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Abstract: Following in the recent work of Hurvich and Tsai (1989, 1991, 1993)

and Hurvich, Shumway, and Tsai (1990), we propose a corrected variant of AIC

developed for the purpose of small-sample state-space model selection. Our variant

of AIC utilizes bootstrapping in the state-space framework (Stoffer and Wall (1991))

to provide an estimate of the expected Kullback-Leibler discrepancy between the

model generating the data and a fitted approximating model. We present simulation

results which demonstrate that in small-sample settings, our criterion estimates

the expected discrepancy with less bias than traditional AIC and certain other

competitors. As a result, our AIC variant serves as an effective tool for selecting

a model of appropriate dimension. We present an asymptotic justification for our

criterion in the Appendix.
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1. Introduction

In time series modeling, an investigator is generally confronted with the
problem of choosing an appropriate model from a class of candidate models.
Many approaches to this problem have been proposed over the last twenty years,
stimulated largely by the ground-breaking work of Akaike (1973, 1974). The
Akaike information criterion, AIC, remains the most widely known and used tool
for time series model selection, although many competitors and variants have
gained acceptance since its introduction. Among these are FPE (Akaike (1969)),
SIC (Schwarz (1978), Rissanen (1978)), BIC (Akaike (1978)), HQ (Hannan and
Quinn (1979)), and more recently, AICc (Hurvich and Tsai (1989)).

AIC is both computationally and heuristically appealing, which partly ex-
plains its enduring popularity among practitioners. Yet the criterion suffers from
one commonly observed drawback: it has a tendency to favor high dimensional
models in a candidate class when the sample size is small relative to the larger
model dimensions represented within the class. The development of “corrected”
AIC, AICc, was motivated by the need to adjust for this weakness. First sug-
gested by Sugiura (1978) and later investigated and generalized by Hurvich and
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Tsai (1989, 1991, 1993) and Hurvich, Shumway, and Tsai (1990), AICc often
dramatically outperforms AIC as a selection criterion in small-sample simulation
studies. Yet the basic form of AICc is similar to that of AIC, meaning that the
improvement in selection performance comes without an increase in computa-
tional cost.

Originally proposed for linear regression, AICc has been extended to univari-
ate autoregressive modeling (Hurvich and Tsai (1989)), univariate autoregressive
moving-average modeling (Hurvich, Shumway, and Tsai (1990)), and vector au-
toregressive modeling (Hurvich and Tsai (1993)). The demonstrated effectiveness
of AICc as a selection criterion in these settings motivates the need for a cor-
rected variant of AIC for state-space modeling. Yet the derivation of AICc is less
general than that of AIC, involving distributional results which do not extend
in an obvious manner to the state-space setting without the addition of certain
restrictive assumptions. Thus, we propose a criterion which achieves the same
degree of effectiveness as AICc, but which can be used within a broad state-space
framework. This new AIC variant involves a bootstrap-based correction that can
be justified and applied in a very general context, one which includes (but is not
limited to) the state-space setting of interest. We call our criterion AICb.

The idea of using the bootstrap to improve the performance of a model
selection rule has been suggested and investigated by Efron (1983, 1986), and is
discussed by Efron and Tibshirani (1993), Chapter 17. Ishiguro and Sakamoto
(1991) proposed an AIC variant called WIC based on Efron’s methodology, and
Ishiguro, Morita, and Ishiguro (1991) used this variant successfully in an aperture
synthesis imaging problem. In a recent manuscript, Shibata (1997) proves the
asymptotic equivalence of AICb and WIC under a general set of assumptions,
and indicates the existence of other asymptotically equivalent bootstrap-based
AIC variants. In small-sample settings, the type of variant which would perform
optimally most likely depends on the nature of the modeling problem. For our
state-space application of interest, our simulation results indicate that AICb
outperforms WIC, although further investigation is needed before substantive
conclusions can be drawn.

