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Abstract

This supplement contains the proof of [Theorem 3.1{and additional

technical material. [Section S1|provides some properties of tensor prod-

ucts between Hilbert spaces and cumulant tensors. [Section S2|provides

the proof of[Lemma 2.1} [Section S3|contains the main steps of the proof

of while the bounds on cumulant tensors of local func-

tional DFT are established in[Section S4] [Section S5|provides the deriva-

tion of the asymptotic first and second order structure of 717, the proof

of and the proof of Remark[3.1] Finally, we briefly mention

some statistical applications in|Section S6
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S1. Some properties of tensor products of operators and cumulant tensors

Let #; foreachi =1,...,nbe a Hilbert space with the inner product {:,-);. The

tensor of A, ..., #, is denoted by

n
=T ®...0 Hp=Q)H,. (S1.1)
i=1

If #; = /€ foreach i € 1,...,n, then (S1.1) is the n-th fold tensor product of
J€. For A; € #6;,i=1,...,n the object @, A; is a multi-antilinear functional
that generates a linear manifold, the usual algebraic tensor product of vector

spaces A, ..., #y, to which the scalar product

(@A, QBiy =[] (AiBi
i=1 =1 i=1

can be extended to a pre-Hilbert space. The completion of the above algebraic
tensor product is @', #; (we refer to Section 2.6 of Kadison and Ringrose
(1997) and Section 3.4 of Weidmann! (1980) for more details about tensor
products of Hilbert spaces).
We require some properties of operators on a separable Hilbert space. £ (A°)
denotes the Banach space of bounded linear operators A : /&£ — A with the
operator norm given by [[| Alllo = supy <1 Il Axll. Each operator A € £ (#) has
the adjoint operator At € 2 (#), which satisfies (Ax, ¥y = (X, At y) for each
X,y € H. Ae L(H)is called self-adjoint if A= A" and non-negative definite

if (Ax,x) = 0 for each x € #. The conjugate of an operator A € £ (#), de-
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noted by A, is defined as Ax = (AX), where X denotes the complex conjugate of

x € . For A, B,C € £(A) we define the following bounded linear mappings.
The Kronecker product is defined as (AQB)C = ACB', while the transpose
Kronecker product is given by (A@TB)C = (A@E)GT. For A, B, C € Sy (A°), we
shall denote, in analogy to elements a, b € #, the Hilbert tensor product as

AQ B. We list the following useful properties:

Properties S1.1. Let A; = L%([O,l]k) fori=1,...,n. Then for a;, b; € #; and

A;, B; € So(AE;), we have
1. (A, B)ps=Tr(AB")
2. QL A @I, Bius =11 1{Ai, Bi) s
3. (a1 ® az, by ® bp) s = (a1 ® Gz, by ® b2) 7,076, = (a1, D1) a2, b2)
4. IfA; € S1(H), then 1™ Tr(Ay) = Tr(®j-, A
5 (19 Raz@ay) = (a1 ® a3) @@ ®ay)) = (a1 ® a) @7 a ® as))

Let X be a random element on a probability space (Q2,</,[P) that takes
values in a separable Hilbert space #. More precisely, we endow # with
the topology induced by the norm on . and assume that X : Q — .# is Borel-
measurable. The k-th order cumulant tensor is defined by (van Delft and Eich-

ler,[2018)

Cum(Xy,...,Xg)= Y, Cum((Xp,yp),.... (X, wi)) W, @ @yy), (S1.2)
l],...lkEN



S1. SOME PROPERTIES OF TENSOR PRODUCTS OF OPERATORS AND
CUMULANT TENSORS 4

and the cumulants on the right hand side are as usual given by

p
Cum(X, v, X)) = Y CDP =D TE| [T X)),

V=(V1,eesyVp) r=1 tev,

where the summation extends over all unordered partitions v of {1, ..., k}. The
product theorem for cumulants (Brillinger, 1981, Theorem 2.3.2) can then be
generalized (see e.g. Aue and van Delft, 2019, Theorem B.1) to simple tensors
of random elements of A, i.e., X; = ®§‘:1th with j=1,...,Jrand t=1,..., k.

The joint cumulant tensor is then be given by

Cum(Xi,... X = Y Su@h, Cum(Xjl(t, ) € va)), (S1.3)

v=(v1,...,vp)

where S, is the permutation that maps the components of the tensor back

into the original order, thatis, S,(®”_, ®( jev, X¢j) = X11® - ® X,
Suppose that {Xi”) : t € Z} is a strictly stationary sequence of #-valued

random elements for each u € [0, 1]. The results ofivan Delft and Eichler|(2018)

imply that the local k-th order cumulant spectral operator

1 yk-1
_ —-iYy 7wt
- —1 Z Cu,h,.-.,tk—le = T
(27[) 0y ti—1€Z

is well-defined, where w1, ...,wy_1 € [-7, 7] and

Cutntey = Cum(XP,.., XM X ) (S1.4)

]

is the corresponding local cumulant operator of order k at time u. For k =
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2, we obtain the time-varying spectral density operator %, ,, - the operator
defined in of the main paper - which is uniquely defined by the triangular

array {X; r:1 =<t < T}ren and twice-differentiable with respect to u and w if

(iv) of/Assumption 3.1|of the main paper holds for ¢ = 2 (see also/Aue and van

Delft (2019) for more details).

S2. Proof of Lemma 2.1

Proofo Since |||-|ll; is induced by the Hilbert-Schmidt inner prod-

uct, we have that

F w0 — Gl = F w0 — Foll2 + (F i — Foars T — bdtis

+Fo =G Fuw — Fo)us o — Dol
By linearity and the definition of the Hilbert-Schmidt inner product,

1 —_— —_— 1 —_— —_—
f <gu,w_gwygw_(gw>HSdu:<f gu,wdu_gw,gw_(gw> =0.
0 0 HS

A similar argument shows that fol <§w -G, Fuw— éfw)Hsd u = 0. Hence,

T rl — T
= [ [ WP - Follbdudo +ryin [ 17, -4, ido
-7

=7

and the infimum of the second term is achieved at ¥4, = §w. The proof is

complete. O
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S3. Proof of Theorem 3.1

In this section we explain the main steps in the proof of The

proofs of various statements of this section are intricate and therefore post-

poned to [Section S4|and [Section S5| Let us recall that T = NM, where N de-

fines the resolution in frequency of the local fDFT and M controls the number
of nonoverlapping local fDFT’s. To establish that v/ T (7iir — m?) % N(0,v?) as

T — oo with 12 given by (§5.19), we show that

VTIE iy — m?] — 0, (S3.5)
T Var i — v?, (S3.6)

and
T2 cum,, (i) — 0 (S3.7)

forn>2as T — oco.

Recall first that /77 = 471(1:"1; - ﬁg,T + BN,T) and that which
is given below, implies the bias correction By r does not affect the asymptotic
distribution of 717. Therefore, the distributional properties of VT (i — m?)
will follow from the joint distributional structure of FLT and 13“2,T. In particu-

lar, multilinearity of cumulants implies that we have

A N L n N .
Cumn(mT):(47T)ncumn(F1,T_F2,T):(4ﬂ)n2(—1)x B cumy_y x(F1,1, F2,1),
x=0
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where cum,,_,, x(ﬁl,T, ngT) denotes the joint cumulant

Cum(Fl,Tr---rFl,T»FZ,T)---)FZ,T)

v~

~~
X times n—x times

forn,x=0.
The first two moments (53.5)-(S3.6) can be determined by the cumulant
structure of order n =1 and n = 2 of Pl,T and ﬁzyT, respectively, while (S3.7)

will follow from showing that

Tn/2 cumy—x,x (ﬁl,T; FZ,T) -0
as T —ooforeachn>2and0<x<n.

