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Abstract: Mendelian randomization (MR) uses genetic variants as instrumental

variables (IVs) to assess the causal effect of a risk factor on an outcome in the

presence of unmeasured confounding. There is growing interest in conducting MR

analyses using summary statistics on each IV’s association with the risk factor and

the outcome, which are generated from large-scale genome-wide association studies

(GWAS). Most existing approaches use summary data on a set of IVs that have

been established as being associated with the risk factor. They often have limited

power because the set of identified IVs jointly explain only a small proportion of the

variation in the measure of the risk factor. We propose a new MR testing procedure

that takes full advantage of summary data on tens of thousands of genetic variants

studied by GWAS. The test statistic is the maximum of a sequence of modified K-

statistics defined by a range of thresholds. Compared with existing approaches, this

new test gains power by collecting signals from many undetected IVs throughout the

genome, and is robust to both balanced and unbalanced pleiotropy. We investigate

the theoretic properties of the proposed procedure and demonstrate its advantages

over existing ones using simulation studies and a real example.
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1. Introduction

Mendelian randomization (MR) analysis uses genetic variants as instrumental

variables (IVs) to estimate the causal effect of a risk factor on an outcome based

on observational studies (Lawlor et al. (2008); Smith and Ebrahim (2003)). MR

is becoming an effective tool for studying the causal relationship between a risk

exposure and a disease outcome, because many robust findings on the genetic

basis underlying various common traits have been accumulated through large-

scale genome-wide association studies (GWAS) over the past decade.
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Most MR analyses are conducted under the two-sample setting by combin-

ing summary data from two separate GWAS, with one study providing summary

statistics on the association between each IV (typically, a single nucleotide poly-

morphism, called an SNP) and the risk factor, and the other giving summary

statistics on the IV and the outcome association (Burgess et al. (2015); Hemani

et al. (2018)). Because a two-sample MR analysis uses only SNP association

summary statistics, its input data are easy to obtain and assemble. With more

summary data becoming publicly available, two-sample MR studies are becoming

more popular in the analysis of GWAS.

A typical MR analysis relies on identifying a set of IVs that are expected to

meet the following three conditions (Didelez and Sheehan (2007)): 1. Relevance:

each IV is associated with the risk factor X; 2. Exclusion restriction: each IV

affects the outcome Y only through its influence on X; 3. Effective random assign-

ment: all IVs are jointly independent of any unmeasured confounder that corre-

lates with both X and Y . Most MR procedures satisfy the relevance assumption

by using SNPs that either have been established by other studies to be associated

with the risk factor, or have demonstrated genome-wide significant association

with the risk factor (e.g., a p-value less than 5 × 10−8) in the same study that

provides the summary data (Bowden et al. (2016); Bowden et al. (2017); Burgess

et al. (2016); Burgess, Butterworth and Thompson (2013); Burgess et al. (2020);

Hartwig, Davey Smith and Bowden. (2017); Qi and Chatterjee (2019)).

Several approaches have been proposed for using invalid instruments that vi-

olate either the exclusive restriction or effective random assignment assumption.

In the setting of MR analysis, these invalid IVs can be SNPs with pleiotropic ef-

fects, that is, SNPs that can affect both the risk factor and the outcome. Some of

these approaches require using individual-level raw data (e.g., Guo et al. (2018);

Kang et al. (2016); Kang et al. (2022); Tchetgen, Sun and Walter (2017); Wind-

meijer et al. (2018)). Most recently developed MR procedures use summary data

generated from GWAS as input, and allow some of the chosen IVs (SNPs) to

have pleiotropic effects (e.g., Bowden, Davey Smith and Burgess (2015); Bowden

et al. (2016); Burgess et al. (2020); Hartwig, Davey Smith and Bowden. (2017);

Mprrison et al. (2020); Qi and Chatterjee (2019); Xue, Shen and Pan (2021)).

They usually choose genome-wide significant SNPs as IVs to satisfy the relevance

condition, and require additional assumptions, such as plurality validity, to en-

sure the identifiability of the model parameters (Guo et al. (2018); Xue, Shen

and Pan (2021)).

The strategy of using only genome-wide significant SNPs as IVs works well

for risk factors that have been studied in a large-scale GWAS, such as BMI
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and blood pressure (Evangelou et al. (2018); Yengo et al. (2018)), because these

studies have adequate power for identifying hundreds of genome-wide significant

SNPs to be selected as IVs. However, for the majority of other risk factors, the

number of qualified SNPs is well below 100. MR analyses with these risk factors

have limited power, because the set of chosen IVs might explain only a small

proportion of the total variation of the risk factor (Deng, Zhang and Yu (2020)).

Using selected SNPs as IVs has another potential limitation. When the same

GWAS is used to select the IVs and to provide the summary statistics, there is a

winner’s curse effect on the summary data (Siegmund (2002); Yu et al. (2007)).

For SNPs that barely pass the selection threshold, their levels of association with

the risk factor tend to be over-estimated. Using biased summary statistics in an

MR study can lead to erroneous conclusions (Zhao et al. (2020)). Zhao et al.

(2019) proposed a three-sample genome-wide design that uses summary data

from three independent GWAS, with one GWAS used to select the IVs showing

evidence of association with the risk factor, and the other two GWAS for the

two-sample MR analysis. Because the GWAS used to select the IVs is not used

in the MR analysis, this three-sample design avoids the winner’s curse effect, and

allows the use of many IVs (around 1,000) for a more effective evaluation of the

causal effect. However, it is not clear how to select an appropriate set of IVs to

achieve optimal performance.