In Section 2, we briefly review the motivation behind AIC, and discuss why
the criterion works poorly in small-sample applications. This leads to the in-
troduction of AICb. In Section 3, we present an overview of the state-space
model along with a brief discussion of Gaussian maximum likelihood parameter
estimation in the state-space setting. Finally, in Sections 4 and 5, we compare
the performance of AICb to that of other selection criteria in simulation studies
based on small sample sizes. A theoretical asymptotic justification of AICb is
presented in the Appendix.
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2. Presentation of AICb

A well-known measure of separation between two models is given by the
non-normalized Kullback-Leibler information, also known as the cross entropy or
discrepancy. If θo represents the set of parameters for the “true” or generating
model and θ represents the set of parameters for a candidate or approximating
model, the discrepancy between the models is defined as

dn(θ, θo) = Eo{−2 log L(θ |Yn)},

where Eo denotes the expectation under the generating model, and L(θ |Yn)
represents the likelihood corresponding to the approximating model.

Now for a given set of estimates θ̂n, we could determine the discrepancy
between the fitted approximating model and the generating model if we could
evaluate

dn(θ̂n, θo) = Eo{−2 log L(θ |Yn)}|θ=θ̂n
. (2.1)

Yet evaluating (2.1) is not possible, since it requires knowledge of θo. Akaike
(1973), however, noted that −2 log L(θ̂n |Yn) serves as a biased estimator of
(2.1), and that the bias adjustment

Eo{Eo{−2 log L(θ |Yn)}|θ=θ̂n
} − Eo{−2 log L(θ̂n |Yn)} (2.2)

can often be asymptotically estimated by twice the dimension of θ̂n. Thus, if
we let k represent the dimension of θ̂n, then under appropriate conditions, the
expected value of

AIC = −2 log L(θ̂n |Yn) + 2k

should be asymptotically close to the expected value of (2.1), say ∆n(k, θo) =
Eo{dn(θ̂n, θo)}. Alternatively, AIC should serve as an asymptotically unbiased
estimator of the expected discrepancy ∆n(k, θo), where

∆n(k, θo) = Eo{Eo{−2 log L(θ |Yn)}|θ=θ̂n
}

= Eo{−2 log L(θ̂n |Yn)} +

[Eo{Eo{−2 log L(θ |Yn)}|θ=θ̂n
} − Eo{−2 log L(θ̂n |Yn)}]. (2.3)

Note that the “goodness of fit” term in AIC, −2 log L(θ̂n |Yn), estimates the first
of the terms in (2.3), whereas the “penalty” term in AIC, 2k, estimates the bias
expression (2.2).

AIC provides us with an approximately unbiased estimator of ∆n(k, θo) in
settings where n is large and k is comparatively small. In settings where n is
small and k is comparatively large (e.g., k ≈ n/2), 2k is often much smaller than
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the bias adjustment (2.2), making AIC substantially negatively biased as an es-
timator of ∆n(k, θo) (Hurvich and Tsai (1989)). If AIC severely underestimates
∆n(k, θo) for higher dimensional fitted models in the candidate set, the criterion
may favor the higher dimensional models even when the expected discrepancy
between these models and the generating model is rather large. Examples illus-
trating this phenomenon appear in Shumway (1988), page 169, and in Linhart
and Zucchini (1986), pages 86-88, who comment (page 78) that “in some cases
the criterion simply continues to decrease as the number of parameters in the
approximating model is increased.”

AICc was developed to yield an estimator of ∆n(k, θo) which is less biased in
small-sample applications than traditional AIC (Hurvich and Tsai (1989)). Our
criterion achieves the same goal through utilizing the bootstrap. Specifically,
we propose a bootstrap-based estimator for the bias adjustment (2.2), which in
small-sample settings should estimate (2.2) more accurately than 2k.

Suppose that {θ̂∗n(i); i = 1, . . . , N} represents a set of N bootstrap replicates
of θ̂n. Let E∗ denote the expectation with respect to the bootstrap distribution
of θ̂∗n. In the Appendix, we show that under suitable conditions, the difference
between

2 [E∗{−2 log L(θ̂∗n |Yn)} − {−2 log L(θ̂n |Yn)}]
and the bias expression (2.2) converges almost surely to zero (as n → ∞). This
follows from the observation that (2.2) can be decomposed into the sum of

