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Abstract: In this article we study the effects of bootstrap iteration as a method to

improve the coverage accuracy of prediction intervals for ‘estimator-type’ statistics.

Both the mechanics and the asymptotic validity of the method are discussed.
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1. Introduction

Calibration, as a method to improve the coverage accuracy of confidence
intervals, was first discussed by Loh (1987) and Hall (1986). When applied to a
bootstrap interval, calibration is called iterated bootstrap. A general framework
for bootstrap iteration and calibration is discussed by Hall and Martin (1988).
Coverage accuracy of iterated bootstrap confidence intervals are also discussed
by Martin (1990) and Hall (1992), sections 1.4 and 3.11. Also, see Loh (1991),
who has introduced a new calibration procedure, as well as Beran (1987, 1990).
In practice, calibration is usually applied to the percentile confidence intervals,
since the resulting intervals are superior to both Efron’s BCa (for bias-corrected
accelerated) and the bootstrap-t intervals. Here superior means three things:
good small sample coverage properties, transformation-invariance, and range-
preserving, i.e., the endpoints of the interval do not fall outside of the accepted
values of the parameter. Our aim in this paper, however, is to study the effects
of bootstrap calibration as a method to improve the coverage accuracy of pre-
diction intervals for an estimator-type statistic, θ̂m say, which may be viewed as
an estimator of some scalar parameter θ; here m is the future sample size. It
is important to mention that in practice we have in mind a “future” statistic
such as the sample mean or the sample geometric mean or perhaps a mono-
tone transformation of a statistic for which a nonparametric prediction interval
is required.

In a recent paper, Mojirsheibani and Tibshirani (1996) proposed a BCa-
type (for bias-corrected accelerated) bootstrap procedure for setting approximate
prediction intervals which can be applied to a large class of statistics. In the case
of a confidence interval, a brief review of the BCa procedure is as follows. Let
θ̂ be an estimator of θ, the parameter of interest. Let F (·) be the cdf of θ̂ and
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F̂ (·) be the cdf of θ̂∗, the bootstrap version of θ̂. Then the α-endpoint of a BCa

confidence interval for θ is

θBCa [α] = F̂−1
[
Φ

(
z0 + {z0 + z(α)}{1 − a(z0 + z(α))}−1

)]
,

where z0 is a bias correction factor and a is called the acceleration constant.
Expressions for z0 and a can be found in Efron (1987). Here z(α) = Φ−1(α). Note
that the definitions of F̂ (·) are different in the parametric and nonparametric
cases.

Mojirsheibani and Tibshirani, in the cited paper, extend the BCa procedure
to the case of prediction intervals. Specifically, let θ̂m and θ̂n be the estimators
of a scalar parameter θ, where n and m are the past and the future sample
sizes respectively. (Here again θ̂m is an estimator-type statistic, for which a
nonparametric prediction interval is desired.) Let H(·) and F (·) be the cdf’s
of θ̂m and θ̂n, and let Ĥ(·) and F̂ (·) be the cdf’s of θ̂∗m and θ̂∗n, the bootstrap
versions of θ̂m and θ̂n. Then a central 100(1-2α) percent BCa-type prediction
interval for θ̂m is

(
θ̂BCa [α], θ̂BCa [1 − α]

)
, where θ̂BCa [α] = Ĥ−1

[
Φ

(u(α) − 1
b

+ z1

)]
. (1)

Here u(α) is the α quantile of U = Z1/Z2, where Z1 ∼ N(1 − bz1, b
2) and Z2 ∼

N(1 − az0, a
2) are two independent normal random variables. The quantities z1

and b are given by z1 = Φ−1(Ĥ(θ̂n)) and b = a(n/m)1/2, and a is as before.
We say that a prediction interval is second-order correct if each end-

point of the interval, say θ̂[α], differs from its theoretical counterpart by
Op([min(m,n)]−3/2), and it is second-order accurate if P (θ̂m ≤ θ̂[α]) = α +
O([min(m,n)]−1). The interval given by (1) is second-order correct and second-
order accurate. Furthermore, this interval is transformation-invariant (with re-
spect to monotone transformations) as well as range-preserving, i.e., θ̂BCa [α] will
not take values outside the support of the distribution of θ̂m. When the constant
b is zero in (1), we obtain a BC-type prediction interval with the α-endpoint

θ̂BC [α] = Ĥ−1
[
Φ

(
z(α)(1 + r)1/2 + z0r

1/2
)]

, where r = m/n and z(α) = Φ−1(α).