The main ingredient to our proof is the following result which allows us to
re-express the cumulants of ﬁl,T and ﬁg,T, which consists of Hilbert-Schmidt
inner products of local periodogram tensors, into the trace of cumulants of

simple tensors of the local functional DFT’s. The proof of [Theorem S3.1|is
given in[Section 54

Theorem S3.1. Let [EIIIIK,""III%” < oo for some n € N uniformly in u and w. Then

Ujpp@ky  pUJp Dk Ujpp_1Wkyp_1  7Ujop @k
cum (I, 122 g, L s ey

Tr (P:Plg...UPG SP( ®g=1 cum (Dzb:sz'% Ip e Pg))’

where the summation is over all indecomposable partitions P = Py U...U Pg of
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the array

Ly @12 1,3 1,4
21 22 23 (24
(53.8)

(n,1) (n,2) (n,3) (n,4)

where p = (l, m) and kp = (—1)mk21_5{m€{1y2}} and jp = j2[—5{m€{1,2}} for l e
{1,...,n} and m € {1,2,3,4}. Here the function 64, equals 1 if event A occurs

and 0 otherwise.

In order to establish (§3.6) and (S3.7), it is of importance to be able to de-

termine which indecomposable partitions of the array are vanishing in
a structured fashion. The following two results allow us to exploit the struc-
ture of the array. The next lemma provides a global bound on the cumulants
that is implied by the behavior of the joint cumulants of the local fDFT’s for
different midpoints (Lemma S4.2). For a fixed partition P = {Py,..., P} of the

array, denote the size of the partition by G.

Lemma S3.1. [flAssumption 3.1|is satisfied then for finite n,

T2 cumyx, (1, Fa,r) = O(T' 2N

uniformly in0 < x < n.

Lemma(S3.1/implies that for n = 2 partitions with G < 2 vanish, while for

n > 2 all partitions of size G < n + 1 will vanish asymptotically. Moreover, in-
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decomposability of the array requires to stay on the frequency manifold (see
of Corollary[S4.1) and therefore imposes additional restrictions in fre-
quency direction. In case n = 2, only those partitions of size G = 2 for which
all sets are such that )", Py Wk = 0 mod 27 will not vanish. For n > 2, the in-
decomposability of the partition and also result in restrictions
over frequencies k;,..., k,. These restrictions are formalized in the following

proposition.

Proposition S3.1. For a partition of size G=n+r, +1 with ry = 1 of the array
(S4.14) with n > 2, only partitions with at least ry restrictions in frequency di-
rection are indecomposable. For n =2, G =n+ry; +1 with ry = 1 will have at

least 1 restriction in frequency direction.

Together, Lemma S3.1|and Proposition allow to show that all higher

order cumulants vanish asymptotically and therefore asymptotic normality

can be established.

Theorem S3.2. Under|Assumption 3.1, we have forallx =0,...,n andn> 2,

T"? cumy,_yx(Ey 7, Fo7) — 0 as T — oo.

Proof. By|Lemma S3.1} it is direct that all partitions of size G < n + 1 vanish.
We therefore only have to consider the case where G=n+r;+1withr; = 1. In
this case, Proposition|S3.1} yields an upperbound of the joint cumulant that is

of order O(T}~"2 Nn+n+l-n-1N-ry = Q(T1="2) This establishes (53.7). O

Combining/Theorem S3.2|with (S5.16), we immediately obtain the follow-



S3. PROOF OF THEOREM 3.1 10

ing result for the bias correction

Corollary S$3.1. Under the conditions of|Theorem 3.1
ﬁ(BN,T - BN,T) _p) 0 as T — oo.

The derivation of the asymptotic first and second order structure of v TFj 7

and V'TF,r can be found in A straightforward calculation then

yields the asymptotic variance v? is simply given by
v2 = lim (16nZVar(ﬁ1,T) +1672Var(£y, 1) — 32m2Cov(Fy 1, ﬁZ,T)).
—00
We therefore obtain the following expression for the asymptotic variance

T T 1
V2 :47l'f f j(; <gu,w1,—w1,—a)2,9u,wl ®gu,wz>HSdwa1 dw;
—-mJ-m
Topm . .
+477:f <g(l)1y_w1y_wzvga)l®gw2>Hsdw1dw2
—-TJ-1
n pn el .
- 87‘[/ / f(; (Fuw,-01,-~0 Fum ®9w2)Hsdudw1dw2
-TJ-7
VA b/ 1
+47_[f f [) <9u,w1,—w1,w2;gu,wl ®9u,_w2)H5dudw1dw2
—TJ-7
Topm . .
+4ﬂf <ga)1,—w1,w2)gwl®g_w2>Hsdwldw2
—nJ—-T
T T 1 .
—87Tf f \/(; <9u,w1,—w1,w2,gu,wl®9_w2>H5duda)1da)2
—mJ-7
T 1 . 1 N
+87‘[f f |||g5,wlllgdudw+4nf f (giw,gu'wngsdudw
-nJ0 - J0

b4 1 __
+47Tf f <9wgu,wygu,w9u,w>H5dwa
- J0

n ol .
- 167’[] f <gu,wgu,w,gu,wgw>HSdwa
- J0
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T 1

+47m f f IFuwlldudw
- JO
T rl —

+47Tf j(; <gu,w®9u,w’gu,w®gu,w>HSdwa
-
T rl —

+47‘[f L (gu,w®-|—gu,—w»gu,w®gu,—w>HSdwa
-
T rl — __ .

+47 f fo (FuowQFuw FoQ Fuw)nsdudw
-7
7 ol — L

+47Tf fo (gu,w®1—9u,—w,gw®g—w>HSdwa
-
7 rl _— _

—87[/ fo (gu,w®9u,wvgu,w®gw>HSdwa
-

T rl —_~ —
87 f fo (F @+ T Fruo R F ) nsdudo, ($3.9)
-
Under Hj this reduces to V%IO =47 ffnlllﬁwlllgda}.

S4. Bounds on cumulant tensors of local functional DFT

The following lemma shows that the cumulant tensor of the local fDFT’s eval-
uated at the same midpoint «; and on the manifold Z§:1 w;j=0 mod2x can

in turn be expressed in terms of higher order cumulant spectral operators.

Lemma S4.1. If|Assumption 3.1|is satisfied and Zle w; =0 mod 27 then

(zn)l—k/Z

Uuj,wi UppWiy _
“‘Cum(D ,...,D ) T

N N

:O(N_klzxﬁ).
1

gui,wl ..... Wi-1 M2

When evaluated off the manifold, i.e., }_ ?:1 wj #0 mod 27, the above cu-

mulant is of lower order (see |[Corollary S4.1). A direct consequence of the

proof of[Lemma S4.1|is the following corollary
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Corollary S4.1. We have forany p =1

’”Cum (DN D]L\‘]’C’w’c)

]p - O(Nl'k/z) (54.10)

uniformly inws,...,wy and u,, ..., ux. Moreover, if Z?lej #0 mod 27 then

H‘Cum (DY, DR )

)p - o(N—’“’Z). (S4.11)

Before we give the proofs, denote the function AN (w) = YN 1 e for
w € R. This function satisfies AV (Z§:1 w;j)| = N for any w;,...,wy for which
their sum lies on the manifold w =0 mod 27, while it is of reduced magnitude
off the manifold. For the canonical frequencies w; = 2wk/N with k € Z, we

moreover have

N, keNZ;
AN () = (S4.12)

0, keZ\NZ.