Eo{Eo{−2 log L(θ |Yn)}|θ=θ̂n
} − Eo{−2 log L(θo |Yn)} (2.4)

and
Eo{−2 log L(θo |Yn)} − Eo{−2 log L(θ̂n |Yn)}, (2.5)

and that the difference between

E∗{−2 log L(θ̂∗n |Yn)} − {−2 log L(θ̂n |Yn)} (2.6)

and either (2.4) or (2.5) tends almost surely to zero (as n → ∞).
Now by the strong law of large numbers, as N → ∞, N−1∑N

i=1 −2 log
L(θ̂∗n(i) |Yn) converges almost surely to E∗{−2 log L(θ̂∗n |Yn)}. Thus, for N → ∞,

{ 1
N

N∑
i=1

−2 log L(θ̂∗n(i) |Yn)
}
− {−2 log L(θ̂n |Yn)}

is almost surely the same as (2.6). This leads us to the following large-sample
estimator of ∆n(k, θo):

AICb = −2 log L(θ̂n |Yn)
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+2
[
{ 1
N

N∑
i=1

−2 log L(θ̂∗n(i) |Yn)} − {−2 log L(θ̂n |Yn)}
]

= −2 log L(θ̂n |Yn) + 2

{
1
N

N∑
i=1

−2 log
L(θ̂∗n(i) |Yn)
L(θ̂n |Yn)

}
.

Note that AICb is composed of the same “goodness of fit” term as AIC, and
an inherently positive “penalty” term which is asymptotically equivalent to the
bias term in (2.3) (as both n, N → ∞).

We should note that the asymptotic justifications of AIC and AICc both
involve the assumption that the “true” parameter vector θo corresponds to a
model in the candidate class. (See Hurvich and Tsai (1989).) This is admittedly a
strong assumption, and one which is also required in our asymptotic justification
of AICb. The behavior of AIC and AICc when this condition is not met has been
investigated by Hurvich and Tsai (1991). In future work, we hope to explore the
same issue with regard to AICb.

Our asymptotic defense of AICb demonstrates that our criterion fulfills the
same large-sample objective as AIC, in that it provides an approximately unbi-
ased estimator of ∆n(k, θo). Yet the computational burden required to evaluate
AICb is justifiable only if it can be shown that AICb is superior to AIC in settings
where the sample size is small enough to cast doubt on asymptotic arguments.
Thus, in Sections 4 and 5, we describe and present a collection of simulation
results to examine the small-sample behavior of AICb and AIC, as well as that
of certain other criteria of interest.

3. The State-Space Model and Gaussian ML Estimation

The state-space model has the form

yt = Axt + vt, (3.1)

xt = Φxt−1 + wt, (3.2)

for t = 1, . . . , n time periods, where yt is an observed vector process, xt is an
unobserved vector state process, A is a known design matrix, Φ is an unknown
transition matrix, and vt and wt are zero-mean vector noise processes. Equations
(3.1) and (3.2) are respectively called the observation equation and the state
equation. We let R denote the covariance matrix of the observation noise process
vt, and let Q denote the covariance matrix of the state noise process wt. We also
let µ and Σ respectively denote the mean and covariance matrix of the initial
state xo.

It is routinely assumed that

• xo, the wt, and the vt are mutually independent, (3.3)
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and often additionally assumed that

• xo, the wt, and the vt are multivariate normal. (3.4)

To represent the unknown parameters, we let θ denote a kx1 vector that
uniquely determines the model coefficients and correlation structure: i.e., µ ≡
µ(θ), Σ ≡ Σ(θ), Φ ≡ Φ(θ), Q ≡ Q(θ), R ≡ R(θ). We let Yt denote the observed
data up until time t (i.e., Yt = [y1, . . . , yt]).

The likelihood L(θ |Yn) is generally written in its innovations form (Schweppe
(1965)). The innovation at time t is defined as

et(θ) = yt − Axt−1
t (θ) where xt−1

t (θ) = E(xt |Yt−1).

We let Σt(θ) denote the covariance matrix of et(θ). (Note that E(et(θ)) = 0.) The
well-known Kalman filter equations (Kalman (1960), Kalman and Bucy (1961))
provide us with a recursive algorithm for evaluating successive values of et(θ) and
Σt(θ), as well as the state estimators xt−1

t (θ) and xt
t(θ) = E(xt |Yt) and their

respective covariance matrices P t−1
t (θ) and P t

t (θ). The starting values xo
o(θ) = µ

and P o
o (θ) = Σ are used to initialize the filter.