We propose a two-sample MR procedure to test whether there exists a causal

effect of the risk factor on the outcome. The new approach uses summary data on

all independent SNPs from a GWAS, instead of just a few that are genome-wide

significant. The test statistic is the maximum of a sequence of modified K-

statistics (Kleibergen (2002)), defined by a range of thresholds. Each K-statistic

in the sequence is calculated using summary data on selected SNPs with correla-

tions with the risk factor that are above a given threshold. We use this maximal

thresholding statistic to optimize the power of detecting the causal effect mani-

fested through an unspecified set of SNPs. A similar idea is used to identify sparse

signals in simultaneous tests of a large number of unrelated hypotheses (Donoho

and Jin (2004); Zhong, Chen and Xu (2013)). The proposed approach gains its

power by collecting signals from many weak IVs, but it focuses on testing instead

of estimating the causal effect. It is a two-sample MR testing procedure, and

does not require an additional GWAS for the selection of IVs. The new approach

uses a data-driven threshold to identify the optimal set of SNPs for the test of

the causal effect.
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2. Method

2.1. Setup and notation

Let Y , X, and Z represent the outcome, risk factor, and vector of genotypes

on p independent SNPs, respectively. Here, we consider all independent SNPs

extracted from a GWAS, with p possibly larger than 100,000. In the two-sample

MR setting, we have summary data on the association between each SNP and the

outcome from the GWAS of Y , and summary data on the association between

each SNP and the risk factor from the GWAS of X. We denote the summary

data from the outcome GWAS as {(β̂Y k, σ2
Y k), k = 1, . . . , p}, with β̂Y k being the

estimated regression coefficient on the association between the kth SNP and Y ,

and σY k being the corresponding standard error. We denote the summary data

from the risk factor GWAS as {(β̂Xk, σ2
Xk), k = 1, . . . , p}. Similarly to most two-

sample MR procedures, we assume the two GWAS are conducted in the same

population. If they come from different populations, our proposed method still

works under the structural invariance assumption; that is, the underlying models

for the risk factor and the outcome remain the same between the two populations

(Zhao et al. (2019)).

As in many two-sample MR procedures, we assume β̂Y k ∼ N(βY k, σ
2
Y k) and

β̂Xk ∼ N(βXk, σ
2
Xk), with the unknown βY k and βXk representing the kth SNP’s

true marginal effect on Y and X, respectively. We consider βXk, for k = 1, . . . , p,

as independent and identically distributed (i.i.d.) random samples from a mix-

ture distribution, that is, βXk ∼ λfX + (1 − λ)δ, with fX being an arbitrary

distribution, δ being the degenerated distribution taking a constant value zero,

and λ being the mixture proportion. We let dk = 1 if βXk takes a value from fX ,

and dk = 2 otherwise. Therefore, the kth SNP is associated with X if dk = 1.

An SNP can affect Y in several ways simultaneously. It can influence Y directly

through its effect on X or other mediated factors. Here, βY k represents the kth

SNP’s true marginal effect on Y , summarizing all those effects. We treat σY k
and σXk as known constant values.

Because we consider a set of independent SNPs in the setting of a two-sample

MR study, the p random variables β̂Y k, k = 1, . . . , p, are mutually independent.

This is also true for β̂Xk, k = 1, . . . , p. Zhao et al. (2020) provide further justifi-

cation. Furthermore, because the summary data come from two independent

studies, we can assume that (β̂Y k, β̂Y k′ , β̂Xk, β̂Xk′) are conditionally indepen-

dent, given the true marginal effects. We call data satisfying these conditions

two-sample independent summary data.
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2.2. Method under the genome-wide InSIDE assumption

When a large set of SNPs is considered, it is inevitable that some of them have

pleiotropic effects. Let αk be the kth SNP’s pleiotropic effect on Y , apart from the

one mediated throughX. Under the standard instrument strength independent of

direct effect (InSIDE) assumption (Bowden, Davey Smith and Burgess (2015)),

αk and βXk are independent. The InSIDE assumption is typically made on

the set of SNPs associated with the risk factor. We extend this assumption to

SNPs throughout the genome, and call it the genome-wide InSIDE assumption,

specified as the follows:

Genome-wide InSIDE Assumption. For k = 1, . . . , p, βY k = θβXk+αk, with

αk⊥βXk and αk being i.i.d. random variables.

In this assumption, we regard αk, k = 1, . . . , p, as i.i.d. random effects that

are independent of βXk and have the same distribution as α, with E(α) = µ

and Var(α) = ω2. The distribution of α is unspecified. It can be a mixture

distribution, similar to that of βXk. In addition, θ is a constant value representing

the causal effect of the risk factor. The null hypothesis of the MR test is H0 :

θ = 0.

We first present the test statistic assuming that the mean (µ) and variance

(ω2) of α are known. Then, we provide estimates of µ and ω2, and show the

property of the test statistic after plugging in the two estimates. We consider the

following threshold K-statistic (Kleibergen (2002); Wang and Kang (2019)):

Q(s) =

p∑
k=1

 (β̂Y k − µ)√
ω2 + σ2

Y k

β̂Xk
σXk

 I

(
β̂2
Xk

σ2
Xk

≥ 2s log p

)
, (2.1)

where I(·) is an indicator function, and s is a chosen threshold parameter that

takes a value within [0, 1). The intuition for using a threshold on the K-statistic

is to give more weight to SNPs that are likely to be associated with X. We

consider the threshold at the scale of 2 log p because of the large deviations re-

sult (Petrov (1995)), which implies that if βXk = 0 for all 1 ≤ k ≤ p, then

Pr(max1≤k≤p β̂
2
Xk/σ

2
Xk ≤ 2 log p) → 1 as p → ∞. We require s to be less than

one to ensure that a sufficient number of SNPs (e.g., larger than 20) pass that

threshold, because we require Q(s) to be asymptotically normal in the proof (see

the Supplementary Material S1).

