0.105
95% cov. 0.948 0.954 0.946 0.944 0.948 0.942

β1 bias -0.084 0.000 0.002 -0.088 0.005 -0.003
s.d. 0.058 0.065 0.067 0.098 0.113 0.119

mean(s.e.) 0.058 0.065 0.069 0.100 0.116 0.124
95% cov. 0.710 0.934 0.952 0.866 0.968 0.970

Note: Parameters are (β0, β1) = (−1, 1); (σu, µx, σx) = (0.5, 0, 1) and ρu(t) =
ρ|t| with ρ = .2. The RCar estimator here is the ML estimator under the
correct specification of the distributions of Xi|W̃i and W̃i. The RCcu models
ρw(t) as a cubic function of t. The result was from 500 replicates.
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Table 2. Linear regression with piecewise linear correlation.

n = 300 n = 100

Naive RCar RCcu Naive RCar RCcu

β0 bias 0.001 —– 0.002 0.008 —– 0.008
s.d. 0.065 —– 0.065 0.108 —– 0.110

mean(s.e.) 0.060 —– 0.061 0.104 —– 0.105
95% cov. 0.938 —– 0.934 0.940 —– 0.932

β1 bias -0.103 —– -0.001 -0.098 —– -0.027
s.d. 0.062 —– 0.077 0.096 —– 0.125

mean(s.e.) 0.057 —– 0.072 0.100 —– 0.119
95% cov. 0.538 —– 0.938 0.834 —– 0.926

Note: Parameters are (β0, β1) = (−1, 1); (σu, µx, σx) = (0.5, 0, 1) and ρu(t) =
1− .5|t| for |t| ∈ [0, 2], = 0, for |t| > 2. The RCar estimator here misspecifies
ρu as an AR type process with ρu(t) = ρ|t| does not converge in most of our
data generated. The RCcu estimator models ρw(t) as a cubic function of t.
The result was from 500 replicates.

Table 2 demonstrates the sensitivity to the assumption on the error process.
The error process Ui(t) has ρu(t) = 1 − .5|t| for |t| ∈ [0, 2] and 0 elsewhere.
The RCar estimator here has a misspecification problem, and is so sensitive that
a Newton–Raphson algorithm solving estimating equation (2) did not converge
in most of our cases. The RCcu still has good performance even when a cubic
function is not a perfect fit for this specific correlation function.

4.2. Logistic regression

Tables 3–5 consider logistic regression. The intention is to understand the
performance of the RC analysis and the refined RC analysis; both applied the
cubic correlation function. In Table 3, the error process is an AR type model as
in Table 1. The parameters are β = (−ln(2), ln(2)), (σu, µx, σx) = (1, 0, 1) and
ρ = 0.2. In this case with moderate relative risk, the RCcu estimator is very
good, has small biases, and is more efficient than the refined estimator RRCcu.

The data generated for Table 4 are the same as those in Table 3 except that
(β0, β1) = (−ln(5), ln(5)). The RC estimator has a bias problem in this case.
The RRC estimator has smaller biases especially when n = 300. Observe also
that the bias of RRC decreases when n increases, while it does not for RC. With
larger sample size, the RRC estimator is better in terms of bias and coverage
probability.

Table 5 looks at misspecification of the Gaussian process Wi(t), with ρ = 0.2
and 0.5 considered. The data were generated as in Table 3 except that X was
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uniform on [−√
3,
√

3]. Comparing with Table 3 when ρ = 0.2, there is almost
no difference although X is no longer normal. This is perhaps due to the fact
that the approximation for E(Xi|W̃i) based on a multivariate model is a best
linear approximation; see Carroll, Ruppert and Stefanski (1995, Chapter 3) for
the case with an independent error process. However, when the errors have the
higher correlation ρ = 0.5, the biases increase. This is due to the fact that
ρu(T ∗) = 0.125 �= 0 which violates Assumption (A3) of the Appendix; see the
discussion below (4) in Section 3.