When both a and z0 are zero, we have a percentile prediction interval whose
α-endpoint is

θ̂perc[α] = Ĥ−1
[
Φ

(
z(α)(1 + r)1/2

)]
. (2)

Unfortunately, θ̂BC [α] and θ̂perc[α] do not have the same second-order properties
as the interval given by (1).

One can also form the normal theory prediction interval θ̂m. This is ob-
tained by inverting the asymptotically pivotal statistic T = (θ̂m − θ̂n){(m−1 +
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n−1)1/2σ̂n}−1, where σ̂2
n is a consistent estimate of the asymptotic variance of

(m−1 + n−1)−1/2(θ̂m − θ̂n). The α-endpoint of the resulting interval is

θ̂norm[α] = θ̂n + z(α)σ̂n(m−1 + n−1)1/2. (3)

Yet, as another candidate, the bootstrap-t method can be used to construct
second-order correct (and accurate) prediction intervals for θ̂m. This works by
inverting the bootstrap statistic

T ∗ = (θ̂∗m − θ̂∗n){(m−1 + n−1)1/2σ̂∗
n}−1, (4)

where θ̂∗m, θ̂∗n, and σ̂∗
n are the bootstrap versions of θ̂m, θ̂n, and σ̂n. The α-

endpoint of the bootstrap-t interval is then given by θ̂boot.t[α] = θ̂n+ t̂(α)σ̂n(m−1+
n−1)1/2, where t̂(α) is the α-quantile of the distribution of T ∗.

The case of a single future observation requires special attention. Let X1, . . . ,

Xn, Y be independently and identically distributed random variables, and let X̄n

and S2
n be the sample mean and variance. The X’s here represent the past sample

and Y is a single future observation. Set T = (Y − X̄n){[1 + n−1]1/2Sn}−1 and
let t(α) be the α quantile of T ; then a 100 · (1−α) percent, one-sided, prediction
interval for Y is (X̄n + Sn[1 + n−1]1/2 · t(α),∞). Since t(α) is typically unknown,
one may use the bootstrap-t method to estimate t(α): let X∗

1 , . . . ,X∗
n, and Y ∗

be random samples of sizes n and 1 drawn with replacement from X1, . . . ,Xn.
Define T ∗ by T ∗ = (Y ∗ − X̄∗

n){[1 + n−1]1/2S∗
n}−1, where X̄∗

n and S∗
n are the

bootstrap versions of X̄n and Sn, and let t̂(α) be the α quantile of T ∗. Then one
has the bootstrap-t prediction interval (X̄n + Sn[1 + n−1]1/2 · t̂(α),∞). Bai et al.
(1990) have established a coverage error rate for this interval:

P{Y ∈ (X̄n + Sn[1 + n−1]1/2 · t̂(α),∞)} = 1 − α + O(n−3/4+γ), for all γ > 0.

Observe that the above results are very different from those of the bootstrap con-
fidence intervals, where the statistic T is given by Tc = n1/2(X̄n −E(X))S−1

n . It
is important to note that in the prediction context, the constant E(X) is replaced
by the random variable Y , and that while the distribution of n1/2(X̄ − µ)S−1

n

tends to normality as n increases, the distribution of (Y −X̄n){[1+n−1]1/2Sn}−1

does not have to be even close to normal no matter how large n is.
One can also form a prediction interval for Y based on the sample (bootstrap)

quantile F−1
n (α) = X([nα]). Here Fn is the empirical distribution function and

[·] denotes the greatest integer function. If F is continuous then P (Y ≥ X([nα]))
= 1 − (n + 1)−1[nα] = 1 − α + O(n−1). Furthermore, if F has a continuous
density, f , then F−1

n (α) = F−1(α) + Op(n−1/2). Note that when the future
sample size m is 1 the α-endpoint of the percentile prediction interval (2) be-
comes F−1

n [Φ{z(α)(1 + n−1)1/2}]. This interval, however, has the same coverage
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probability as (X([nα]),∞). To see this put β = Φ{z(α)(1 + n−1)1/2} and observe
that

P
(
Y ≥ F−1

n [Φ{(z(α)(1 + 1/n)1/2}]
)

= P (Y ≥ X([nβ]))

= 1 − β + O(n−1) by the above argument

= 1 − Φ{z(α)(1 + n−1/2 − n−2/8 + · · ·)} + O(n−1)

= 1 − α + O(n−1).

Beran (1990) proposes a calibration method to improve the coverage proba-
bility of a prediction interval. His method performs well in parametric situations
but fails in nonparametric cases such as the one above based on the sample quan-
tile F−1

n (α) = X([nα]) (see Beran’s Example 4 on page 721 of the cited paper).
Another relevant result is that of Stine (1985) who deals with nonparametric
bootstrap prediction intervals for a single future observation in a linear regres-
sion set-up.