Proof of|Lemma S4.1. Let p € {1,2}. Using linearity of cumulants we write

Cum (Dy",..., D)

1 N-1 . k
RN Y. exp|-i)_ sjw;j|Cum (Xyy,1)-Ni2esi+1,Tr o X{ui T)-N/24 5341,T)
(2nN) $150esSE=0 j=1
1 N-1 k )
= exp —iz Sjwj|C N5 + Ry
(an)k/z S5m0 3 Uj— =81 Sk, $2= Sky-+»Sk—1— Sk k.M,

(54.13)

where Cy 1, 1,_, denotes the local cumulant operator as defined in (S1.4). Us-
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ing Lemma S.2.1 of/Aue and van Delft| (2019) and Assumption[3.1}

1 Nk kebsy - sil

lebssll, <z G+ X = ks s sl
k,M,N k,Sl SkyeerSk—1—SK I p
po@aNME g S T o T

1 N-1 1 k-1

< _v1 (L4 Y 1)Kk, llp = O(NF20071).
@ N)k/2 5k=0 r hyelp1€2 j=1 e

In addition, we can write the first term of (54.13) as

1 N-1 k-1
= exp|—is wilexp|l—i) wi(si—$)|C  nNiz-s.—1
(ZHN)k/Zsl...Zskzo b k; J)7P ng TRT 2 ) Py = RS = 2= Sk Skt =S
—k/2 N-1
2m)! LisY 0 2
- Nki/2 ZO e ! ]gui—w,wh...,wk,l+Rk,M,N’
S=
where
(30 RE—— i AT
erN - _;, 9 T yeeey —1—
CMNI = @ank2 S Sy, T ameemsesasiily
[sj—s|=N-1
1 N-1
= P Z Z |||Kk,sl—s,sz—s,...,sk_1—s|||p-
@CrN)™* 20 ja,. k-1
|sj—s|2N—1
1 N-1 1 )
s—— Y — > Nlkkib,. i,
2 2 15025 b1 WP
@rN)*2 = N? 1 o
|lj|>N
! Y 1Pkt = 0 N7F2)
] 201502500y bfc—1 p - *
@rN)¥2 N ;. Ty,
1j1>N

Therefore, the cumulants satisfy

(Zn)l—k/z N-1

Uj,wi Uj,Wi —isz-wj 1 2
Cum (Dy™,...,Dy**) = NK2 . e "~ gui—%,wl,...,wk,l + Ry v Riv, e
s=



S4. BOUNDS ON CUMULANT TENSORS OF LOCAL FUNCTIONAL DFT 14

On the manifold Z?:l w;j=0 mod 27, we have that e 5Lj®j = 1. Assumption

3.1](iv) and a Taylor expansion yield

Cum (Dy",..., Dy _en™ Ry R: R}
um (D ,..., Dy )—WJ’ui,wl.m,wk-l“L kMN T Rm N T RN
where
)k/Z 1 2 N-1 1—N/2+s7\¢ a[
IR} o wllp = Z Z F 01,0
k,M,N Nk/z T ou l

(=

—(Zﬂ)k/21 N Ny of —ki2(N N
< Nk/2 O(?-I‘W)X:luail:lp, o 732’.%(01 ..... W p_O(N (T+M2))

and similarly Z

1-N/2+s 2 _
T

WhichfollowssinceZ?i'Ol(I_N/ZH) (N-D(QA- N/2+N/2)

T

O(l}’—j) We additionally note that, off manifold, the first term of can be

bounded in norm by

1 N-1 k-1
= exp | —is wilexp|—-i) wi(si—s)|C  Ni2-s—1
‘H(z”mk/zsl,..;k:o p k%‘, j|€XP ]; ST TS| Cp N2t s spsea—sill p
N-13|
K
= Z eTISkLj @) Cu‘_N/Z T H
@rEN)Y 1) il 1<N' =0 : bt lp
K

* _ —ki/2
S, L Wkl = O[N],
liloll—1 <N

for some constant K and where j* = argmax|/;|. This finishes the proof of
j=1 k-1

Lemma O

Additionally, when the local fDFT’s are evaluated on different midpoints

then we have the following lemma.
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Lemma S4.2. IflAssumption 3.1|is satisfied and | j; — j»| > 1 for some midpoints

uj, and uj, then

Uj w1 Ujr Wk
||cum (D", DY

o

uniformly inwy, ..., 0.

Proofo Using again the linearity of cumulants we write

Ll] W1 ujkvwk
Cum(DN1 e Dy

1 N-1 ) k
- QrN)k/2 N Xs:kzoeXp (_IUZ:‘,ISU(UU Cum(XLujlTJ—N/2+S1+1,T,...,XLujkTJ—N/2+sk+1,T)

1 N-1 k
_ _3 1
N 2 N)k/2 N Xs"kzoexp 11;1 SyWy Cujc,lujl Tl=luj, TI+s1= Sy Lty T1=lug T)+sg-1-5k +Rk,M,N

where u}c = Up— % and where R,lC v 1s the error term derived in Lemma
Let

Im=uj, T] = lugT] + Spm— Sk < Sm = tj, — Lj,, + Im — Sk m=1,...k-1

Similar to the proof of|[Lemma S4.1, we note that

|Ll? 2
2 MCbtatialp = Y Mkl = ONTE).

Iyl I, 02, D1
[ln|>N Nml>N
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From which it follows that if |[;;;] > N, the term

N-1

1 -
[ty ¥ etmtae 5 imite,
e v=1 =1v™ C !
%2 Z !l
@aN)F2 =, nn ‘

[lm|>N

1,...,lk_1

p

is bounded by

Z D (3% O P P I

o NVK/2
(ZEN) 5=0 11,0, 1
|lm|>N

Ll I, =0(N¥?2"1
——— Z ) N 3 A A P 1 .
(ZJTN) $=0 Iy, Ly L1

|11|2N

O

Proof of|Theorem S3.1, First note that a sufficient condition for [EIIIIIL\‘,""III 5 <00

- 2 . 2
to exist is [EIID]L\‘,""IIZP < oo or, in terms of moments of X, [EIIXI,TIIZP < oo for

each T=1,1<t=< T and hence by|/Assumption 3.1|

n IN/2] M
Uj, Wi Ujy W Uj, Wi Uj, W
Cum, (I L2 us) < [] Z > \/[E|||IN’ ’|||§\/E|||IN” 2l < oco.
=1 : ]l 1

The definition of scalar cumulants and a basis expansion yield

Ujp Wk pUjp Wk Ujon-1Pkap-1 7Ujon @k
Cum((-[Nl I)IN 2>HS»---)<INn on 1)INn 2n>HS

G
= Y e0OG-TE T <" as

v=(V1,..,7G) g=1 (,m)evg

G111 & UjpWk Ujp=®k Ujm Dkm Ujm» =Wk
EDONG-DHTE [T Telby” ™ eDy" QDY 8D,/ )

v=(V1,..,VG) g=1 (l,m)evg

I
™
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G . - - :
= Y EDNG-DIE [T T (o) e DY e DY e DY),

v=(V1,...,VG) g=1 (l,m)evg

where the summation extends over all unordered partitions (vy,...,vg),G =
1,...,n. The fact that the expectation operator commutes with the trace oper-

ator together with property|S1.114 implies this can be written as

_ =G = uj,,w uj,,w i@k i@k
(Y DG VIR, E[ Ry e, (DN 8 DY 8 (DY @ DY) )

v=(V1,..4VG)

The product theorem for cumulant tensors (equation (S1.3)) then shows this
equals

o (P=P1§.UPG SP( ®g=1 Cum(DJL\lfjp'wkp Ipe Vg))'

Here, the summation is over all indecomposable partitions P = Py U...U Pg of

the array

L, 12 1,3 (1,4
2,1 22 23 (24
(54.14)

(n,1) (n,2) (n,3) (n,4)

where Sp denote the permutation operator on ®?’__“1L2( [0,1],C) that maps the
components of the tensor according to the permutation (1,...,4n) — P and
where p = (I, m), k = (=1)"ko;_s(meq1,2)y and jp = jor—s(me1 2y for L€ {1,...,n}
and m € {1,2,3,4}. Here the function d4; equals 1 if event A occurs and 0

otherwise. O
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Lemma S4.3. If|Assumption 3.1|is satisfied then for finite n,

/2 A A
T" cumy_y x(F1,r,Fo,1) =
1 LN/2] M "W
—_— G jp @kp
. X X W[ 3 se(efcum (D Ipevg))
klv-"rkn:l jlv"-rjn PzPlU...UPG

jn+1r---vjn+x:1

uniformly in0 < x < n.