One distinctive feature of Q(s) defined in (2.1) is that the distribution of

β̂2
Xk/σ

2
Xk inside the indictor function is unknown under the null, because we do
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not know which SNP is associated with the outcome. This is different from the

threshold statistics considered by Zhong, Chen and Xu (2013). By assuming

µ and ω2 are known, based on the genome-wide InSIDE assumption, we can

calculate the mean of Q(s) as

Eθ{Q(s)}

=

p∑
k=1

Eθ

 (β̂Y k − µ)√
ω2 + σ2

Y k

Eθ

{
β̂Xk
σXk

I

(
β̂2
Xk

σ2
Xk

≥ 2s log p

)}

=

p∑
k=1

θβXk√
ω2 + σ2

Y k

[
βXk
σXk

{
Φ̄

(√
2s log p+

βXk
σXk

)
+ Φ̄

(√
2s log p− βXk

σXk

)}

+ φ

(√
2s log p− βXk

σXk

)
− φ

(√
2s log p+

βXk
σXk

)]
≡ θ

p∑
k=1

h(βXk), (2.2)

where φ(·) and Φ̄(·) are the density function and the survival function, respec-

tively, of the standard normal distribution. Here, and throughout this paper,

the expectation is calculated over the summary data and the unobserved random

effect αk, conditioning on βXk. Because h(βXk) = h(−βXk), and h(βXk) ≥ 0

for βXk ≥ 0, Eθ{Qp(s)} has the same sign as θ. Note that if all βXk = 0, then

Eθ{Qp(s)} = 0, regardless of whether θ = 0. Therefore, the proposed test has no

power when no SNPs are associated with X.

Under the null, we have Eθ=0{Q(s)} = 0. The variance of Q(s) under the

null can be written as

V 2(s) ≡ Varθ=0{Q(s)} =

p∑
k=1

Eθ=0

{
β̂2
Xk

σ2
Xk

I

(
β̂2
Xk

σ2
Xk

≥ 2s log p

)}
. (2.3)

In practice, we can estimate V 2(s) as

V̂ 2(s) =

p∑
k=1

β̂2
Xk

σ2
Xk

I

(
β̂2
Xk

σ2
Xk

≥ 2s log p

)
. (2.4)

The following result establishes the asymptotic normality of Qp(s); the proof is

given in the Supplementary Material S1.

Theorem 1. Given two-sample independent summary data (β̂Y k, σ
2
Y k, β̂Xk, σ

2
Xk),

k = 1, . . . , p, under the genome-wide InSIDE assumption, we have for any fixed

s ∈ (0, 1), as p→∞, V −1(s)Q(s)
D−→ N(0, 1) and V̂ −1(s)Q(s)

D−→ N(0, 1) under

H0 : θ = 0.
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We can use this result to construct the standardized test statistic V̂ −1(s)

Q(s) to test H0 : θ = 0. Note that the calculation of V̂ 2(s) in (2.4) does not

need β̂Y k or σ2
Y k. The above test statistic (2.1) relies on the choice of a threshold

s. A more effective approach is to consider all possible thresholds within a given

range, and then to choose the one that leads to an optimal test adaptive to the

signal-to-noise ratio in the data. Therefore, we propose the following maximal

thresholding statistic, called the two-sided MaxK test statistic:

T = max
s∈S

V̂ −1|Q(s)|, (2.5)

where S = [sa, sb]. To search for as wide a range as possible, we can let sa = 0

and sb be a value close to one, such as sb = 0.98. We use this range in the

simulation study and the real-data application.

Because both Q(s) and V̂ (s) are step functions of s, we can obtain T given

by (2.5) exactly by checking V̂ −1(s)|Q(s)| at a finite number (at most p) of values

for s. We derive the asymptotic distribution of T by showing that V̂ −1(s)Q(s)

follows a Gaussian process, and establish the asymptotic distribution of T at the

tail end (see the Supplementary Material S2 for the proof).

Theorem 2. Under the conditions given in Theorem 1, we have under H0,

lim
x→+∞

1

xφ(x)
Pr(T > x)− 2τ = 0,

where τ = 2−1 log{V̂ 2(sa)/V̂
2(sb)}.

This result provides an approximation formula to calculate the p-value for

the two-sided MaxK test. When T is relatively large, we can calculate its p-value

as 2Tφ(T )τ . In our numeric experiments, we find this formula works very well

for approximating a relatively small p-value (e.g., less than 0.1).

According to (2.2), Eθ{Q(s)} has the same sign as θ. Thus, our procedure

can be extended easily to test the direction of the causal effect. For example,

to target the one-sided alternative hypothesis θ > 0, we can modify the two-

sided MaxK statistic as T1 = maxs∈S V̂
−1(s)Q(s). Its p-value can be calculated

as |T1|φ(|T1)τ . Similarly, for the alternative θ < 0, the one-sided test and its

p-value can be T2 = maxs∈S{−V̂ −1(s)Q(s)} and |T2|φ(|T2)τ , respectively.

Thus far, we have assumed that the mean (µ) and the variance (ω2) of the

random effect are known. In practice, we can estimate them using summary data

on a set of SNPs that are not associated with X. Define zXk = β̂Xk/σXk, and

let Ω = {k : |zXk| < z∗} be the set of SNPs with z-scores for their association
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with X that are below a certain threshold z∗ (e.g., z∗ = 1.28, corresponding to

an SNP and X association p-value of 0.20). Given that most GWAS SNPs are

not associated with X, it is reasonable to claim that we have βXk = 0 for k ∈ Ω.

Together with the genome-wide InSIDE assumption, we can estimate µ and ω2

as

µ̂ =
1

|Ω|
∑
k∈Ω

β̂Y k, (2.6)

ω̂2 =
1

|Ω|
∑
k∈Ω

{
(β̂Y k − µ̂)2 − σ2

Y k

}
, (2.7)

where |Ω| is the size of Ω. These two estimates are consistent with any θ, as long

as βXk = 0, for k ∈ Ω.

We can replace µ and ω2 with their estimates in the calculation of Q(s), and

define it as Q̂(s). In practice, we can conduct the MaxK test with the following

test statistic:

TGW = max
s∈S

V̂ −1(s)|Q̂(s)|. (2.8)

We call this version the MaxK-1 test. Let m be the number of SNPs with dk = 1.