In the rest of this article we will focus on bootstrap calibration of prediction
intervals, when both the past and future sample sizes are allowed to increase.

2. Bootstrap Calibration of Prediction Intervals

Suppose that θ̂[α] is the α-endpoint of a prediction interval for the statistic
θ̂m, where m is the future sample size. If P (θ̂m ≤ θ̂[α]) �= α, then, perhaps,
there is a λ = λα such that P (θ̂m ≤ θ̂[λ]) = α. In this case θ̂[λ] is the α-endpoint
of a calibrated prediction interval for θ̂m. In practice, λ is unknown and the
bootstrap can be used to estimate it.

The main steps for calibrating prediction intervals may be summarized as
follows. Let θ̂[α] be the α-endpoint of a prediction interval for θ̂m. Generate B

bootstrap samples of size n (the past sample size), X∗
1, . . . ,X

∗
B , and B bootstrap

samples of size m (the future sample size), Y∗
1, . . . ,Y

∗
B . For b = 1, . . . , B, let

θ̂∗b [λ] be the bootstrap version of θ̂[α], computed from X∗
b for a grid of values of

λ. Similarly, let θ̂∗m,b be the bootstrap version of θ̂m, computed from Y∗
b . Then

the bootstrap estimate λ̂ of λ is the solution of the equation

p(λ) =
#{θ̂∗m,b ≤ θ̂∗b [λ]}

B
= α. (5)

In practice, one usually needs an extra B1 bootstrap samples to form θ̂∗b [λ], thus
requiring a total of B · B1 + B = B(B1 + 1).

Example 1. Consider the construction of a 90 percent, nonparametric, pre-
diction interval for a future sample mean Ȳm based on the past sample mean
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X̄n. Here m = 15, n = 20, and the actual data x1, . . . , x20 were generated from
an Exp(1) distribution. The results are given in Table 1. For the calibrated
percentile interval, we generated 700 bootstrap past samples of size n = 20:
X∗

1, . . . ,X
∗
700 and 700 bootstrap future samples of size m = 15: Y∗

1, . . . ,Y
∗
700.

For each X∗
b , an additional 1000 bootstrap samples, Y∗∗

1 , . . . ,Y∗∗
1000 (drawn from

X∗
b), were used to form the percentile endpoints Ȳ ∗

b [λα] and Ȳ ∗
b [λ1−α]. Here we

allowed λα and λ1−α to vary over a grid of 50 equally spaced values in [0.03, 0.08]
and [0.93, 0.98] respectively. Note that the total number of bootstrap samples
used is (700)(1000)+700, where the extra 700 bootstrap samples are used to form
the Ȳ ∗

m,b, b = 1, . . . , 700. The estimate of λα that solves the equation p(λα) =
#{Ȳ ∗

m,b ≤ Ȳ ∗
b [λα]}/700 = 0.05, was found to be λ̂α

.= 0.062. Similarly, the value
λ̂1−α

.= 0.977 solves the equation p(λ1−α) = #{Ȳ ∗
m,b ≤ Ȳ ∗

b [λ1−α]}/700 = 0.95.
Figure 1 shows the plots of λ vs. p(λ). The results in Table 1 show that cali-
bration has brought the percentile interval much closer to the BCa-type and the
bootstrap-t intervals. Note that the left-endpoint of the calibrated percentile
prediction interval is very close to the BCa left-endpoint, while its right-endpoint
is closer to that of the bootstrap-t interval. We repeated this entire procedure
for a total of 1000 times (i.e., 1000 different samples), at a computational cost of
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Figure 1. Plots of λ1 and λ2 against p(λ1) and p(λ2).
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(1000)(700)(1000+ 1) bootstrap resamples. The results of these 1000 Monte Carlo runs
are summarized in Table 2. Columns 2 and 3 give the average endpoints; standard
deviations are given in brackets. Column 4 gives the average length, and columns 5
and 6 show the number of times (out of 1000) that the interval did not capture its
corresponding future sample mean. The last column gives the overall noncoverage.

Table 1. 90 percent nonparametric P.I.’s for Ȳm, m = 15

Method Left-end Right-end
Bootstrap-t 0.539 1.907
BCa-type 0.593 1.887
Calibrated 0.591 2.074
percentile
Percentile 0.571 1.825

The same analysis was also carried out for the case where m = 3, i.e.,
prediction intervals for the sample mean based on a future sample of size, as
small as, m = 3. The results appear in Table 3. Both Tables 2 and 3 show that
the calibrated prediction intervals exhibit good coverage properties, this is true
even for m = 3.