Table 3. Logistic regression with moderate relative risk.

n = 300 n = 100

Naive RCcu RRCcu Naive RCcu RRCcu

β0 bias 0.014 0.014 -0.002 0.023 0.022 0.000
s.d. 0.124 0.125 0.129 0.232 0.239 0.254

mean(s.e.) 0.128 0.129 0.133 0.224 0.227 0.238
95% cov. 0.944 0.946 0.958 0.944 0.946 0.950

β1 bias -0.191 -0.011 0.006 -0.178 0.034 0.065
s.d. 0.115 0.163 0.175 0.209 0.306 0.345

mean(s.e.) 0.117 0.158 0.170 0.206 0.289 0.320
95% cov. 0.622 0.942 0.946 0.800 0.952 0.958

Note: Parameters are (β0, β1) = (−ln(2), ln(2)); (σu, µx, σx) = (1, 0, 1) and
ρu(t) = ρ|t| with ρ = 0.2. The RCcu estimator models ρw(t) as a cubic
function of |t| and RRCcu is the refined estimator. The result was from 500
replicates.

Table 4. Logistic regression with larger relative risk.

n = 300 n = 100

Naive RCcu RRCcu Naive RCcu RRCcu

β0 bias 0.151 0.150 -0.026 0.152 0.152 -0.049
s.d. 0.175 0.178 0.248 0.294 0.298 0.413

mean(s.e.) 0.174 0.175 0.235 0.303 0.305 0.431
95% cov. 0.830 0.832 0.962 0.894 0.884 0.964

β1 bias -0.529 -0.141 0.044 -0.541 -0.126 0.099
s.d. 0.166 0.242 0.365 0.259 0.374 0.573

mean(s.e.) 0.164 0.220 0.313 0.285 0.389 0.592
95% cov. 0.128 0.842 0.946 0.474 0.910 0.952

Note: Parameters are (β0, β1) = (−ln(5), ln(5)); (σu, µx, σx) = (1, 0, 1) and
ρu(t) = ρ|t| with ρ = 0.2. The RCcu estimator models ρw(t) as a cubic
function of |t| and RRCcu is the refined estimator. The result was from 500
replicates.
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Table 5. Logistic regression with moderate relative risk and uniformly [−√
3,
√

3]
distributed X .

n = 300 n = 100

Naive RCcu RRCcu Naive RCcu RRCcu

ρ = 0.2
β0 bias 0.016 0.015 -0.001 0.006 0.007 -0.014

s.d. 0.127 0.127 0.132 0.234 0.234 0.245
mean(s.e.) 0.128 0.129 0.133 0.226 0.227 0.239
95% cov. 0.956 0.956 0.958 0.950 0.948 0.948

β1 bias -0.180 -0.002 0.016 -0.169 0.033 0.062
s.d. 0.117 0.160 0.172 0.216 0.306 0.341

mean(s.e.) 0.115 0.156 0.168 0.204 0.283 0.312
95% cov. 0.640 0.942 0.948 0.822 0.940 0.952

ρ = 0.5
β0 bias 0.016 0.016 0.003 0.015 0.012 -0.004

s.d. 0.130 0.130 0.134 0.228 0.229 0.238
mean(s.e.) 0.128 0.128 0.132 0.224 0.225 0.233
95% cov. 0.934 0.926 0.932 0.950 0.954 0.958

β1 bias -0.237 -0.087 -0.074 -0.239 -0.081 -0.062
s.d. 0.112 0.150 0.160 0.196 0.276 0.299

mean(s.e.) 0.108 0.144 0.152 0.189 0.254 0.293
95% cov. 0.414 0.882 0.892 0.710 0.904 0.916

Note: Parameters are (β0, β1) = (−ln(2), ln(2)); (σu, µx, σx) = (1, 0, 1) and
ρu(t) = ρ|t|. The RCcu estimator models ρw(t) as a cubic function of |t| and
RRCcu is the refined estimator.

These simulation results suggest that if the true correlation function is either
exponential or piecewise linear (Table 2), then modeling it by a cubic function
leads to ignorable biases in estimating β. However, one should be cautious in
checking Assumption (A3) if the errors are highly correlated. Also, it is con-
ceivable that in some situations we may need a higher order polynomial for the
correlation function of W (t). The choice of the order of the polynomial is consid-
ered in the next data analyses. For binary outcome regression, a refined analysis
is preferred if the relative risk parameter is large and the sample size is large.