Proof of Lemma[S4.3, For a fixed partition P = {Py,..., Pg}, let the cardinality
of set Pg be denoted by | Pg| = €. By (S4.10) of Corollary and Lemma
an upperbound of (S4.14) is given by

P IN/2]
o(T‘” M* Y
kiyenkn=1 " jieujn  &=1

jn+1v-~~)jn+x:1

G

M 1
Z 1_[ N(g o M_5{3P1vP2€Pg:|jP1 —jp2\>1]) (84.15)
4

Note that |ng| > 2 and that the partition must be indecomposable. We can
therefore assume, without loss of generality, that row / hooks with row /+1 for
I=1,...,n-1,1i.e., within each partition there must be at least one set P, that
contains an element from both rows. For fixed j;, there are only finitely many
possibilities, say E, for j;,; (Lemmal[S4.2). If the set does not cover another
row, then the fact that j; is fixed and j;; are fixed, another set must contain
at least an element from row [ or [ + 1. But since the sets must communicate
there are only finitely many options for j;,». If, on other hand, the same set

covers elements from yet another row then given a fixed jj;, there are again
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finitely many options for j;;; and for j;,». This argument can be continued

inductively to find (S4.15) is of order

O(Nn/ZM—n/Z—xEnM1+xN—2n+G) — O(Tl—n/ZNG—n—l). D

Proposition S4.1. For a partition of size G=n+ry + 1 with ry = 1 of the array
(S4.14) with n > 2, only partitions with at least ry restrictions in frequency di-
rection are indecomposable. For n =2, G =n+r; +1 with ry = 1 will have at

least 1 restriction in frequency direction.

Proof of Proposition[S4.1l First consider the case n > 2. We note that a mini-
mal amount of restrictions will be given by those partitions in which frequen-
cies and their conjugates are always part of the same set, i.e., in which for fixed
row [, the first two columns are in the same set and the last two columns are in
the same set. Given we need that G = n+2 and ¢ = 2, indecomposability of
the array means that the smallest number of restrictions is given by partitions

that have one large set that covers the first two or last two columns and n—r;

4n—-2(n—ry)

rows and for the rest has >

= n+r; sets with ‘Kg = 2. This means there
are no constraints in frequency in n—r; —1 rows but for the array to hook there
must be 1 constraints in terms of frequencies in rows n—r; — 1 to row n.

Consider then the special case of n = 2, for which the above argument implies
a partition of size G = 3 and thus r; = 0. For partitions are of size G = 4, in-

decomposability then requires the first row to hook with the second, which

imposes at least one restriction in frequency direction since only those parti-
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tions for which } P, Wk =0 mod 27 will not vanish. O

S$5. Derivation of expectation and covariance

For (S3.5), Theorem S3.1{implies we can write

1 N72] M
[E-FA'LT - Z Z Tr (E[D i1’ wkl u]l —Wiy ®DZZ<]]'1'_CU]C1—1 ®DIL\l]jl,a)k1_l]).
=1 j=1

Expressing this expectation in cumulant tensors, we get

|_N/2 M ) o o )
[EFLT— Z ZTr(51234(Cum (DY ™M plv “’kl‘l,D]”V“'“”“l‘l)))

1 IN/2] M , o o
> ZTr Sisa(Cum(DY™, DY) & Cum(Dy ", D)

1LN/2M - . - .
T E Sigza(Cum(DY M, DY @ Cum(DY M, DY)

1 IN/2] M
tT Z ZTI Srazs(Cum(D ", DM @ Cum(D "M, DTN )) ;

where S; ji; denotes the permutation operator on ®?:1L2([0, 1],C) that maps

the components of the tensor according to the permutation (1,2,3,4) — (i, j, k, 1).

By|Lemma S4.1|and |Corollary S4.1} we thus find

[Eﬁ 3 l IN/2] M . i o M_2 o N_l
LT = T Z Z< Uj,wi» Ltj,wk,1>HS+ ( )+ O( ).
k=1 j=1
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Similarly, for Fz,T we obtain

1 WN/2) M o o |
Z 2 Tr(Cum (D", D, D2 D)

Efy 7=

2 N N N
NM= 5 Juje=
1 N2l M Uy OF i I
+ NM2 Z Z Tr 81234(Cum(DN“ ,D T )®Cum(D Ujp» DNJZ ))
k=1 ji,j2=1
1 W2 M Ui 0p U~ U —wp o
T N2 >, 2 Tr 51324(Cum(DN“ D2 ""yeCum(D," ", D" ))
k=1 j1,j2=1
1 N2l M - I
N2 > 2 Tr 51423(C11HI(D]\,J1 ’2 “)® Cum(D,; i , D2 )) .
k=1 j1,j2=1

|Corollary S4.1|and [Lemma S4.2|then yield

IN/2] M 1 N2 M

EF: § § ZF , +— § > Tr|S Rz
2,T = N IZ & s 1( uj Wk ujzwk>HS N {2 = = ( 1324 u] Wk uj wk)
+0(=) + O(—).
(T) (M2)

Note that the permutation operator implies Tr (81324 (Fuj 0 @Fuj 0 k)) =Tr (guj,wké)g"uj,w k).

Therefore, with slight abuse of notation,

where the term By, 7 is defined in (2.15). In complete analogy with the deriva-
tion of EFLT, we find that the estimator BN,T defined in (2.17) is asymptoti-

cally unbiased, i.e.,

lim [EB\N,T = BN,T- (85.16)
T—o0
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Summarizing, we obtain

. . N . T rl T
VT |4rE (1~ Forr+ By - [ fo I ll3dude - |||9w|||§dw)] ~0
s -7

as T — oo, provided|Assumption 2.1|is satisfied.

$5.1 Covariance structure of v TF, 1

[N/2] M IN/2] M

TCov(Fy,r, Fi,r) = TCum(— 3 3 (1™, ! >HS, Y e L)

ki1=1 j1=1 k21]21

Using again|{Theorem S3.1

LN/2] M

N Ui, W
Cumy(VTF 1) = - > o) Tr( Y Sp(®g,:1 cum(D,"" " Ipe vg)),
k1,k2=1j1,j2=1 P=PU...UPg
where p = (I, m) with k), = (—D""k; — 8 (mez.ay and jp = Jjifor I € {1,2} and
m € {1,2,3,4} and where 64, equals 1 if event A occurs and 0 otherwise. In

particular, we are interested in all indecomposable partitions of the array

Uj Wk Ujpr =Wk Ujpr=Wky -1 Ujy@Why -1
DV D D D
N N N N
N " N ~ > L. ~ > N ~ >
1 2 3 4
Uiy, —W Uiy, Ui Wiy Uin,~ Wiy —
J2r Wk j2 Pk J2rPhky-1 J2r T ®ky-1
DN DN DN DN
\'g \'g ~ TV - ~ v -
5 6 7 8

By|Lemma S4.3} all partitions of size G < 3, will be of lower order. By Propo-
sition S4.1), the only partitions that remain are those that contain either one
fourth order cumulant and two second order cumulants or those consisting

only of second order cumulants. Additionally, Corollary[S4.1|and LemmalS4.2
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imply that, in order for the partitions with structure Cum4Cum,Cum; to be

indecomposable, there must be at least one restriction in time. More restric-

tions in terms of frequency would mean the partition term is of lower order.
For the structure Cum4Cum,Cumy, the only significant terms are there-

fore

[ 27
Tr{Sa2s6)39)(78) (0 ju, j2 (Wguh,wkl,—wkl,—w@ +84) ® (Fuj —wp 1 +62) @ (Fuy, 0,4 +t5"2)])
[ 27

j1.j2 L(Wgujl,wkl,—wkl,wkﬂ +64) ® (Fuj w1 +62) ® (Fuy, —wy, "‘82)])

(
(
( 27
(

>

Tr| S278)34)56)

[«%)

. o o
Ji,j2 ( Ne/’uh,—wkl_l,wkl_l,—wkz +g4) ® (guh,wkl +€2) ® (Jujz,wkz_l +é()2):|)

r 27

S| (= gu“, ~Wk) ~1, 0k -1, Ok ,1+£4)®(gu“,wk +52)®(gu12,—wk +(§2)]),

Tr 8(3478) (12)(56) N

Tr (S (3456)(12)(78)

where & denotes an operator on L2 (10,1]%/2]y that satisfies &I = O(N~k/2x

%). For the partitions with structure Cum;Cum;Cum,Cumy, there must be
at least one restriction in terms of time and frequency for the partition to
be indecomposable. Those with more than the minimum restrictions are of
lower order. For the structure CumyCum,Cum,Cumy, the significant inde-

composable partitions are

Tt Sa2)6766)@8) 0 j1,j>0 ki ks [Ty 0, ® Fujy -k, 1 @ Fujy-wr, ® Fujy ok, - 1+5’2])