Table 2. 90 percent nonparametric P.I.’s for Ȳm, m = 15.

Method Left Right Average Left Right Overall
endpoint endpoint length noncoverage noncoverage noncoverage

Bootstrap-t 0.528 1.749 1.221 37 61 98
(0.135) (0.485)

BCa-type 0.568 1.649 1.081 44 68 112
(0.139) (0.431)

Calibrated 0.555 1.768 1.213 43 60 103
percentile (0.135) (0.461)
Percentile 0.545 1.567 1.022 42 84 126

(0.138) (0.378)

Table 3. 90 percent nonparametric P.I.’s for Ȳm, m = 3.

Method Left Right Average Left Right Overall
endpoint endpoint length noncoverage noncoverage noncoverage

Bootstrap-t 0.212 2.279 2.067 32 60 92
(0.114) (0.762)

BCa-type 0.284 2.105 1.821 49 64 113
(0.108) (0.594)

Calibrated 0.255 2.320 2.065 43 58 101
percentile (0.104) (0.764)
Percentile 0.271 2.039 1.768 45 83 128

(0.106) (0.566)
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Example 2. Let X1, . . . ,Xn, Y1, . . . , Ym be independently and identically dis-
tributed positive random variables. We are interested in constructing nonpara-
metric prediction intervals for the geometric mean

Gm =
( m∏

i=1

Yi

)1/m
,

based on the observable (past) geometric mean Gn = (
∏n

i=1 Xi)1/n. As in the
previous example, the sample sizes are taken to be n = 20 and m = 15, 3.
The actual data were generated from a Pareto distribution with density f(x) =
x−2, x > 1.

Table 4. 90 percent nonparametric P.I.’s for G15 = (
∏15

i=1 Yi)1/15.

Method Left Right Average Left Right Overall
endpoint endpoint length noncoverage noncoverage noncoverage

Bootstrap-t 1.728 5.916 4.188 44 64 108
(0.248) (3.058)

BCa-type 1.778 5.735 3.957 52 67 119
(0.261) (2.873)

Calibrated 1.753 6.499 4.746 47 58 105
percentile (0.245) (4.200)
Percentile 1.738 5.242 3.504 45 83 128

(0.253) (2.348)

Table 5. 90 percent nonparametric P.I.’s for G3 = (
∏3

i=1 Yi)1/3.

Method Left Right Average Left Right Overall
endpoint endpoint length noncoverage noncoverage noncoverage

Bootstrap-t 1.218 11.091 9.873 39 58 97
(0.622) (7.843)

BCa-type 1.332 10.220 8.888 48 62 110
(0.144) (6.842)

Calibrated 1.295 14.831 13.536 46 53 99
percentile (0.136) (16.224)
Percentile 1.315 9.483 8.168 48 70 118

(0.139) (5.930)

The results are given in Tables 4 and 5. For the bootstrap-t intervals, we
have used the infinitesimal jackknife estimate of the variance

V̂ARinf.jack(Gn) =
n∑

i=1

U2
i /n2,

where Ui is the ith empirical influence function of Gn. It is not hard to show
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that

Ui =
( n∏

i=1

Xi

)1/n · [log Xi − n−1
n∑

j=1

log Xj ].

Note that the bootstrap-t procedure replaces Ui by U∗
i , where U∗

i is computed
from the bootstrap sample X∗

1 , . . . ,X∗
n. As in the previous example, the results

are based on 1000 Monte Carlo runs. Here again the calibrated interval is a
strong competitor for both the BCa and the bootstrap-t intervals. Note that the
usual percentile intervals perform poorly.

3. The Effect of Calibration on Prediction Intervals

3.1. Introduction

So far, we have been concerned with the mechanics of calibration as a tool
to reduce the coverage error of prediction intervals. Next, we will look at the
large sample effects of calibration. Our approach is based on the following two-
sample “smooth-function” model, which is suitable for the prediction problem.
Let Xi, 1 ≤ i ≤ n and Yj , 1 ≤ j ≤ m be independently and identically distributed
d-vectors and put µ = E(X) = E(Y). For known real-valued smooth functions
g and h set θ = g(µ), σ2 = h(µ), θ̂n = g(X̄n), θ̂m = g(Ȳm), and σ̂2

n = h(X̄n),
where σ2 is the asymptotic variance of (m−1 + n−1)−1/2{g(Ȳm) − g(X̄n)}. Let
the map S : �2d → � be defined by S(x′,y′)′ = [g(y) − g(x)]/h1/2(x), where x
and y are d-vectors and d depends on the statistic of interest. Define T by