5. Data Analysis

This section brings in data from 563 subjects included in a retrospective
longitudinal study of childhood growth, where each subject had at least one
measurement of body mass index (BMI) z–score between ages 1 and 4 years.
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The outcome variable of interest is adult obesity. See Whitaker, Wright, Pepe,
Seidel and Dietz (1997) for details of the study. In brief, the study included all
subjects born at Group Health Cooperative, a health maintenance organization
in Seattle, between 1/1/65 – 1/1/71, and who had at least one outpatient visit
on or after their 21st birthday. Subjects were categorized as obese or non-obese
as adults using their average BMI between 21 and 29 years of age. The objective
here is to determine the extent to which average BMI z–score between ages 1
and 4 years is predictive of adult obesity. The measurement error analysis is
considered since one only approximates the true long–term average BMI z–score
between ages 1 and 4 years. Thirteen percent of the adults in this study were
classified as obese.

For subject i let BMI measurements be denoted by Wij available at times
{tij, j = 1, . . . , ki} in the interval 1 to 4 years of age. Assume that the data
follow a logistic regression model which is linear in X. According to the model
assumption in Section 2, we assume that W̃i given Xi is multivariate normal with
mean Xi1ki

and variance ΣUi , where the (j,m)th element of ΣUi is σ2
uρu(tij−tim)

for j,m ∈ {1, . . . , ki}.

Table 6. Logistic regression analysis of child growth data.

Naive RCar RCquar RRCquar

β0 -1.843 (0.125) -1.853 (0.123) -1.842 (0.123) -1.849 (0.124)

β1 0.464 (0.159) 0.653 (0.186) 0.553 (0.159) 0.556 (0.161)

Note: There were 563 subjects used in the analysis, β0, β1 are the logistic re-
gression parameters of adulthood obesity on childhood BMI. The RCquar and
RCquar estimates were obtained from modeling ρw(t) as a quartic function.

Results are in Table 6. We note that the RCar did not have a divergence
problem in solving (2). Under an AR error model, ρu(t) = ρ|t|, we obtained ρ̂ =
0.19, σ̂2

u = 0.33 and σ̂2
x = 0.42. These led to σ̂2

w = 0.75. The time points |tij−tim|
used to estimate the cubic correlation model run from 0 to 3. As described earlier,
for the purpose of reducing finite sample performance, we excluded the 10%
points with |tij − tim| > 2.04 when we applied our method to estimate σ2

x, which
led to σ̂2

x = 0.48. The correlation process estimated by an AR type exponential
function, and polynomials of order 3, 4, 5, respectively, for ρw(t), t ∈ [0, 2.04], are
in Figure 1. It seems that a cubic function does not model the correlation well,
while a quartic correlation is reasonable–it is similar to an order–5 polynomial
but it oscillates less. Table 6 shows results from the naive estimator, RCar, and
the RCquar and RRCquar estimators (the subindex quar denotes the β estimates
from a quartic correlation estimation). The RCquar and RRCquar estimates are in
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close agreement because the relative risk parameter indicates that the odds ratio
eβ1 is less than 2. This is moderate and still in the range where the RC estimator
performs well; see the summary from the simulation. The RCar estimate of β1 is
larger than that from the RCquar estimate because the estimate of σx is smaller,
which leads to a larger attenuation effect.
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Figure 1. Correlation analysis of child growth data.
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Appendix. Technical Proofs

A. Asymptotic distribution for the RC estimator in linear regression

Assumptions.
(A1) The surrogate variable Wi(t1) is independent of Wj(t2) for i �= j and any

t1, t2.
(A2) The correlation process corr{Wi(t1),Wi(t2)} = ρw(t2 − t1) is a function of

|t2 − t1| with ρw(t) = 1 +
∑q

s=1 γs|t|s.
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(A3) The correlation process satisfies ρu(T ∗) = 0, where T ∗ = max{tij,m; i =
1, . . . , n; j,m = 1, . . . , ki}.
Let