Under the assumptions (3.3) and (3.4), the innovations are mutually inde-
pendent and multivariate normal. Thus, for the log of the likelihood L(θ |Yn),
we can write

log L(θ |Yn) ∝ −1
2

n∑
t=1

log |Σt(θ)| − 1
2

n∑
t=1

et(θ)
′
Σ−1

t (θ)et(θ). (3.5)

Since (3.5) is generally a highly non-linear function of the parameters, the max-
imum likelihood estimates are usually found by using an iterative optimization
algorithm. Maximum likelihood estimation can also be carried out via the EM
algorithm. Details are provided in Shumway and Stoffer (1982).

Henceforth, we assume θ̂n denotes the set of Gaussian maximum likelihood
(GML) estimates for the kx1 vector θ.

If the normality assumption (3.4) is not imposed, L(θ |Yn) does not represent
the joint density of the innovations. In this case, θ̂n is viewed as the set of esti-
mates which minimizes the loss function − log L(θ |Yn). Although our asymptotic
justification of AICb assumes that the parameter estimates are obtained through
Gaussian maximum likelihood (or some asymptotically equivalent method), our
development does not require (3.4). Thus, we expect AICb to be fairly robust to
violations of this assumption.

A nonparametric bootstrap procedure for the state-space model is presented
as a four-step algorithm by Stoffer and Wall (1991). In the first step, the es-
timated innovations et(θ̂n) are evaluated and standardized. In the second step,
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the standardized innovations are resampled, and in the third step, the resampled
innovations are used to construct a bootstrap sample of yt’s, say Y ∗

n (i). This
construction is accomplished through utilizing analogues of equations (3.1) and
(3.2), where the terms vt and wt are replaced by functions of the innovations.
In the fourth step, the bootstrap sample Y ∗

n (i) is used to compute a bootstrap
GML vector θ̂∗n(i). Repeating steps two through four N times results in a sample
of bootstrap GML vectors {θ̂∗n(i); i = 1, . . . , N}. The sampling distribution of
θ̂n is estimated by the relative frequency distribution of the θ̂∗n(i).

Stoffer and Wall (1991) establish that the asymptotic behavior of the boot-
strap GML estimator θ̂∗n is the same as that of the GML estimator θ̂n. Their
justification relies upon an asymptotic theory proposed by Ljung and Caines
(1979) for a general class of estimators. We utilize results from both Stoffer
and Wall (1991) and Ljung and Caines (1979) in providing a formal asymptotic
justification for AICb in the Appendix.

4. Description of Simulations

Two different types of time series models are used in our simulation sets: the
univariate autoregressive model, and the univariate autoregressive model with
observation noise. The univariate autoregressive model of order p can be written
as

zt = φ1zt−1 + φ2zt−2 + · · · + φpzt−p + εt; εt ∼ i.i.d. (0, σ2
Q).

We denote this model as AR( p). The univariate autoregressive model of order p
with observation noise can be written as

yt = zt + vt; vt ∼ i.i.d. (0, σ2
R);

zt = φ1zt−1 + φ2zt−2 + · · · + φpzt−p + εt; εt ∼ i.i.d. (0, σ2
Q).

We denote this model as ARN( p).
The ARN( p) model is expressed in state-space form by writing the observa-

tion equation (3.1) as

yt = (1, 0, . . . , 0)




zt

zt−1
...

zt−p+1


+ vt,

and the state equation (3.2) as



zt

zt−1
...

zt−p+1


 =




φ1 φ2 . . . φp−1 φp

1 0 . . . 0 0
0 1 . . . 0 0
...

...
...

...
...

0 0 . . . 1 0







zt−1

zt−2
...

zt−p


+




εt

0
...
0


 .
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Here, the covariance matrix Q of the state noise vector is a pxp matrix with all
zero entries except for the entry in the upper left-hand corner, which is σ2

Q. The
observation noise is scalar, and has variance R = σ2

R.
The AR( p) model is expressed in state-space form in the same manner,

except that the noise process vt does not appear in the observation equation.
For each of the models considered in our simulations, the eigenvalues of Φ

are all within the unit circle. This ensures that the state process zt is weakly
stationary.