=

r(Sa2)66785) 81,120k -1,k [Fujy 0, ® Fujy -0k, 1 ©® Fujyp o, ® Fuj ok, - 1+52])

=

Tr | S(15)26)3078) |0 j1, 1> O k1 ko [ Futj, g, ® Py, -wi, ® Fujy-wi 1 ® Fujy o, 1+<5"2])

=
C>>

r(S(IS)(ZB)(37)(48) (5]1,]25k1,k2 Fuj or, ® Fujy g, © Fuj,~on 1 © Fuj or, - 1+5’2])
r (

S8)2n 66 0 1,120k, ko1 [ Fujy 0, € Fujy w1, ® Fujy w1 ® Fujy-or, +€2])-
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Using Remark and in particular equation (85.17) and (S5.18) below, the

corresponding terms of the covariance, TCOV(I:“LT, FLT) equal

1 WM 27 1
T ‘ kz . Z 16]1 22 [<W9’lh 'wkl'_wkl'_wkZ’guh!wkl—l ®guj2,wk2—1 >HS + O(?)]
Lk2=1j1,j2=

M 2 1
= Z Z_ 5]'14'2 <Wgujlrwkl)_wkl;wkz—l’gujl;wkl—l ®guj2)—wk2 >HS + O(?)J

M 2 1
+= Z Z 611 Ja <Wguh,—wkl_1,wkl_1,—wk2,guh,—wkl ®9Mj2ywk2-1>HS + O(T)]

M 21
+? Z Z 8 <(Ngu]1v_wk1 1Ok 10k F U~ ®gu]2,—wk2>Hs+O(_)]
ki,k2=1 j1,j2=1

|N/2] M

4
+_k kz . Z 16]1 ]zakl k2[< Uj) )~ Wk guh,—wkl_pguh,—wkl Lg.uj — Wi,y >+O(_)]
Lk2=1j1,j2=
1 |N/2) M +
+ ?k % L Z lajlij(skl_lka [<guh,—wk1¢/'u“,—wkl 1'gu]],—wk, J”]zv_wkz YaS + O(— )]
1,2=1J1,]2=
1 IN/2] M
Tk ; ) Z 15]1 ]25k1 k2[<9u]1 Wy eg.ujl Wk -1 >HS<<g.u]1 —Wg, gujl —Wg -1 )HS+O( )]
Lk2=1j1,j2=

1 IN/2] M

= XX 511,125161,162[<J’u,1,wkl®gu,1,wkl Fujy i1 Q@ Fuy o, 15 + Ol )]
k1 ko=1j1,j2=1

1 |N/2) M

+_k ; Z 81,2 0ky k- 1[<gu“,wkl®—|—gu” —wpy» 914“ Wy -1 ®gu]2 —wk2>HS+O( )]
1k2=1 j1,j2=1

Then, using self-adjointness of the spectral density operator and that, for any
function g : R — K, we have [” gw)dw = [ g(-w)dw, it follows that the
first and fourth term, the second and third term, the fifth and sixth term of the

above expression are, respectively, equal in the limit. Hence, as N, M — oo,

R R 2 b4 T 1
NMCOV(FI,T,FLT) —’a/; f—n o <gu,w1,—w1.—wz’gu,w1®gu,w2>HSdudwldw2

2 n prro el
7ﬁn[nj; <gu,w1,—w1,w2;gu,w1 ®<°J’u,—w2>HSdudwlda)2
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4 f_nflm 7 |”2
uaw
T 0 u,wl2

1 T 1 s
= f f 1P wollidudo
4n J-nJo

1 7 ! —
- Ef /(; <gu’w®gurw’g%w ®gu,w>H8dud(u
-7

| —
+ Ef /(; <‘9:”'“’®T‘g:”’—w’g;u.w®gu,—w>Hsdudw.
-7

Remark S5.1 (A note on the permutation for the 2nd order cumulants). In
order to give meaning to the covariance structure, we need to investigate how
it ‘operates’ as a result of the permutation that occurs due to the cumulant
operation. For the second order cumulant structure, Theorem implies
that the original order of the simple tensors has structure Tr(S;234-® - ® - ® -

R Ss675-®-®-®-) which leads to the following correspondence of simple tensors

Let X € #%" and Y,Z, X€ ]ﬁg’z, then using properties we find

TrSazs6)1266 X @Y © 2) =Tr (XY QR 2)1) = (X, YR Z) s
(XY Q2" =X, YR Z)us
Tr (

(

(
Tr (8(1256)(12)(56))( 8Y®Z) =
(
Tr(

)=
)=

Sazs6) 1266 X @Y 8 2) =Tr(X(Y QR 2N = (X, YR Z)us
)=

Sazs6) 1266 X @Y 8 2) =Tr(X(Y QR 2N = (X, YR Z) s (S5.17)
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andfor W, X,Y,Z e X € 7%

—t . —
Tr S(lg)(15)(56)(26)W®X® YeoZ|=(W X,ZYT>HS

—t . ——
Tr 5(12)(16)(56)(25)W®X®Y®Z =W X, ZY)ys

=

r{SaseeaeeWeXeY e Z| = (WRX, Y Q) 2))us

( )
( )
Tr(s(15)(26)(15)(26) WeXeYe Z) = (W, Y)us(X, Z) us
( )
Tr( )

8(16)(25)(12)(56) WeXeYeZ|= <W®TX’ (?@ Z))HS- (55.18)

$5.2 Covariance structure of v'T FzyT

We have that TCov(F,, 7, F» 1) is given by

IN/2] M 1 IN/2] M

UjpWky ;U Py Ujg Wiy pUjpOky
TYE YooY U YHS 72 YooY USRI ) 1)
ki=1 j1,j2=1 k2=1 j3,ja=1

TCum(

Using again{Theorem S3.1|

. 1 [N/2] M . _—
Cumg(Fg,T):W > oy Tr( Y Sp(®g=1cum(DN” ”Ipevg)),
k1,k2=1 j1,j2, P=Pju...UPg
j3vj4:1

where p = (I, m) with k, = (-=1)=™k; and Jp = Jai-s, for [ € {1,2} and

me{1,2}}

m € {1,2,3,4} and where 64 equals 1 if event A occurs and 0 otherwise. That
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is, we are interested in all indecomposable partitions of the array

Ui, ,Wp Ui ,—Wg Uin,—Wg Ujo, Wi
j1%ky J1 1 J2 1 Jj2 ®ky
1 2 3 4
Ujn,— Uiy, Ui, Uj,—W
j30 ™ %ky j3:%ky jar Pk jar~ Pk
I)N I)N’ I)N l)N
—_—  —— —_—  ———
5 6 7 8

For the same reason as above, we only have to consider the structures Cum4Cum,Cumy
and CumyCumyCum;,Cumy. For the structure Cum4Cum,Cumy, the only sig-

nificant terms are again

r 27

Tr{Sa256)34)78) |0 ji, 5 L(Wgujl,wkl,—wkl,—wkz +6E4) ® (Fuj,—wy, +62) ® (Fuj 0y, +6"2)])
27’: or or or
Tr S(1278)(34)(56) 6]'1,]‘4 (_J”h'“’kp_‘”kp‘”kz +84) ® (L/'ujz,—wkl +&5) ® (L/'uj3,—wk2 +&») )

N

[
(
( 271
(

>

Tr| S3456)12)78)| 0 2, j3 ‘(Wgujz,—wkl,wkl,—wkz +6E4) ® (Fuj oy, +62)® (Fuy, 0, +6"2)])

27
.. — 9 o
6]2,]4 ( Jujz,—a)kl Wi, Wk, +£4) ® (L/’ujl,wkl +g2) ® (gujg,—wkz +é02])-

Tr | S3478)(12)56) N

(
(
(
(

For the structure Cum, Cum,Cum,Cumy, the only significant terms are in this

case

Tr | S3478)12)56) (0 o, j4 O ks ko [ Foujy r, ® Fujy—won, ® Fujy -, ® Fujyon, +<§'2]))