We show the following result in the Supplementary Material S3.

Corollary 1. Under the conditions given in Theorem 1, if µ̂ − µ = op(m
−1/2)

and ω̂2 − ω2 = op(1), then T and TGW share the same asymptotic distribution.

According to Corollary 1, as long as we have reasonably precise estimates

of µ and ω2, we can apply the formula given by Theorem 2 to approximate the

p-value of the MaxK-1 test. Because we can use most of the SNPs to estimate µ

and ω2 according to (2.6) and (2.6) under the genome-wide InSIDE assumption,

we have |Ω| = Op(p). Therefore, the conditions listed in Corollary 1 are clearly

met.

Next, we study the consistency of the MaxK test, assuming that µ and ω2 are

known. For the purpose of illustration, we consider the following simplified model.

Suppose that among the p considered SNPs, there are m = p1−κ SNPs associated

with X, with βXk/σXk =
√

2r log p, where κ is the parameter controlling the

proportion of SNPs associated with the risk factor, and r can be viewed as the

instrument strength, specifying the SNP’s effect size on the risk factor. We further

assume σ2
Xk = σ2

Y k = σ2, for k = 1, . . . , p. Then, under an alternative hypothesis

H1 : θ 6= 0, the mean of Q(s) can be calculated as
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Eθ(S) ≡ Eθ{Q(s)}

=
θp1−κσ

√
2r log p√

σ2 + ω2
E

{
β̂Xk
σXk

I

(
β̂2
Xk

σ2
Xk

≥ 2s log p

)}
=
θp1−κσ

√
2r log p√

σ2 + ω2
hs(r),

with

hs(r) =
√

2s log p{Φ̄(
√

2s log p+
√

2r log p) + Φ̄(
√

2s log p−
√

2r log p)}

+ φ(
√

2s log p−
√

2r log p)− φ(
√

2s log p+
√

2r log p).

The variance of Q(s) can be calculated as

V 2
θ (s) ≡ Varθ{Q(s)}

= V 2(s) +
2θ2p1−κσ2r log p

σ2 + ω2
Var

{
β̂Xk
σXk

I

(
β̂2
Xk

σ2
Xk

≥ 2s log p

)}

= V 2(s) +
2θ2p1−κσ2r log p

σ2 + ω2
{gs(r)− hs(r)},

with

gs(r) = (1 + 2r log p){Φ̄(
√

2s log p+
√

2r log p) + Φ̄(
√

2s log p−
√

2r log p)}

+ (
√

2s log p+
√

2r log p)φ(
√

2s log p−
√

2r log p)

+ (
√

2s log p−
√

2r log p)φ(
√

2s log p+
√

2r log p),

and V 2(s) given by (2.3).

Similarly to the proof of Theorem 1, we can establish the asymptotic nor-

mality of Q(s) under H1 as V −1
θ (s){Q(s)− Eθ(s)}

D−→ N(0, 1). Furthermore, we

have the following result on the consistency of the MaxK test as p→∞.

Theorem 3. Under the above considered model and H1 : θ 6= 0, (i) if r >

ρ∗(κ), the power of the MaxK test converges to one with the nominal size α(p) =

O{(log log p)1/2(log p)−1} as p → ∞; (ii) if r < ρ∗(κ), the power of the MaxK

test converges to zero when the nominal size α(p)→ 0 as p→∞.

The definition of ρ∗(κ) and the proof of Theorem 3 are given in the Sup-

plementary Material S4. According to this result, given the proportion of X

associated SNPs, the MaxK test is consistent if the instrument strength (r) of

those SNPs is stronger than ρ∗(κ). Because ρ∗(κ) is a monotone increasing func-

tion of κ, the instrument strength required to ensure the test consistency becomes

higher as the proportion of risk factor associated SNPs decreases.
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2.3. Further relaxation of the genome-wide InSIDE assumption

Because of the wide spread of SNPs with pleiotropic effects, it can be argued

that if an SNP has an effect on X, it might have a higher chance of affecting Y ,

as compared with an SNP randomly picked from the genome. Thus, the genome-

wide InSIDE assumption might not be appropriate. We can relax this assumption

to allow it to hold, conditioning on whether the SNP is associated with the risk

factor.

Conditional InSIDE Assumption. For k = 1, . . . , p, βY k = θβXk + αk. βXk
and αk are conditionally independent given dk. Furthermore, αk are i.i.d. with

αk ∼ α(1) among SNPs having dk = 1, and αk are i.i.d. with αk ∼ α(2) among

SNPs having dk = 2.

The conditional InSIDE assumption is the same as the standard InSIDE

assumption on the set of SNPs associated with X. For SNPs not associated

with X (i.e., dk = 2), the requirement of αk⊥βXk is always met, because βXk is

constant zero. In that sense, we can regard the conditional InSIDE assumption

as being the same as the standard InSIDE assumption. Both assumptions are

reasonable if the considered SNPs are not related to any genetic pathway or

confounder that affects both X and Y .

In the above assumption, α(1), the random effect on Y of an SNP associated

with X, is allowed to have a different distribution from α(2), which is the random

effect from an SNP not associated with X. The distributions of α(1) and α(2) can

be arbitrary. When the two have the same distribution, the conditional InSIDE

assumption reduces to the genome-wide InSIDE assumption. To illustrate the

difference between the two, we consider the following four-component mixture

model suggested by Qi and Chatterjee (2021):(
βXk
αk

)
∼ π1

(
N(0, σ2

X)

δ

)
+ π2

(
N(0, σ2

X)

N(µY , σ
2
Y )

)
+ π3

(
δ

N(µY , σ
2
Y )

)
+ π4

(
δ

δ

)
.