Un(β, µx, ρw) = n−1/2
n∑

i=1

(
1

X∗
i

)
(Yi − β0 − β1X

∗
i ),

where X∗
i = E(Xi|W̃i) = µx +(σ2

x1ki
)t{σ2

xIki
+σ2

uMi}−1(W̃i −µx1ki
). Under As-

sumptions (A2) and (A3), ρw(T ∗) = σ2
x/σ

2
w and hence X∗

i = µx+(ρw(T ∗)1ki
)tG−1

i

(W̃i − µx1ki
), where the (j,m)th element of matrix Gi is ρw(tij,m). Therefore,

X∗
i is a function of parameters µx, γ, but not σ2

w. Let N∗ =
∑n

i=1 k2
i and

Tij,m = (tij,m, . . . , tqij,m)t. Let A be the probability limit of An as n → ∞,
where An = (N∗)−1∑n

i=1

∑ki
j,m=1 Tij,mT t

ij,m. Recall that γ̂ is a least square es-
timator of γ using data {Vij,m, tij,m}, i = 1, . . . , n, j,m = 1, . . . , ki. Define
N∗−1/2∑n

i=1

∑ki
j,m=1 Tij,m{Vij,m − ρw(tij,m)} ≡ Ψ(γ), zero when evaluated at γ̂.

Taking a Taylor series expansion of Ψ(γ̂) at γ and using some simple algebra, it
can be shown (see Carroll, Ruppert and Stefanski (1995, Appendix A.3.1)) that

N
1/2
∗ (γ̂ − γ) = A−1N∗−1/2

n∑
i=1

ki∑
j,m=1

Tij,m{Vij,m − ρw(tij,m)} + op(1),

where Vij,m ={Wi(tij) − W ··}{Wi(tim) − W ··}/σ̂2
w; σ̂2

w =N−1∑n
i=1

∑ki
j=1{Wi(tij)

−W ··}2. Define ρ̂w(t)=1+
∑q

s=1γ̂s|t|s. Note that N1/2(µ̂x−µx)=N−1/2∑n
i=1

∑ki
j=1

(Wij − µx). The RC estimator β̂ solves Un(β, µ̂x, ρ̂w) = 0, where

Un(β, µ̂x, ρ̂w) = n−1/2
n∑

i=1

(
1

X̂∗
i

)
(Yi − β0 − β1X̂

∗
i );

X̂∗
i = µ̂x + (ρ̂w(T ∗)1ki

)tĜ−1
i (W̃i − µ̂x),

and the (j,m)th element of Ĝi is ρ̂w(tij,m). Let

Gn(β, µx, ρw) = n−1
n∑

i=1

(
1

X∗
i

)
(1,X∗

i );

Rn(β, µx, ρw) = n−1
n∑

i=1

(
β1X

∗
iµx

2β1X
∗
i X∗

iµx
− (Yi − β0)X∗

iµx

)
;

Bn(β, µx, ρw) = n−1
n∑

i=1

(
β1X

∗
iγ

2β1X
∗
i X∗

iγ − (Yi − β0)X∗
iγ

)
; (5)

where X∗
iµx

= 1 − (ρw(T ∗)1ki
)tG−1

i 1ki
, and

X∗
iγ =

[
{(∂/∂γ)ρw(T ∗)1ki

}tG−1
i − (ρw(T ∗)1ki

)tG−1
i {(∂/∂γ)Gi}G−1

i

]
(W̃i − µx).
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By a Taylor expansion,

0 = Un(β̂, µ̂x, ρ̂w)

= Un(β, µx, ρw) − Gn(β, µx, ρw)n1/2(β̂ − β) − Rn(β, µx, ρw)n1/2(µ̂x − µx)

−Bn(β, µx, ρw)n1/2(γ̂ − γ) + op(1).