The parameter vectors for the AR( p) and ARN( p) models are, respectively,
the ( p + 1) x 1 and ( p + 2) x 1 vectors

θ = (φ1, . . . , φp, σ
2
Q)

′
and θ = (φ1, . . . , φp, σ

2
R, σ2

Q)
′
.

The parameter estimates θ̂n are obtained using the EM algorithm (Shumway
and Stoffer (1982)). The true parameter values are used to initialize the algo-
rithm. For the initial state vector xo, the mean vector µ is fixed at zero, and the
covariance matrix Σ is found by solving the equation Σ = ΦΣΦ

′
+ Q. (See Har-

vey (1989), pages 120 and 121.) In fitting the models, the mean of the observed
process yt is subtracted from each yt, t = 1, . . . , n.

In addition to AICb and AIC, the other criteria considered in our simulations
are FPE (Akaike (1969)), SIC (Schwarz (1978), Rissanen (1978)), BIC (Akaike
(1978)), HQ (Hannan and Quinn (1979)), AICc (Hurvich and Tsai (1989)), and
WIC (Ishiguro, Morita, and Ishiguro (1991)). (The justifications of some of these
criteria do not extend in an obvious manner to the state-space setting. Thus,
their definitions and usages for ARN( p) model selection are somewhat ad hoc.)

The complete set of criteria is listed below. In the definitions involving k, k is
( p+1) when applied to the AR( p) model and ( p+2) when applied to the ARN( p)
model. The estimate of the steady-state innovations variance is denoted by σ̂2

n:
i.e., σ̂2

n = Σt(θ̂n) where t is “large”. In the definition of WIC, Y ∗
n (i) represents

the bootstrap sample corresponding to the bootstrap GML vector θ̂∗n(i).

AICb = −2 log L(θ̂n |Yn) + 2

{
1
N

N∑
i=1

−2 log
L(θ̂∗n(i) |Yn)
L(θ̂n |Yn)

}
(4.1)

WIC = −2 log L(θ̂n |Yn) +

{
1
N

N∑
i=1

−2 log
L(θ̂∗n(i) |Yn)

L(θ̂∗n(i) |Y ∗
n (i))

}
(4.2)

AIC = −2 log L(θ̂n |Yn) + 2k (4.3)

AICc =
(
n log σ̂2

n + n
)

+
2n( p + 1)
n − p − 2

(4.4)
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FPE = n

(
n + k

n − k

)
σ̂2

n (4.5)

HQ = n log σ̂2
n + 2k log log n (4.6)

BIC = (n − p) log

(
nσ̂2

n

n − p

)
+ p log

{(∑n
t=1 y2

t

)− nσ̂2
n

p

}
(4.7)

SIC = −2 log L(θ̂n |Yn) + k log n (4.8)

In each simulation set, 100 realizations of size n are generated from a known
model of order po. For each of the realizations, candidate models of orders 1
through P are fit to the data ( po < P ), the criteria (4.1) through (4.8) are
evaluated, and the fitted candidate model selected by each criterion is determined.
In the computation of AICb and WIC, N = 250 bootstrap replications θ̂∗n(i) are
used. The distribution of selections by each criterion is recorded for the 100
realizations and presented in tabular form. (On an occasional realization, a
criterion is minimized for two different model orders. If the minima agree out to
two decimal places, the case is treated as a tie, and both selections are recorded.)

For each of the AIC-type criteria (AICb, WIC, AIC, and AICc), the average
criterion value over the 100 realizations is computed for each of the candidate
model orders 1 through P . The value of ∆n(k, θo) is simulated for each of these
orders. The averages for AICb, WIC, AIC, and AICc are then compared to the
simulated values of ∆n(k, θo) by plotting the criterion averages and the simulated
∆n(k, θo) against several of the initial orders. Using this approach, we can judge
the relative effectiveness of AICb, WIC, AIC, and AICc as unbiased estimators
of ∆n(k, θo).

5. Presentation of Simulation Results

The first simulation set involves a generating model and sample size originally
considered in a simulation study presented by Hurvich and Tsai (1989) to assess
the effectiveness of AICc in autoregressive model selection. The model is the
AR(2) model

zt = 0.99zt−1 − 0.80zt−2 + εt; εt ∼ i.i.d. N(0, 1). (5.1)

The sample size is n = 23. The candidate class consists of AR( p) models where
1 ≤ p ≤ 12.