(2.9)

Under this model, we know α(1) ∼ (π2/(π1 + π2))N(µY , σ
2
Y ) + (π1/(π1 + π2))δ,

and α(2) ∼ (π3/(π3 + π4))N(µY , σ
2
Y ) + (π4/(π3 + π4))δ. This model clearly sat-

isfies the conditional InSIDE assumption. It satisfies the genome-wide InSIDE

condition if π1π3 = π2π4.

Let the mean and the variance of the random effect α(i) be µi and ω2
i , re-

spectively, for i = 1, 2. To adopt the MaxK test under the conditional InSIDE
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assumption, we can modify the definition of Q(s) as follows:

Q∗(s) =

p∑
k=1

 (β̂Y k − µdk)√
ω2
dk

+ σ2
Y k

β̂Xk
σXk

 I

(
β̂2
Xk

σ2
Xk

≥ 2s log p

)
.

In Q∗(s), each SNP’s contribution is adjusted by either (µ1, ω
2
1) or (µ2, ω

2
2), de-

pending on whether dk = 1 or 2. In Q(s), the same (µ, ω2) is applied to all SNPs.

If we know dk for each SNP, we can estimate (µ1, ω
2
1) using summary data on the

SNPs belonging to M = {k : dk = 1} as

ω̂2
1 =

1

|M|
∑
k∈M

{
(β̂Y k − µ̂1)2 − θ̂2σ̂2

Xk − σ2
Y k

}
, (2.10)

where (µ̂1, θ̂) are the estimated coefficients from the linear regression model β̂Y k =

µ1 + θβ̂Xk + εk, k ∈ M, with εk being the error term. The same procedure can

be used to estimate (µ2, ω
2
2) using the SNPs in M̄ = {k : dk = 2}. Because we do

not know dk in practice, we propose the following strategy for calculating Q∗(s).

Because an SNP in M tends to have a larger |zXk| than does an SNP from

M̄, the order of |zXk| is related to the membership of M. Furthermore, when

all independent SNPs from a GWAS are considered, it is reasonable to assume

|M̄| is much larger than |M|. Given these two observations, we use the following

strategy. First, we arrange all SNPs according to |zXk| in descending order.

Then, we divide the p SNPs evenly into L groups, so that each group consists

of about dp/Le consecutive SNPs. In the following numerical experiments and

real-data application, we let dp/Le = 100. Let Gl be the set of SNPs belonging

to group l, 1 ≤ l ≤ L. For all SNPs in Gl, we can assume their random effects

on Y share a common distribution, and estimate its mean and variance as µ̂l and

ω̂2
l , respectively, according to (2.10) using the summary data on the SNPs in Gl.

Finally, we can define the following statistic to approximate Q∗(s):

Q̂∗(s) =

L∑
l=1

∑
k∈Gl

 (β̂Y k − µ̂l)√
ω̂2
l + σ2

Y k

β̂Xk
σXk

 I

(
β̂2
Xk

σ2
Xk

≥ 2s log p

)
.

Noting that if Gl ⊆ M, µ̂l and ω̂2
l should be valid estimates of µ1 and

ω2
1, respectively. As a result, for SNPs in Gl, their contributions to Q̂∗(s) are

approximately the same as those to Q∗(s). The same is true for Gl ⊆ M̄. The

variance of Q̂∗(s) can still be estimated with (2.4). We define the new MaxK test

statistic as
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TCond = max
s∈S

V̂ −1(s)|Q̂∗(s)|. (2.11)

We call this version the MaxK-2 test, and prove the following result in the Sup-

plementary Material S5.

Corollary 2. Given two-sample independent summary data, under the condi-

tional InSIDE assumption, if Gl ⊆ M or Gl ⊆ M̄, |Gl| → ∞ as p → ∞, for

1 ≤ l ≤ L, and if βXk/σXk, 1 ≤ k ≤ p, follows a symmetrical distribution around

zero, then under H0, we have

lim
x→+∞

1

xφ(x)
Pr(TCond > x)− 2τ = 0,

where τ = 2−1 log{V̂ 2(sa)/V̂
2(sb)}.

In real applications, we cannot ensure all Gl, 1 ≤ l ≤ L, are subsets ofM or

M̄. However, when L is relatively large (e.g., L > 100), because of the way all

groups are formed and the fact that |M̄| is much larger than |M|, Gl ⊆ M or

Gl ⊆ M̄ should be true (or almost true) for most of the L groups, with only a

few groups having a mixed bag of SNPs fromM and M̄. Therefore, we can still

use Corollary 2 to approximate the p-value of the MaxK-2 test.

Corollary 2 requires βXk/σXk to be symmetric around zero. A similar con-

dition is also needed by the procedure of Zhao et al. (2019). Because the sign of

βXk depends on the genotype coding at the SNP, we can adopt a coding scheme

to ensure this. We first rearrange the SNPs according to |zXk| in descending

order, and then choose the genotype coding in such a way that the sign of β̂Xk is

alternated along the ordered sequence. Given that we usually deal with a large

number of SNPs (e.g., p > 50,000), this coding scheme should ensure βXk/σXk is

nearly symmetric. Numerical experiments described later confirm that p-values

can be estimated accurately by the formula given by Corollary 2 using this strat-

egy.

Corollary 2 can be valid under other conditions. For example, if we assume

µi = 0, i = 1, 2, we can set µ̂l = 0 in the calculation of TCond. Under this

situation, we can show that the test based on TCond is still valid, regardless of

the distributional property of βXk/σXk.

2.4. MaxK test with weakly dependent SNPs

So far, we have described MR methods using summary data from independent

SNPs. We show how to ensure this independence in our application to real data

by removing dependent SNPs. Next, we consider the MaxK test with a set of

weakly dependent SNPs.
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We rearrange the SNPs according to their locations on each chromosome.