Tr(s(lz)(ga)(78)(45) (812, 130k ko [ Fuj w01, ® Fujy—0, ® Fujp 0y ® Fuijy o, +5’2]))
TT(S(ls)(za)(34)(78) (811,550 k1 ko [ Fujy i, ® Fujy -y ® Fusy—0i, ® Fujyon, +<5"2]))
Tr(

Su8)2ne066) (01,7:0k;,k [ Fuj wr, ® Fuj) -0, ® Fujy-w, ® Fujy-oy, +6"2]))-
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Using Remark ; we find that Cov(v/T ﬁz,T) equals

1 IN/2] M

e —— 1

M Z Z 6]1,]3[ ‘/'uhywkly —Wpy,—Wgy? gujz,—wkl®guj4,wk2>HS+O(?)]
ki,k>=1 ]1,]2,
J3,ja=1

1 M 2 —_— 1
NMB . % ) > O <W9uh.wkl,—wkl,wk2»9uj2,—wkl®9uj3,—wk2>Hs+O(:—r)]
1,2 ]1,]2,
Jarja=1

1 IN/2] M 2 - 1
NM k ;’ 1 Z 6]2 Js <Wguf2'_wkl'wk1’_wk2’guh"“h ®9u1'4"”k2>HS + O(?)]
1,12 Jij2
Jarja=1

1 27 — 1
Z > O «wg‘:ujz,—wkl Wiy Ok Tt iy ®9uj3,—wk2>Hs + O(?)]
kl,kz L juja
J3,ja=1

1 IN/2] M + N
Z Z 5]2,]45k1,k2 <guj1rwk1 gujzﬁwkl’gujzrwkl g:u] "~ Wiy Yas + O(— )]
khkz L juj2
Jsrja=1

1 IN/2] M
Z Z 6]2 ]35k1 kep <g”]1 Wiy 914]2 —Wiy? eg.”fz Wiy 9”14 ‘”k2>HS +0(75 )]

kl ky=1ji,j2,
Jsja=1
IN/2] M
k ; 1 Z 0 ju.is Ok ke <g”11 Wiy ®gun’_wk1 J”Jz"wh ®g”/4’wkz>HS+ O3z )]
1,K2 JuJz2
Jarja=1
IN/2] M —
NM3 Z Z 6]1,145k1,k2 <guj1 O ®Tguj1,—wkl ’gujz,—wkl ®gu]3,—wk2>HS +0(— )]
kike=1"ji,j2,
J3rja=1

So that, as N, M — oo,

T

N ” 2 T — —_
NMCov(Fy 1, Fo, 1) _)Qf (For -01,-w3r Fo, Q Fw,) Hsdw1dw,

—TTJ—T

2 A __ __
+ 8_ <L6/7a)1,—w1,w2w6/:w1 ®‘g;—w2>Hde1dw2

TJ-nad-n

1 —_—
f ‘/(; <guwr=/’u,wgw>HSdudw
-

T 1

1 — —_
+— <gwgu,wrgu,wgu,w>HSdwa
47w J-z Jo
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L
+Ef .[0 (Fuw@Fuw Fo Q) Fu) nsdudw
=7

Lo o
* Ef _[0 (Fuo@rFu-0 Fo QF-v) nsdudw.
=7

$5.3 Cross-covariance F) v and F, 1

Using again|{Theorem S3.1

N A T LN/ZJ M G Ltj yW e
TCUmZ(Fl,TyFZ,T):Wk Y Y Tr( > Sp(®gzlcum(DNp ’”|p€vg)),
1

where this time we are interested in all indecomposable partitions of the array

Dufl Wiy D”jl'_‘”kl D”jl'_‘”krl D”jl Wiy -1
N N

N PN N N |
1 2 3 4
D”jz 1~ Wiy D”fz Wiy D”Jé Wiy D”j3’_wk2
5 6 7 8

By[Lemma S4.3|and Proposition |S4.1), we only have to consider partitions of
the form Cum,4Cum;Cum; and Cum,Cum;Cum;,Cums,. The only significant

terms of first form are again

2n
Tr (8(1256)(34)(78)6]’1,]'2 [(Wg“h Ok =iy g, TED O (Fuj —wy  +E2) @ (Fuy w, +62)

2n

Tr(s(1278)(34)(56)6j1,j3 [Wguh,wkl,—wkl,wkz +64) ® (Fu; —wy, +62) ® (Fuy,—w, +62)
2n

Tr(s(3456)(12)(78)5j1,j2 [Wguh,—wkl_l,wkl_l,—wkz +E4) ® (Fu;, wp, +62) ® (Fuy wp, +62)

27

Tr (5(3478)(12)(56)5]'1,]'3 [(Wgujl,—wkl,l,wkl,l,wkz +84) ® (Fuj wy, +62)®(Fuy,,—wy, +E2)

—_— —— O e—
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and for the structure Cum,Cum,Cum;Cumy, the only significant terms are

Tr | S12)37)56)48)0 j1,js0 k1 -1,k 0, j3 Ok~ 1,k (P, wn, ® Fuj, =011 ® Fugy -5, ® Futyy gy 1+ 5’2])

Tr | S12)36)(78)45)0 j1, 1,0k -1,k 1, 12Ok ~1,6:0 1, 12O ks~ 1k, [P 01, ® Pty -1y 1 Fugy 01, ® Foutgy o, +52])

2
Tr (5(15)(26)(34)(78)511,jz5k1,kz) 8 i, 120ks ko [Fujy iy ® Py 0, ® Fujy -1 ® Fujy oy, 52])

2
Tr | S8)2n 30660 j1,js O k1 k) 0 1, js O ke ke [Ty, k, ® Fuajy -k, ® Fuujy -y 1 ® Fuyy -, +<§2])r

which implies by Remark that TCov(ﬁLT, ﬁZ,T) equals

1 IN/2] M 27 - 1
k ; ) Z 16]1 o |:<Wguj1,wk1,—(Uk1,—wk2’guh,—wqu ®guj3,wk2>HS + O(?)]
1,k2=1j1,j2,j3=
N2 M 27 S 1
k ; . Z 16]1,13 <Wgujl»wkl,—wkl,wk2’g:ujl,—wkl,l®guj2,—wk2>HS+O(?)]
Lko=1]1,j2,J3=
IN/2] M 27 1
NM2 ‘ ; . Z 16]1y]2 <Wguj1r_wkl—lrwkl—lv_wkg’gujlvwkl ®guj3;wk2>Hs+ O(?)]
1 k2=1j1,j2,J3=
1 el M 27 —_— 1
+ Wk ; L Z 15f1.j3 <Wguj1»_wk1—lvwk1—lvwk2’gujl;wkl ®'g:uj2»_wk2>HS+ O(?)]
L2=1J1,]2,]3=
1 [N/2] M :
NM k%‘,l Z 1511,135k1 1k26]1,135k1 lkz[<9un Wy gu“,—wkl wgu,pwk1 Fu
1 k2=1]1,j2,J3=
1 IN/2] M
N2 . ; ) > 1511 20k -1,k,0 1,12 Ok - lkzah,]z[(J’u,l,wkl Fuj) w1 Fuj, wr, - J’u]s,wkz)HS"'O( )]
vk2=1j1,j2,j3=
1 IN/2] M

. YHs + O(— )]

Ujp»

+ NM2 k ; 3 Z 15jlrj26k1,k25j1,j25k1,k2 [<guh,wkl ®guh,7wk1»gun,fwkl ®gu12,wk2>HS + O( )]
Lk2=1J1,j2,J3=
1 IN/2] M
+t— NM . %‘, . Z 16]1 ]36]61,]626]1 j36k1,k2 [(9%1 Wiy ®Tgu“ —Wg, gu“ —Wk; -1 ®9u]2 —wk2>HS+ O( )]
1k2=1j1,j2,j3=

Hence, as N, M — oo,

R R 2 T QT 1 .
NMCov(Fy,T,Fo,1) _’5/‘ f /(; <gu,w1,—w1,—w2»gu,w1 ®gw2>HSdudwldw2
—mJ-m
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2 77l N
_f f f <gu,w1,—w1,w2ygu,wl ®g—w2>H5dudw1dw2
8 J-nJ-nJo

2 (7 (! -
+ _f f <gu,wgu,w;gu,wgw>Hsdudw
47 —1do
1 7 ! — s
+ Ef /(; <gu,w®gu,w;gu,w ®97w>Hsdudw
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§$5.4 Limiting Variance of /1

The limiting variance of my is given by

v? = lim (16n2Var(ﬁ1,T)+16nZVar(F2,T)—32nZCov(ﬁ1,T,ﬁ2,T)).