Although AICc performs well here, Table 1 indicates that AICb results in
considerably more correct order selections than any other criterion. Moreover,
AICb does not incorrectly select any high dimensional models, whereas most of
the other criteria exhibit a propensity to overfit.
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Table 1. Model selections for (5.1) (maximum order: 12)

Order AICb WIC AIC AICc FPE HQ BIC SIC
1 1 1 1 1 0 1 1 2
2 90 72 45 69 25 23 60 77
3 8 18 11 7 6 5 6 7
4 1 1 0 1 0 0 0 1
5 0 2 4 1 1 1 0 0
6 0 1 1 1 1 2 1 0
7 0 1 4 1 4 3 1 0
8 0 0 2 1 0 0 2 1

9 to 12 0 4 33 18 63 65 29 12

Figure 1 illustrates that over the first eight model orders, the average AICb
curve more closely follows the simulated ∆n(k, θo) curve than either the average
AIC or AICc curve. The WIC curve follows ∆n(k, θo) effectively, but WIC results
in fewer correct order selections than AICb.

Order

1 2 3 4 5 6 7 8

20
30

40
50

60
70

80

Delta
AICb
WIC
AIC
AICc

Figure 1. Criterion averages and simulated ∆n(k, θo) for (5.1) (orders 1 through 8)

The second simulation set uses as the generating model the ARN(1) model

yt = zt + vt; vt ∼ i.i.d. N(0, 0.2); (5.2)
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zt = 0.60zt−1 + εt; εt ∼ i.i.d. N(0, 1).

The sample size is n = 15. The candidate class consists of ARN( p) models where
1 ≤ p ≤ 8.

As shown in Table 2, AICb obtains the most correct order selections, followed
by AICc. Of the remaining criteria, only SIC and WIC perform acceptably,
although WIC exhibits a tendency to favor higher dimensional models. AIC,
FPE, HQ, and BIC all exhibit this overfitting tendency to an even greater degree
than WIC.

Table 2. Model selections for (5.2) (maximum order: 8)

Order AICb WIC AIC AICc FPE HQ BIC SIC
1 79 57 45 74 27 18 13 64
2 3 3 5 8 6 4 5 8
3 4 6 3 3 4 2 4 2
4 2 4 6 6 9 6 8 4
5 2 4 5 4 6 5 12 5
6 3 5 6 3 12 15 17 5
7 3 7 13 2 17 17 19 7
8 4 14 17 0 19 33 24 5

Order

1 2 3 4 5 6 7 8

20
40

60
80

10
0

Delta
AICb
WIC
AIC
AICc

Figure 2. Criterion averages and simulated ∆n(k, θo) for (5.2) (orders 1 through 8)

Figure 2 demonstrates that the average AICb and AICc curves reflect the
general shape of the simulated ∆n(k, θo) curve, although the AICc curve better
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represents the increasing slope in ∆n(k, θo) past model order 6. The AIC curve
remains relatively constant over all model orders. The WIC curve initially follows
the AICc curve, but appears flat past model order 6.

The third simulation set is based on the generating AR(2) model

zt = 1.40zt−1 − 0.49zt−2 + εt; εt ∼ i.i.d. N(0, 1). (5.3)

The sample size is n = 50. The candidate class consists of AR( p) models where
1 ≤ p ≤ 14.

Table 3 indicates that SIC and BIC obtain the most correct order selections.
The AIC-type criteria all perform comparably due to the relatively larger sample
size used in this set: AICb and AICc obtain the most correct selections, followed
by WIC and AIC.

Table 3. Model selections for (5.3) (maximum order: 14)

Order AICb WIC AIC AICc FPE HQ BIC SIC
1 1 1 3 4 2 5 11 11
2 78 73 73 78 63 79 88 86
3 13 12 9 7 9 5 1 2
4 3 4 8 6 8 6 0 1
5 2 6 0 0 0 0 0 0
6 2 3 3 1 2 1 0 0
7 0 0 1 0 1 0 0 0
8 1 0 2 2 2 1 0 0

9 to 14 0 2 2 2 13 3 0 0

Figure 3 illustrates that over the first eight model orders, the average AICb
curve tracks the simulated ∆n(k, θo) curve quite closely. The WIC and AICc
curves also effectively reflect the general shape of the ∆n(k, θo) curve.