Let Zk, k = 1, . . . , p, be a vector of genotypes on the kth SNP from the two

GWAS. Instead of requiring that they are independent, we can allow Z = {Zk}pk=1

to have a weak correlation structure, called ρ-mixing, such that their ρ-mixing

coefficients ρZ(k) ≤ Cvk, k = 1, . . . , p − 1, where v and C are constant values

satisfying 0 < v < 1, and C > 0. The ρ-mixing coefficient is defined as

ρZ(k) = sup
1≤l≤p−1,ξ∈L2(F l

1),η∈L2(Fp
l+k)

|Corr(ξ, η)|,

with Fnm being the σ-algebra generated by {Zk}nk=m. Further discussion on the

concept of ρ-mixing can be found in Doukhan (1994). The ρ-mixing dependent

structure implies that the genotype correlation between two SNPs decreases expo-

nentially over their distance, which, in general, makes sense in a human genome,

especially after highly correlated SNPs are pruned away. An example of this

structure is the autocorrelation structure with the correlation coefficient of Zi
and Zj being ρ

|i−j|
0 , for some constant value 0 < ρ0 < 1.

We can show that all results obtained with independent SNPs still hold with

ρ-mixing dependent SNPs. For example, in the Supplementary Material S6, we

prove the following conclusion.

Theorem 4. For summary data from two separate GWAS on SNPs with a ρ-

mixing dependent structure, under the genome-wide InSIDE assumption, the re-

sults stated in Theorems 1 and 2 still hold on SNPs with a ρ-mixing correlation

structure.

3. Simulation Study

3.1. Under the InSIDE assumption

We conducted simulation studies to evaluate the performance of the two

MaxK tests. We adopted a similar simulation model setup to that described in Qi

and Chatterjee (2021). We assumed that summary data on a set of p = 200000

independent SNPs were generated from a risk factor GWAS and an outcome

GWAS, where each GWAS had N subjects. Using the same notation as before, we

assumed βXk is the kth SNP’s effect on X, and αk is its random effect on Y . They

follow the four-component mixture model given by (2.9). The kth SNP’s true

marginal effect on Y is defined as βY k = θβXk +αk. We considered two scenarios

based on model (2.9): Scenario I under the genome-wide InSIDE assumption,

and Scenario II under the conditional InSIDE assumption. In both scenarios,

we fixed σ2
X = σ2

Y = 10−5. In Scenario I, we set π1 = 1.96%, π2 = 0.04%,
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π3 = 1.96%, and π4 = 96.04%. Because π1π3 = π2π4 under this setting, βXk and

αk are generated independently. We further assumed µY = 0 or 0.005 in (2.9),

which correspond to the balanced pleiotropy and unbalanced pleiotropy setting,

respectively. For Scenario II, we set π1 = 1%, π2 = 1%, π3 = 1%, and π4 = 97%.

Under this setting, 50% of the SNPs associated with X had pleiotropic effects

on Y . Similarly to Scenario I, we chose µY = 0 or 0.005 to generate balanced or

unbalanced pleiotropic effects. For each given mixture model (2.9), we chose the

causal effect θ within the interval [0, 0.1], with the sample size for each GWAS

(N) falling between 300,000 and 500,000.

Given the causal effect θ, parameters in model (2.9), and sample size N , we

generated (βY k, βXk) for each SNP independently, and then simulated summary

data as β̂Y k ∼ N(βY k, 1/N) and β̂Xk ∼ N(βXk, 1/N), for k = 1, . . . , p. We repli-

cated the above steps to create 2,000 summary data under each setting to evalu-

ate the performances of the considered tests, which included the inverse-variance

weighted method with multiplicative random effects (IVW) (Burgess, Butter-

worth and Thompson (2013)), weighted median estimate (W-Median) (Bowden

et al. (2016)), weighted mode estimate (W-Mode) (Hartwig, Davey Smith and

Bowden. (2017)), MR-Egger (Bowden, Davey Smith and Burgess (2015)), MR-

Robust (Burgess et al. (2016)), contamination mixture (Con-mix) (Burgess et al.

(2020)), MRMix (Qi and Chatterjee (2019)), and two versions of the MaxK test,

given by (2.8) and (2.11), respectively. Except for the two MaxK tests, all other

tests used summary statistics on genome-wide significant SNPs (i.e., SNPs having

an X association p-value of less than 5 × 10−8). Clearly, additional significant

SNPs become available as N increases. In our considered settings, as N increases

from 300k to 500k, the average number of significant SNPs changes from 26 to

104.

First, we compare all tests under the genome-wide InSIDE assumption (Sce-

nario I). Table 1 summarizes the empirical type-I errors for all considered tests

when µY = 0 (i.e., balanced pleiotropy). Table 1 shows that five tests, namely

MaxK-1, MaxK-2, IVW, MR-Egger, and MR-Robust, maintain their type-I er-

rors properly. W-Median, W-Mode, and MRMix are over conservative, especially

W-Mode. The Con-mix test has an inflated type-I error. Similar conclusions on

the type-I error evaluation are reached under unbalanced pleiotropy (Supplemen-

tary Table 1). Figure 1 shows the power comparison under balanced pleiotropy

with N = 300k, 400k, 450k, and 500k. We did not consider Con-Mix in the

power comparison, because it has an inflated type-I error rate. Figure 1 shows

that both versions of the MaxK test have a clear power advantage over other

tests. MaxK-1 and MaxK-2 are almost indistinguishable, especially when N ≥



MR TEST IN HIGH DIMENSION 1379

Table 1. Simulation results on type-I errors under the genome-wide InSIDE assumption
with balanced pleiotropy. The results are summarized based on the performance over
2,000 data sets generated from two GWAS of equal sample size (N). Each simulated
data set consists of summary statistics on 200,000 independent SNPs.