T = (m−1 + n−1)−1/2σ̂−1
n {g(Ȳm) − g(X̄n)} = n1/2(1 + r−1)−1/2S(X̄′

n, Ȳ′
m)′,

where r = m/n. Let min(m,n) = n, allowing n → ∞; the one-term Edgeworth
expansion of the distribution of T is given by

P (T ≤ x) = Φ(x) + n−1/2q(x; r)φ(x) + O(n−1). (6)

Here q(x; r) is an even function of x, and r is allowed to act like a parameter itself.
See Mojirsheibani and Tibshirani (1996) for the derivation and the exact form of
q(x; r). The expansion given by (6) exists under sufficient moment conditions and
Cramér’s continuity condition (see, for example, expression 2.34 of Hall (1992)).
As a simple but important example consider the case where g(X̄n) = X̄n and
g(Ȳm) = Ȳm. Then if (a) E(X10) < ∞ and (b) the characteristic function of
(X,X2) satisfies Cramér’s condition, then it is not hard to show that P (T ≤
x) = Φ(x) + n−1/2q1(x; r)φ(x) + n−1q2(x; r)φ(x) + O(n−3/2), where

q1(x; r) = −1
6
κ3σ

−3(r−1 + 1)−1/2[3 + (2 + r−1)(x2 − 1)]

q2(x; r) = −x{[(r + 1)−1/2 + (x2 − 3)((r−1 + 1) − 3(r−1 + 1)−1)/24]
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×σ−4κ4 + (r−1 + 1)−1[1 + (x2 − 3)(r−1 + 2)/3 + (x4 − 10x2

+15)(r−1 + 2)2/72]σ−6κ2
3 + (r−1 + 1)−1[3(r−1 + 1)/2

+(x2 − 3)/4]}.
Here κ3 = E[X − E(X)]3 and κ4 = E[X − E(X)]4 − 3σ4.

3.2. One-sided intervals

It is quite straightforward to show that the second-order properties of the
bootstrap-t and the BCa-type prediction intervals, given by (1), do not hold
for either the BC or the percentile intervals. In fact, standard Cornish-Fisher
expansions show that

θ̂BC [α] = Ĥ−1
[
Φ(z(α)(1 + r)1/2 + z0r

1/2)
]

= θ̂n + n−1/2σ̂(1 + r−1)1/2{z(α) + (1 + r−1)−1/2z0

−n−1/2r−1/2(1 + r)−1/2ŝ[z(α)(1 + r)1/2] + Op(n−1)} (7)

and

θ̂perc[α] = Ĥ−1
[
Φ(z(α)(1 + r)1/2)

]

= θ̂n + n−1/2σ̂(1 + r−1)1/2{z(α)

−n−1/2r−1/2(1 + r)−1/2ŝ[z(α)(1 + r)1/2] + Op(n−1)} (8)

respectively. Here ŝ[·] is the polynomial of degree two that appears in the boot-
strap Cornish-Fisher expansion of the α quantile of the distribution of T ∗ =
n1/2σ̂−1

n (θ̂∗n − θ̂n). Using the Edgeworth expansion of T , as given by (6), we can
write the one-sided coverage expansion of the percentile and the BC prediction
intervals as follows. Put

w(α) = z(α) − n−1/2r−1/2(1 + r)−1/2s[z(α)(1 + r)1/2],

then

P (θ̂m ≤ θ̂perc[α]) = P{T ≤ z(α) − n−1/2r−1/2(1 + r)−1/2ŝ[z(α)(1 + r)1/2]
+Op(n−1)}

= Φ(w(α)) + n−1/2q(w(α); r) · φ(w(α)) + O(n−1)
= α + n−1/2{q(z(α); r) − r−1/2(1 + r)−1/2s[z(α)(1 + r)1/2]}

× φ(z(α)) + O(n−1), (9)

and

P (θ̂m ≤ θ̂BC [α]) = P{T ≤ w(α) + n−1/2(1 + r−1)−1/2s(0)} + O(n−1)
= α + n−1/2{q(z(α); r) + (1 + r−1)−1/2s(0) − r−1/2(1 + r)−1/2

×s[z(α)(1 + r)1/2]} · φ(z(α)) + O(n−1). (10)
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In what follows , we study the effects of calibration on the percentile intervals,
since they are quite easy to construct and are transformation-invariant and range-
preserving. Other intervals (such as the BC or the normal theory intervals) may
be handled similarly.