Observe that Gn, Rn and Bn are all sums of independent random variables
and hence each converges by the Law of Large Numbers. Let G(β, µx, ρw),
R(β, µx, ρw) and B(β, µx, ρw) be the probability limit of Gn(β, µx, ρw),
Rn(β, µx, ρw) and Bn(β, µx, ρw), respectively. Hence, if n/N → λ1, n/N∗ → λ2,

n1/2(β̂ − β)

= G−1(β, µx, ρw)
[
Un(β, µx, ρw) − R(β, µx, ρw)λ1n

−1/2
n∑

i=1

ki∑
j=1

(Wij − µx)

−B(β, µx, ρw)λ2A
−1n−1/2

n∑
i=1

ki∑
j=1

Tij,m{Vij,m − ρw(tij,m)}
]
+ op(1)

= G−1(β, µx, ρw)n−1/2
n∑

i=1

[( 1
X∗

i

)
(Yi−β0−β1X

∗
i )−λ1R(β, µx, ρw)

ki∑
j=1

(Wij−µx)

−λ2B(β, µx, ρw)A−1
ki∑

j,m=1

Tij,m{Vij,m − ρw(tij,m)}
]
+ op(1)

≡ G−1(β, µx, ρ)n−1/2
n∑

i=1

Ui∗(β, µx, ρw) + op(1). (6)

Therefore, n1/2(β̂ − β) is asymptotically normally distributed with mean 0 and
covariance

G−1(β, µx, ρw)
{
n−1

n∑
i=1

Ui∗(β, µx, ρw)U t
i∗(β, µx, ρw)

}
{G−1(β, µx, ρw)}t. (7)

The asymptotic covariance of n1/2(β̂ − β) can be consistently estimated by not-
ing that Gn(β̂, µ̂x, ρ̂w), Rn(β̂, µ̂x, ρ̂w), Bn(β̂, µ̂x, ρ̂w) are consistent estimates of
G(β, µx, ρw), R(β, µx, ρw) and B(β, µx, ρw), respectively.

B. Asymptotic Covariance for the RC Estimator in Logistic Regression

Let H(u) = {1 + exp(−u)}−1 and H(1)(u) = H(u){1 − H(u)}. Similar to
(5), define

Gn(β, µx, ρw) = n−1
n∑

i=1

( 1
X∗

i

)
(1,X∗

i )H(1)(β0 + β1X
∗
i );
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Rn(β, µx, ρw)=n−1
n∑

i=1

( β1X
∗
iµx

H(1)(β0+β1X
∗
i )

β1X
∗
i X∗

iµx
H(1)(β0+β1X

∗
i )−X∗

iµx
{Yi−H(β0+β1X

∗
i )}

)
;

Bn(β, µx, ρw)=n−1
n∑

i=1

( β1X
∗
iµγ

H(1)(β0+β1X
∗
i )

β1X
∗
i X∗

iµγ
H(1)(β0+β1X

∗
i )−X∗

iµγ
{Yi−H(β0+β1X

∗
i )}

)
.

Let G(β, µx, ρw), R(β, µx, ρw), B(β, µx, ρw) be the probability limits of
Gn(β, µx, ρw), Rn(β, µx, ρw) and Bn(β, µx, ρw), respectively. Let the asymptotic
limit of β̂ be β∗, which solves

E
[( 1

X∗
)
{Yi − H(β0 + β1X

∗)}
]

= 0.

Similar to (6), it can be shown that

n1/2(β̂ − β∗) = G−1(β∗, µx, ρw)n−1/2
n∑

i=1

Ui∗(β∗, µx, ρw) + op(1),

where

Ui∗(β, µx, ρw) =
[( 1

X∗
i

)
{Yi − H(β0 + β1X

∗
i )} − λ1R(β, µx, ρw)

ki∑
j=1

(Wij − µx)

−λ2B(β, µx, ρw)A−1
ki∑

j,m=1

Tij,m{Vij,m − ρw(tij,m)}
]
.

The asymptotic covariance of n1/2(β̂ − β∗) is thus

G−1(β∗, µx, ρw)
{
n−1

n∑
i=1

Ui∗(β∗, µx, ρw)U t
i∗(β∗, µx, ρw)

}
{G−1(β∗, µx, ρw)}t. (8)
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