Sample size N (average number of significant SNPs)a

MR methodb 300k(26) 350k(41) 400k(59) 450k(80) 500k(104)
MaxK-1 0.044 0.048 0.046 0.048 0.049
MaxK-2 0.038 0.044 0.042 0.045 0.044

IVW 0.045 0.043 0.045 0.042 0.048
W-Median 0.026 0.023 0.021 0.025 0.019
W-Mode 0.001 0.001 0.001 0.001 0.002

IVW-Robust 0.040 0.041 0.042 0.042 0.046
MR-Egger 0.041 0.048 0.045 0.056 0.045
Con-mix 0.122 0.155 0.170 0.192 0.208
MRMix 0.031 0.028 0.024 0.021 0.016

a. Summary data are generated from two GWAS of equal sample size N . The average
number of significant SNPs is the number of SNPs with risk factor association p-values
less than 5× 10−8, averaged over 2,000 simulated data sets.
b. Both MaxK-1 and MaxK-2 use summary statistics on 200,000 independent SNPs. All
other tests use summary statistics on SNPs that are genome-wide significantly associated
with the risk factor.

400k. This suggests that using a locally estimated mean and variance of the

random effect in MaxK-2 does not lead to any noticeable loss of efficiency. Sim-

ilar conclusions can be made on the power comparison in the simulations under

unbalanced pleiotropy (Supplementary Figure 1).

Next, we compare all tests under the conditional InSIDE assumption (Sce-

nario II). Table 2 and Supplementary Table 2 provide the empirical type-I error

rates under balanced and unbalanced pleiotropy, respectively. We can see from

both tables that MaxK-2, IVW, MR-Egger, and MR-Robust properly maintain

their type-I errors under all considered sample sizes. The performance of MRMix

depends on the number of significant SNPs. It can maintain its type-I error ap-

propriately only with a relatively large number of genome-wide significant SNPs.

The other tests (W-Median, W-Mode, Con-mix, and MaxK-1) are either too

conservative or too liberal. The MaxK-1 test cannot control its type-I error,

because it estimates the mean and variance of the random effect under the inde-

pendent assumption, which is not valid under Scenario II. We exclude Con-mix

and MaxK-1 from the power comparison because of their highly inflated type-I

errors. Figure 2 and Supplementary Figure 2 show the power comparison under

balanced and unbalanced pleiotropy with various sample sizes. According to both

figures, MaxK-2 appears to be the clear winner.
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Figure 1. Simulation results on power comparisons under the genome-wide
InSIDE assumption with balanced pleiotropy. The results are summarized based
on the performance over 2,000 simulated data sets under a given causal effect (theta)
and sample size (N). Each simulated data set consists of summary statistics on 200,000
independent SNPs generated from two GWAS of equal sample size N . (a) N = 300k
and J = 26, with J being the average number of SNPs significantly associated with the
risk factor; (b) N = 400k and J = 59; (c) N = 450k and J = 80; and (d) N = 500k and
J = 104.

Finally, to demonstrate the advantage of the proposed MaxK-2 procedure

over the testing procedure based on the original K-statistic, we compared its

power with that of tests based on V̂ −1(s)|Q̂∗(s)|, with a fixed s threshold. We

considered s = 0, s = 1.64/(2 log p), and s = 1.96/(2 log p), and denoted the cor-

responding tests as K(0.0), K(1.64), and K(1.96), respectively. K(0.0) is equiv-

alent to the orginal K-statistic. We found that the MaxK-2 procedure has a

noticeable power advantage over the tests with a fixed threshold. For example,

using the same simulation setup under the conditional InSIDE assumption, we

compared their power under various sample sizes and causal effect sizes, shown

in Supplementary Figures 3 and 4 for balanced and unbalanced pleiotropic ef-

fects, respectively. Both figures illustrate the robust performance of the MaxK-2

procedure.
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Table 2. Simulation results on type-I errors under the conditional InSIDE assumption
with balanced pleiotropy. The results are summarized based on the performance over
2,000 data sets generated from two GWAS of equal sample size (N). Each simulated
data set consists of summary statistics on 200,000 independent SNPs.

Sample size N (average number of significant SNPs)a

MR methodb 300k(26) 350k(41) 400k(59) 450k(80) 500k(104)
MaxK-1 0.254 0.291 0.325 0.347 0.365
MaxK-2 0.049 0.052 0.057 0.058 0.058

IVW 0.064 0.073 0.057 0.056 0.051
W-Median 0.081 0.079 0.076 0.073 0.071
W-Mode 0.012 0.004 0.004 0.004 0.004

IVW-Robust 0.061 0.064 0.062 0.055 0.060
MR-Egger 0.058 0.053 0.048 0.048 0.058
Con-mix 0.196 0.215 0.206 0.210 0.218
MRMix 0.089 0.069 0.059 0.058 0.052

a. Summary data are generated from two GWAS of equal sample size N . The average
number of significant SNPs is the number of SNPs with risk factor association p-values
less than 5× 10−8, averaged over 2,000 simulated data sets.
b. Both MaxK-1 and MaxK-2 use summary statistics on 200,000 independent SNPs. All
other tests use summary statistics on SNPs that are genome-wide significantly associated
with the risk factor.

3.2. Under correlated pleiotropic effects

We evaluated the robustness of MaxK-2 when the InSIDE assumption is

not met (i.e., with correlated pleiotropic effects). We considered the InSIDE

assumption violated pleiotropy model described in Qi and Chatterjee (2021),

where some SNPs have correlated effects (with a 10% correlation coefficient)

on the outcome and the risk factor, owing to their collections with a common

mediation factor. We found that MaxK-2 can control its type-I error reasonably

well when less than 10% of the risk factor-associated SNPs have a correlated effect

on the outcome (Supplementary Table 3). However, it tends to have an inflated

type-I error when the percentage of SNPs with correlated effects becomes large

(Supplementary Table 3). This is expected because MaxK-2 is derived under the

conditional InSIDE assumption.