Let θ̂perc[α] be the α-endpoint of the one-sided percentile prediction interval
for θ̂m, where 0 < α < 1. Equation (9) implies that P (θ̂m ≤ θ̂perc[α]) = α +
O(n−1/2). Suppose λ = λα is such that

P (θ̂m ≤ θ̂perc[λ]) = α. (11)

Then it is not hard to show that

P (θ̂m ≤ θ̂perc[λ̂]) = α + O(n−1), (12)

where λ̂ is the solution of (5) for B = ∞. The argument behind (12) is as follows.
Write λ = λα = δ + α, where δ is an unknown constant. From (9) we obtain

P (θ̂m ≤ θ̂perc[λ]) = P (θ̂m ≤ θ̂perc[α + δ])

= α + δ + n−1/2{q(z(α+δ); r) − r−1/2(1 + r)−1/2

·s[z(α+δ)(1 + r)1/2]} · φ(z(α+δ)) + O(n−1). (13)

If we compare the R.H.S.’s of (13) and (11) we find

δ = −n−1/2{q(z(α+δ); r)−r−1/2(1+r)−1/2s[z(α+δ)(1+r)1/2]}φ(z(α+δ))+O(n−1),

that is, δ = O(n−1/2). In fact, since

q(z(α+δ); r) = q(z(α) +
δ

φ(z(α))
+ · · · ; r) = q(z(α); r) + O(n−1/2)

and

s[z(α+δ)(1 + r)1/2] = s[{z(α) +
δ

φ(z(α))
+ · · ·}(1 + r)1/2]

= s[z(α)(1 + r)1/2] + O(n−1/2),

we may write δ as

δ = −n−1/2{q(z(α); r)− r−1/2(1+ r)−1/2s[z(α)(1+ r)1/2]}φ(z(α))+O(n−1). (14)

If we set λ̂ = λ̂α = δ̂ + α, where δ̂ is the sample (bootstrap) version of δ, then

δ̂ = −n−1/2{q̂(z(α); r)−r−1/2(1+r)−1/2ŝ[z(α)(1+r)1/2]}φ(z(α))+Op(n−1), (15)
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where q̂ and ŝ are obtained from q and s by replacing the population moments
with sample moments. Using the Taylor expansion

z(λ̂) = z(α+δ̂) = z(α+δ) +
(δ̂ − δ)

φ(z(α+δ))
+ · · · ,

and the fact that δ̂ − δ = Op(n−1), we may write

θ̂perc[λ̂] − θ̂perc[λ] = n−1/2(1 + r−1)1/2σ̂{(z(λ̂) − z(λ)) − n−1/2r−1/2(1 + r)−1/2

·(ŝ[z(λ̂)(1 + r)1/2] − ŝ[z(λ)(1 + r)1/2]) + Op(n−1)}
= Op(n−3/2). (16)

Therefore the coverage of the calibrated, one-sided, percentile prediction interval
for θ̂m is:

P (θ̂m ≤ θ̂perc[λ̂]) = P (θ̂m ≤ θ̂perc[λ] + Op(n−3/2))

= P (T ≤z(λ)−n−1/2r−1/2(1+r)−1/2ŝ[z(λ)(1 + r)1/2]+Op(n−1))

= α + O(n−1). (17)

In addition to improving the coverage accuracy, this method of calibration
produces prediction intervals which are second-order correct. To see that cali-
bration makes θ̂perc[λ̂] a second-order correct endpoint, observe that from (16)
and (8) we obtain

θ̂perc[λ̂] = θ̂perc[λ] + Op(n−3/2)

= θ̂n + n−1/2σ̂(1 + r−1)1/2{z(α+δ)

−n−1/2r−1/2(1 + r)−1/2ŝ[z(α+δ)(1 + r)1/2]} + Op(n−3/2)

= θ̂n + n−1/2σ̂(1 + r−1)1/2{z(α) +
δ

φ(z(α))

−n−1/2r−1/2(1 + r)−1/2ŝ[z(α)(1 + r)1/2]} + Op(n−3/2)

= θ̂BCa [α] + Op(n−3/2), (18)

where (18) follows upon replacing δ by the R.H.S of (14).