T—o0

The above therefore yields the following expression for the asymptotic vari-

ance

. b4 1
VZ = 477:‘/‘ f L (ffu,wl,—wb—wzygu,wl ®ffu,w2>Hsdudw1dw2
-nd-m
T o . B
+47Tf (gwl,—wl,—wz,gwl®9'w2>HSdﬂU1dw2
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T b4 1 .
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7 e opl
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—167 f ! fo 1<9u,w9u,w,9u,w§w>Hsdudw+4n f ! fo l|||9u,w|||‘2*dudw
- -
+ 47 f_ z fo 1<9‘u,w®9u,w,9‘u,w®9u,w>Hsdudw
P f_ 7; fo 1<9u,w®T%,-w,9u,w®%,-w> nsdudw
+an f § fo 1<9u,w®%,w,§w®§w> asdudw
-
+4nf_1f01(ﬂu,w(ngu,_w,ﬁw®§_w)H5dudw
~or | fo Fuo®Fwon Fus @ Fup rsdudo

T 1 — ~
-8n f fo (Fu0@Q+Fu-0 FuwQ F-w) Hsdudw. (S5.19)
-7
Under H, this reduces to v = 4nf |||9 |||4da)

$5.5 Proof of Lemmal3.1| (consistency of variance estimate)

Proof of Lemmal3.1; We write

Zu”f wr [ 1>Hs]2

LN/2 2 INJ/2 2
167'[ ] [_Z(Iu] W uj Wie— 1>HS] + 1(];\]]‘[ L J( [ Z<Iuj Ok u] Wi 1>HS])
k=1

167‘[2 N2 M uj, wk ”11 JWk_1 Ujy, Wk Ujy W1
T NM? Z > Cov|y s Uy 1 |
=1 ]l’]Z 1

167[2 IN/2 1 M
Y (e

J=1

2
B[y 1 }Qf‘“’“‘lms]) .
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Using Theorem|S3.1} we can write the first term as

167T2 IN/2] M

Uj, Wi
NM?2 kg,l j1.sz=1Tr(p:p§..uPGSP(®g=1cum(Dij plpevg)), (S5.20)

where p = (I,m) and k, = (=1)"ko;—s(meq1,2yy and jp = joi—simeqi 2y for I €
{1,...,n} and m € {1, 2,3,4}. In this case, we are interested in all indecomposi-

ble partitions of the array

Uj Wi ujl,—wk ujl,—wk,l ujl,wk,l
D! D D D
N N N N
—— —_——— —— ——
1 2 3 7
Ujy,—Wf—1 ujz,wk_l ujz,wk ujz,—wk
D2 D D D
N N N N :
—— N—— N—— ——r
5 6 7 8

Indecomposability immediately implies that there must be one restriction in

time. Using the results in|Section S3|and a similar argument as in (Section S5

will show that all of these are at most order O(Ai/[) and hence will vanish as

M — oo. For example,

Tr (5(18)(27)(36)(45)511,1'2 (Fuj o0 ® Fujy -0 1 ® Fujy—0r @ Fuy oy + 82])

Tr (5(12)(78)(36)(45)51'1,12 (Fujy 00 ® Fusy o ® Fujy -0 ® Fujy oy + 5’2])

Using again Theorem|Theorem S3.1}, we can prove similar to the proof of EF; 7

2
that the second term converges to 47 ffﬂ ( fol IIL?M,III%du) dw. Under Hy, we

have %, , = %, and it follows therefore that the second term converges to
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47 ffnlllﬁwlllgdw if the null is satisfied. For the variance of the estimator, we

write

Var(v%, ) = E[0%, 1° - (E[0%,])". (S5.21)

Under Hy, the above derivation yields that the second term of (55.21) con-
verges to (47r f_”nlllﬁwlllgdw)z. Consider then decomposing the first term of

(S5.21) as

. 2874 1 Ui, Ui,k - Ujy,w Uiy Wy 2
El)" == 2 [E[WZUN“ B Y S
k1, k2 J1j2
2%n 1 UjpWky  pUj Pk -1 Ujp Wky  pUjp Wkp-1
=5 X Var| 5 3G L g, R
k1, k2 Juje
(§5.22)
2874 1 uj,w Ui W — Ui),w Uy W, — 2
+ e Z E W Z(INJI kl,Ile ky 1>HS<IN]2 kz,Isz ky 1>HS)]
k1, k2 Jujz
(55.23)

We consider(55.22) and (55.23) separately. Using the product theorem for cu-
mulants, (S5.22) equals

2874

Ujp@ky 7 Ujy Wk -1 Ujz: Wy pUj3 Wk -1
o L X Cam{( L s g L

k1,k2 j1,j2,]3J4

ujz,wkz ujz,wkz_l uj4,wk2 uj4,wk2_1
x Cum((Ig2 ", B2 g, (I g

2874 U ,w uj,w uj,,w uj,,w
j1'Wk Jj1'Wk1 -1 Jjar Pk JjarWko—1
+WZ Z Cum(<IN1 lyINl ! >HS;<IN4 2’1N4 2 )

Ny us)
ki,ko ju,j2,j3,Jja

Ujp Wy pUjp Wky—1 UjgrWky  pUj3 Wky -1
XCUm((IN ’IN )HS}(IN ’IN >HS .
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then shows that indecomposability of the first of these terms
implies the restrictions k; = ky and {ji, j2} N {j3, ja} = @, while indecompos-
ability of the second implies the constraints {j;, jo} N{Js, ja} = @ only. There-

fore, (S5.22) is of order O(

NM2 + ) and hence converges to zero as N, M —
oo. Finally, it is straightforward to show using a similar argument that (S5.23))
equals
2874

Uj Wk Uj Wy -1 Ujy,WE Ujy Whoy—1
NZ Z [ Z Cu ((INI I)INI ! )HS)(INZ Z’INZ 2 >HS)
k1,ka ]1,]2

. . . . 2
Uj Wk Uj Wiy -1 Ujo W Ujo Wy -1
+[E<IN lrIN ! >HS[E<IN Z;IN 2 )HS

2874 1 - o )
= NZ Z [O(M M2 Z |E<Iu]1 Wiy Iujl Wiy -1 ) S[E(I]L\tljz wkz,IIL\tsz Wy 1>HS)]
k'],kg ]17]2

Z [ anh o

15—
k1,ko M

Znuu]z wiy I3+ 0(—)

Under Hy, the latter converges to (47 | fnlllﬁwlll‘zldw)z. Altogether, the above
derivation shows that [E[ﬁHO]2 — (4nffﬂ|||§wlllgdw)2 as N,M — oo. Since the

second term of (S5.21) converges to the same limit, we thus find Var(ﬁlzqo) -0

s2 P2
and consequently T~ V-

S5.6 Proof of Remark[3.1]
We remark that, in case of nonzero constant mean, the local fDFT used in

(2.16) is implicitly defined as

N-1 N-1
Dy = (2N~ 2 (Xlury-nrzesoi 7= p0e = Dy~ (2nN) 2 e
§= s=
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where u = EX; 7 for all £,T. If u # 0, then we can center the data using the

sample mean from which we obtain as a raw estimator

N-1 ‘
DZL\‘,’w = 2aN)" 1?2 Z (Xiut)=Nr2+s+1,7 — fAr)e” "%,
s=0

Let It := D%“ ® D" and correspondingly denote 7ir the statistic as given

in 2.16) but where I, replaces I* in 2.13), 2.14) and 2.15), respectively.