4. Real Application

Jones et al. (2019) recently studied the genetic basis underlying various hu-

man sleep behaviors. In their study, they conducted MR analyses to identify

risk factors with causal effects on sleep behaviors. In particular, they considered

eight sleep behaviors, quantified by accelerometer-derived measures, and used an
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Figure 2. Simulation results on power comparisons under the conditional In-
SIDE assumption with balanced pleiotropy. The results are summarized based
on the performance over 2,000 simulated data sets under a given causal effect (theta)
and sample size (N). Each simulated data set consists of summary statistics on 200,000
independent SNPs generated from two GWAS of equal sample size N . (a) N = 300k
and J = 26, with J being the average number of SNPs significantly associated with the
risk factor; (b) N = 400k and J = 59; (c) N = 450k and J = 80; and (d) N = 500k and
J = 104.

MR to assess whether the waist-hip ratio (WHR) causally affects them. Here, we

apply our new test to re-assess those relationships. The summary data on the

SNP’s association with the WHR (after adjusting the BMI) are obtained from

Shungin et al. (2015). Summary data on the SNP’s association with each sleep

behavior are taken from Jones et al. (2019). The eight considered sleep behaviors

(inverse-normalized) are listed in Table 3.

We preprocessed the summary data using the following criteria. We restricted

the SNPs to those sharing a WHR and sleep behavior GWAS and with minor

allele frequencies (MAFs) larger than 2%. MAFs were estimated using European

reference genomes from the 1,000 Genomes (The 1000 Genomes Project Consor-

tium (2015)). Then, we used the clumping function of PLINK (Purcell et al.

(2007)) with r2 = 0.1 within a window size of 1,000 kb as the linkage disequi-
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Table 3. MR testing results (p-values) on the casual effect of the waist-hip ratio on eight
sleep traits.

MR method

Outcome Maxk-2 IVW W-Median W-Mode

Diurnal inactivity 9.84E-01 1.20E-01 9.12E-02 6.14E-01

L5 timing 2.44E-02 5.83E-01 5.40E-01 3.27E-01

M10 timing 8.18E-01 4.76E-01 1.64E-01 3.04E-01

Num. nocturnal sleep episodes 4.67E-01 9.75E-01 3.60E-01 5.39E-01

Sleep duration 1.69E-04 7.56E-05 1.33E-02 5.78E-01

Sleep duration variability 1.07e-03 5.98E-02 1.27E-02 1.29E-01

Sleep efficiency 2.26E-04 2.40E-03 2.85E-03 1.51E-01

Sleep midpoint timing 3.45e-02 1.34E-01 4.40E-01 7.64E-01

IVW-Robust MR-Egger MRMix

Diurnal inactivity 7.88E-02 2.84E-01 2.26E-01

L5 timing 9.29E-01 8.07E-01 5.79E-01

M10 timing 4.16E-01 2.62E-01 3.39E-04

Num. nocturnal sleep episodes 6.37E-01 2.44E-02 8.26E-01

Sleep duration 5.53E-05 2.25E-01 4.67E-01

Sleep duration variability 5.32E-02 3.45E-02 4.31E-01

Sleep efficiency 1.01E-03 8.50E-01 7.30E-01

Sleep midpoint timing 9.30E-02 6.47E-01 7.02E-02

librium threshold to select a set of independent SNPs. When we applied the

clumping procedure, we randomly picked index SNPs without referring to their

levels of association with the WHR and sleep behaviors, in order to ensure there

was no selection bias. In the end, we had 95,819 SNPs for the MaxK test. For the

MR analysis with other considered procedures, we used a set of 56 independent

SNPs that were genome-wide significantly associated with the WHR (i.e., with a

p-value less than 5× 10−8) in the WHR GWAS.

The results are summarized in Table 3. We do not present the results from

Con-mix and MaxK-1, because they had inflated type-I errors, according to our

simulation results. From Table 3, we can see that the MaxK-2 test detects most

signals among all considered tests, with five out of eight outcomes having MaxK-

2 test p-values less than 0.05, and three having MaxK-2 test p-values less than

the Bonferroni threshold (i.e., 0.05/8 ≈ 0.006). Among all considered tests, the

MaxK-2 test has the most significant result on four outcomes (i.e., L5 timing,

sleep duration variability, sleep efficiency, and sleep midpoint timing), and MR-

Mix and MR-robust each have one.
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In this real-data example, except for the proposed MaxK test, the other

seven tests used summary data on 56 SNPs that were genome-wide significantly

associated with the WHR. As pointed out earlier, the requirement of using only

genome-wide significant SNPs is a major limitation of these approaches. By

combining signals throughout the genome, instead of relying on a few SNPs, the

Max-K test detects the casual effect of the WHR on more sleep habits.

5. Discussion

We propose a new MR test (called the MaxK test) that takes full advantage

of information generated from GWAS. Unlike most existing procedures that rely

on a few SNPs that demonstrate strong evidence for their association with the

risk factor, the MaxK test synthesizes evidence of a causal effect from tens of

thousands of SNPs studied by GWAS. This test can properly control its type-

I error under the InSIDE assumption with balanced or unbalanced pleiotropy.

It is more powerful than existing approaches, even when there is only a small

proportion (e.g., 1 or 2%) of SNPs carrying the signal.

It is challenging to develop MR procedures with a properly controlled type-I

error when some IVs have correlated pleiotropic effects. The proposed method has

difficulty maintaining its type-I error when a large proportion of considered SNPs

have correlated pleiotropic effects. Another limitation is that our method does

not estimate the causal effect. Given its promising performance under the InSIDE

assumption, it would be worthwhile improving the MaxK procedure to have more

robust performance when SNPs with correlated pleiotropic effects are used as IVs.

Finally, the proposed procedure focuses on testing the null hypothesis that the

risk factor has no casual effect on the outcome. It does not provide an estimate

of the causal effect. Further investigation is needed to expand the procedure to

evaluate the magnitude of the casual effect.

Supplementary Material

All technical details and additional numeric results are relegated to the online

Supplementary Material.
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