Remark A. What is the use of the expansions (14) and (15)? To answer this
question, put λα = δα + α, λ1−α = δ1−α + (1 − α), λ̂α = δ̂α + α and λ̂1−α =
δ̂1−α +(1−α), where δα and δ1−α are unknown constants and 0 < α < 0.5. Then

λ1−α = (1 − α) + δα + O(n−1) = λα + (1 − 2α) + O(n−1)

and
λ̂1−α = λ̂α + (1 − 2α) + Op(n−1); (19)
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here we have used the fact that in (14) and (15), the functions q, s, and φ are
even. In other words, expansions (14) and (15) show that we can simply use (19)
to estimate λ̂1−α from λ̂α (or vice versa).

Remark B. It turns out that the bootstrap iteration, as outlined at the be-
ginning of Section 2, does not improve the coverage accuracy of a two-sided
prediction interval. In other words, for 0 < α < 0.5, suppose that λα and λ1−α

are such that

P (θ̂m ≤ θ̂[λα]) = α and P (θ̂m ≤ θ̂[λ1−α]) = 1 − α. (20)

Then the interval (θ̂[λα], θ̂[λ1−α]) has the two-sided coverage (1 − α) − α =
1−2α. On the other hand, it can be shown that (see Appendix) for the calibrated
interval, (θ̂[λ̂α], θ̂[λ̂1−α]),

P (θ̂m ≤ θ̂[λ̂1−α]) − P (θ̂m ≤ θ̂[λ̂α]) = 1 − 2α + O(n−1). (21)

It is possible to calibrate a two-sided prediction interval in such a way as to
improve its coverage accuracy beyond the usual level. Such calibration methods,
however, do not yield second-order correct endpoints and will not be pursued
here.

Remark C. To avoid the high computational cost of a direct search method for
finding λα, one may consider the alternative method proposed by Loh (1991). In
its simplest form, Loh’s method works as follows. Let the statistic of interest be
a smooth function of means and consider the calibration of the normal theory
prediction interval (3). Generate B bootstrap samples of size n (the past sample
size), X∗

1, . . . ,X
∗
B , and B bootstrap samples of size m (the future sample size),

Y∗
1, . . . ,Y

∗
B . For b = 1, . . . , B, let T ∗

b be as in (4), computed utilizing X∗
b and

Y∗
b . Put β̂b = 1+Φ(T ∗

b ), (the ‘+’ sign here is correct). Then in the case of a one-
sided interval take λ̂α to be the α-quantile of the set {β̂b, b = 1, . . . , B}. Using
expansions similar to (13) and (17), it is quite straightforward to show that the
resulting interval has a coverage error of order O(n−1). In fact, one can also show
that the endpoint of this calibrated interval is second-order correct as well. For a
two-sided prediction interval, Loh’s method works by setting β̂b = 1+Φ(|T ∗

b |) and
taking λ̂α to be the 2α-quantile of the set {β̂b, b = 1, . . . , B}. With much more
effort, one can show that the coverage error of the resulting two-sided interval is
of order O(n−2) (i.e., fourth-order accuracy), but the endpoints, in general, are
not second-order correct.

To reduce the coverage error rate of confidence interval, Loh (1991) also
considers the calibration of a one-term Edgeworth-corrected interval. This ap-
proach requires, among other things, the computation of the functions q̂∗1(x; r),
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. . . , q̂∗B(x; r), where q̂∗b (x; r) is q̂(x; r) computed from the bth bootstrap past sam-
ple X∗

b , and q̂(x; r) is the sample version of q(x; r) that appears in (6). Unfortu-
nately, in the case of a prediction interval, the function q(x; r) is quite complicated
and not convenient to work with.
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Appendix

Derivation of (21). First note that the α-endpoint of the calibrated per-
centile prediction interval is given by

θ̂perc[λ̂α] = θ̂perc[α + δ̂α]

= θ̂n + n−1/2(1 + r−1)1/2σ̂{z(α+δ̂α)

+(1 + r)−1/2
2∑

j=1

n−j/2r−j/2ŝj[z(α+δ̂α)(1 + r)1/2] + Op(n−3/2)},

where ŝ1 and ŝ2 are the polynomials in the bootstrap Cornish-Fisher expansion
of the α quantile of the distribution of T ∗ = n1/2σ̂−1

n (θ̂∗n − θ̂n). In fact ŝ1 = −ŝ,
where ŝ is as before. Since

ŝj[z(α+δ̂α)(1 + r)1/2] = ŝj [z(α+δα)(1 + r)1/2] + Op(n−1) j = 1, 2

and

z(α+δ̂α) = z(α+δα) +
(δ̂α − δα)
φ(z(α+δα))

+ Op(n−2),

we may rewrite θ̂perc[λ̂α] as

θ̂perc[λ̂α] = θ̂n + n−1/2(1 + r−1)1/2σ̂{z(α+δα) + (δ̂α − δα)φ−1(z(α))

+(1 + r)−1/2
2∑

j=1

n−j/2r−j/2ŝj[z(α+δα)(1 + r)1/2] + Op(n−3/2)}.