We shall prove that ;n;\T has the same limiting distribution as 7. Observe first

that
~ N-1 N-1
I = 14+ @aN) (D o (- fir) Y e+ (u—fir) Y. e @ D}y
s=0 s=0
N-1
F (i) ® (= fir)—— Y 06D [0 L RO RO
2n Nst 0 ' '

Recall that Ay (w) = Zév 01 e~ lvs gatisfies Ay (w) = N, for all w = 0(mod 27)
and that Ay(wy) = 0 for any wy = 2wk/N with k € Z, k # 0(mod N). Hence,
|||f]L\‘]'w" - I]L\‘,’wklllg =0forall k=1,...,N. Therefore, using TI’\‘]"” rather than I
only affects the estimator via 1:“1,T and B ~,7 because the zero frequency arises

in these terms due to the lag when the summand is evaluated at k =1, i.e.,
~ = 1 M Uj,wi u] wo o Uj,wo
|mT—mT|=(?Z<IN Y ZT(I Y Tr(I

j_

- 1
—Z L, ”’“’°>Hs——N ZT(I”"”I)T(I”J““)

)

Dﬂ

M
Z‘ LN RS+ RS + Te(1y) ™) Tr(RYS, + RS )‘ (S5.24)
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By the Cauchy Schwarz inequality, the properties of the tensor product and

applying the Cauchy Schwarz inequality again,

1 M Uj01 g

7 LBl R
Nl/z jr 01 U,wo U,wo
WZE[|||I ll2 (D3 © (= Ao+l — i) ® D3yl |

2N'2
= n )uzTZ\/[E(”Duwl” 1D 11202\ Ellu— firl3. (85.25)

Similarly, by the Cauchy Schwarz inequality

1M , N
?Z |<Iu]w1 ;)(;V>|_(2)—1/2T \/[E(||Duw1||4\/E||u prly.  (S5.26)

Let Yr = it — 1 and note that E|| YT”% < 0o, whereas EY7 = 0. We thus have
ElYrl5 =lIVar(Yp)ll; =IVar(T' X[, X, 7 —wll; and Minkowski’s inequality

yields

Z ([E[(XtT W e (X — ,u)]—Ct/Tt st Cuti-s)
t,s=1

Bl - pl = —|

1 T
—2 Z |||E[(Xt,T—H) ® (Xs,1 —IJ)] = Crre—sllh + ) Z NCe7,e—slll1,
t,s=1 T t,s=1

where Cy/11—5 = [E(Xﬁ”T) -0 ® (X}f/ST) — ). Then, by Lemma S.2.1 of Aue and

van Delft (2019) and|Assumption 3.1}

1
Ellp— HT”ZS?SUP Z NCu,nllh + O(— )<—Z|||th|||1+0( )—O( )
U |hl<T heZ
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This shows that is of order O((NT)~1/?) underlAssumption 3.1L To de-

rive (§5.26), observe that by the properties of the trace, simple tensor and the

product theorem for cumulant tensors (S1.3)

EllY7ll3 = Tr(E(Y7 ® Y7 ® Y7 ® Y1) =lICum(Y7, Y, Y1, Y1) l1 + 3IVar(Yp) .
(§5.27)

Since we already showed that [[Var(Y7)[I? = O(T2), it remains to derive a

bound for the first term of (S5.27). Again, by|/Assumption 3.1jand Lemma S.2.1

of/Aue and van Delft/ (2019),

1
ICum(Yr, Yo, Yr, YOl < =5 2 WCh/rin-s,ti-t,n-tlh
1,..

1reer l4

1

.....

*
ﬁ Z (1+|h DK ;1,129,151
hlth)hSEZ

1 1 3

+ Ti Yo (=@+ X 10 = t)Ka e -t 5 t5,60-14 1
t,b, 3,147 j:l

<

—O(T)H+0(T™H =0T,

where h* = min(h,, hy, h3). Hence, we obtain for an order of O(T 3 +
T72) and therefore for (S5.26) an order of O(T™1). Using that Tr(x® y) = (x, y),
X,y € A, a similar derivation shows the same bound for the second term of

(S5.24)), from which it now follows that |71 — %TI =0, (T,
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$6. Statistical applications

As Theorem 3.1| provides the asymptotic distribution at any point of the alter-

native it has several important applications, ,such as confidence intervals for

the measure of stationarity and tests for precise hypotheses (see Berger and

Delampady, |1987). These are briefly mentioned here.

(@)

The probability of a type II of the test can be calculated approxi-

mately by the formula

2
P(stVHoul_a/ﬁ) = Q)(% ul_a—ﬁﬁ), (56.28)

where V%IO and v? are defined in Theorem and respectively, and

@ is the distribution function of the standard normal distribution.

(b) An asymptotic confidence interval for the measure of stationarity m? is

(©

given by

v v
[max{O,ﬁ?T—ﬂul_a/g},r?LT+ H ] , (S6.29)

1
—Ul-qa/2
VT vT

where f/ih denotes an estimator of the variance in Theorem

Similarly, one can use [Theorem 3.1|to test for similarity to stationarity

considering the hypotheses

Hy . m?>=A vs. Ki: m? < A , (S6.30)
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where A is a pre-specified constant such that for a value of m? smaller
than A the experimenter defines the second order properties to be sim-
ilar to stationarity. For example, if the functional time series deviates
only slightly from second order stationarity, it is often reasonable to
work under the assumption of stationarity as many procedures are ro-
bust against small deviations from this assumption and procedures specif-
ically adapted to non-stationarity usually have a larger variability.
An asymptotic level « test for these hypotheses is obtained by rejecting
the null hypothesis, whenever

Vi,

M =A<~ 1y (36.31)
N

Note that this test allows to decide for “approximate second order sta-
tionarity” with a controlled type I error. It follows from Theorem[3.1]and

a straightforward calculation that

0 ifm?>A
lim P(fﬁT—A<\/—HTlua) ={u Emi=n, (56.32)

1 ifm?<A

which means that the test (S6.31) is a consistent and asymptotic level «
test for the hypotheses (56.30). For the hypotheses of a relevant differ-
ence H: m*> <A vs. K:> A a corresponding asymptotic level a test can

be constructed similarly and the details are omitted.



REFERENCES 41

Acknowledgements. This work was supported in part by the Collaborative
Research Center “Statistical modeling of nonlinear dynamic processes” (SFB
823, Project Al, A7, C1) of the German Research Foundation (DFG). AvD grate-
fully acknowledges financial support by the contract “Projet d’Actions de Recherche
Concertées” No. 12/17-045 of the “Communauté francaise de Belgique”. VC
acknowledges the support of the Communauté francaise de Belgique, Actions

de Recherche Concertées, Projects Consolidation 2016-2021.

References

Aue, A. and van Delft, A. (2019). Testing for stationarity of functional time series in the frequency do-

main. Annals of Statistics, doi:10.1214/19-A0S1895, forthcoming.

van Delft, A. and Eichler, M. (2018). Locally stationary functional time series. Electronic Journal of

Statistics 12, 107-170.

van Delft, A. Characiejus V,, and Dette H. (2019). A nonparametric test for stationarity in functional time

series arXiv:1708.05248.
Berger, J. O. and Delampady, M. (1987). Testing Precise Hypotheses. Statistical Science 2, 317-335.
Brillinger, D. (1981). Time Series: Data Analysis and Theory. McGraw Hill, New York.

Kadison, Richard V. and Ringrose, John R. (1997). Fundamentals of the Theory of Operator Algebras.

Volume I: Elementary Theory. American Mathematical Society, Providence.

Weidmann, J. (1980). Linear operators in Hilbert spaces. Graduate texts in mathematics. Springer-Verlag.



	Some properties of tensor products of operators and cumulant tensors
	Proof of Lemma 2.1
	Proof of Theorem 3.1
	Bounds on cumulant tensors of local functional DFT
	Derivation of expectation and covariance
	Covariance structure of T1,T
	Covariance structure of T2,T
	Cross-covariance 1,T and 2,T
	Limiting Variance of T
	Proof of Lemma 3.1 (consistency of variance estimate)
	Proof of Remark 3.1

	Statistical applications