Now define the random variables U1 and U2 according to

U1 = n−1/2r−1/2(1 + r)−1/2{ŝ1[z(α+δα)(1 + r)1/2] − s1[z(α+δα)(1 + r)1/2]},
U2 = n(δ̂α − δα)φ−1(z(α)).
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Also, put

w(α+δα) = z(α+δα) + (1 + r)−1/2
2∑

j=1

n−j/2r−j/2sj [z(α+δα)(1 + r)1/2].

Then it is straightforward to show that

P (θ̂m ≤ θ̂perc[λ̂α]) = P (T − U1 − n−1U2 ≤ w(α+δα) + Op(n−3/2)),

(note that w(α+δα) is a constant.)
On the other hand, it can be shown that the distribution of T −U1 −n−1U2

admits the expansion

P (T −U1−n−1U2 ≤ x) = P (T −U1 ≤ x)+n−1xφ(x) ·E(TU2)+O(n−3/2). (22)

The proof of the above expansion is similar to that in the argument leading to
(3.36) of Hall (1992), and involves the following two steps:

Step (i). Let κj(X) denote the jth cumulant of the random variable X; then it
is easy to show that

κ1(T − U1 − n−1U2) = κ1(T − U1) + O(n−3/2)
κ2(T − U1 − n−1U2) = κ2(T − U1) − 2n−1E(TU2) + O(n−2)
κ3(T − U1 − n−1U2) = κ3(T − U1) + O(n−3/2)
κ4(T − U1 − n−1U2) = κ4(T − U1) + O(n−2)

Step (ii). Writing an expansion of the characteristic function of T −U1−n−1U2

in terms of its first four cumulants and then rewriting it in terms of the cumulants
of T − U1 (from Step (i)), and finally inverting this characteristic function will
result in the probability expansion (22).

Now we may use (22) to write

P (θ̂m ≤ θ̂perc[λ̂α]) = P (θ̂m ≤ θ̂perc[α + δ̂α])
= P (T − U1 − n−1U2 ≤ w(α+δα)) + O(n−3/2)
= P (T − U1 ≤ w(α+δα))

+ n−1w(α+δα)φ(w(α+δα))E(TU2) + O(n−3/2)
= α + n−1z(α)Cδα + O(n−3/2), (23)

where Cδα is such that

E
(
n1/2(1 + r−1)−1/2σ̂−1(θ̂m − θ̂n) · n(δ̂α − δα)

)
= Cδα + O(n−1). (24)

(Here, the right hand side of (24) follows by taking the expectation of the
product of the Taylor expansions of the Op(1) random variables T = n1/2(1 +
r−1)−1/2σ̂−1(θ̂m − θ̂n) and V = n(δ̂α − δα).)

The justification of (23) follows from the following facts:
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1. P (T − U1 ≤ w(α+δα)) = P (θ̂m ≤ θ̂perc[α + δα]) +O(n−3/2) = α + O(n−3/2),
2. w(α+δα) = z(α+δα) + O(n−1/2) = z(α) + O(n−1/2),

and
3.

n−1φ(w(α+δα)) · E(TU2) = n−1φ(w(α+δα)) · φ−1(z(α))[Cδα + O(n−1)]

= n−1φ(z(α) + O(n−1/2)) · φ−1(z(α))[Cδα + O(n−1)]

= n−1Cδα + O(n−3/2).

Similarly, we have

P (θ̂m ≤ θ̂perc[λ̂1−α]) = P (θ̂m ≤ θ̂perc[(1 − α) + δ̂1−α])

= 1 − α + n−1z(1−α)Cδ1−α + O(n−3/2), (25)

where Cδ1−α is such that E(n1/2(1 + r−1)−1/2σ̂−1(θ̂m − θ̂n) · n(δ̂1−α − δ1−α)) =
Cδ1−α + O(n−1). Now the coverage of the calibrated, two-sided, percentile pre-
diction interval for θ̂m is given by:

P (θ̂m ≤ θ̂perc[(1 − α) + δ̂1−α]) − P (θ̂m ≤ θ̂perc[α + δ̂α])

= 1 − α + n−1z(1−α)Cδ1−α − (α + n−1z(α)Cδα) + O(n−3/2)

= 1 − 2α − n−1z(α)(Cδ1−α + Cδα) + O(n−3/2), (26)

where the term Cδ1−α + Cδα does not vanish in (26).
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