The fourth and final simulation set is based on a generating ARN(2) model
where the observation noise and state noise have scaled t distributions with five
degrees of freedom. This simulation set is included so that the sensitivity of the
criteria to the normality assumption (3.4) may be assessed. Since the asymptotic
justification of AICb does not require such an assumption, the performance of
AICb should not be greatly impaired by using heavy-tailed distributions for the
model errors.

The generating model is a modification of the AR(2) model used in the first
simulation set:

yt = zt + vt; vt ∼ i.i.d. t5(0.15); (5.4)

zt = 0.99zt−1 − 0.80zt−2 + εt; εt ∼ i.i.d. t5(1).
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Here, td.f.(σ) represents a t distribution with d.f. degrees of freedom, scaled to

have a standard deviation of σ. The sample size is n = 23. The candidate class

consists of ARN( p) models where 1 ≤ p ≤ 12.

Order

1 2 3 4 5 6 7 8

50
55

60
65

70
75

80

Delta
AICb
WIC
AIC
AICc

Figure 3. Criterion averages and simulated ∆n(k, θo) for (5.3) (orders 1 through 8)

Table 4 indicates that AICb obtains the most correct order selections, fol-

lowed by SIC. As in the first simulation set, AICb does not exhibit the overfitting

tendency of many of the other criteria.

Table 4. Model selections for (5.4) (maximum order: 12)

Order AICb WIC AIC AICc FPE HQ BIC SIC
1 4 1 0 0 0 0 1 1
2 84 62 48 73 25 21 74 80
3 8 20 2 6 1 0 2 6
4 3 6 4 5 8 6 2 1
5 1 5 1 3 1 1 1 2
6 0 1 0 0 1 1 0 0
7 0 1 1 1 0 0 1 0
8 0 0 3 2 5 5 1 1

9 to 12 0 4 41 10 60 66 18 9
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Figure 4 again illustrates that over the first eight model orders, the average
AICb curve closely tracks the simulated ∆n(k, θo) curve. The WIC curve also
reflects the shape of ∆n(k, θo). The AICc curve follows ∆n(k, θo) to a lesser
degree, whereas the AIC curve appears flat past the true model order.

Order

1 2 3 4 5 6 7 8

20
30

40
50

60
70

80

Delta
AICb
WIC
AIC
AICc

Figure 4. Criterion averages and simulated ∆n(k, θo) for (5.4) (orders 1 through 8)

We close this section with a brief discussion of two computational issues.
These issues are relevant not only in evaluating the results of the preceding
simulations, but also in assessing how AICb and its competitors may perform in
practice.

First, one may question how the behavior of the criteria is affected by the
choice of the maximum order P for the class of candidate models. In the simula-
tions sets, the criteria which perform poorly tend to choose an excessive number
of high dimensional models. How would these criteria behave if lower maximum
orders were employed?

To address this question, the criterion selections for each of the four simu-
lation sets are recompiled using smaller maximum orders than those originally
considered. The number of correct order selections corresponding to the original
and the new maximum orders are reported in Table 5.
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Table 5. Number of correct order selections based on various maximum orders
for the candidate classes

Set Max. Order AICb WIC AIC AICc FPE HQ BIC SIC
4 90 78 81 86 78 78 90 89

(5.1) 8 90 74 69 83 51 54 83 88
12 90 72 45 69 25 23 60 77
4 87 74 68 80 51 50 41 79

(5.2) 6 82 64 59 76 39 34 27 70
8 79 57 45 74 27 18 13 64
4 82 81 79 82 77 83 88 86

(5.3) 8 78 74 73 78 69 80 88 86
14 78 73 73 78 63 79 88 86
4 85 69 79 84 72 77 87 89

(5.4) 8 84 66 69 81 53 59 86 88
12 84 62 48 73 25 21 74 80

Table 5 indicates that as the maximum order is decreased, those criteria
which are prone to overfitting become more competitive, and as a result, the
disparities in the correct selection rates of the criteria become less extreme. Al-
though AICb still tends to outperform other AIC-type criteria for smaller max-
imum orders, its advantage in such settings is less pronounced. This is perhaps
expected in light of Figures 1 through 4, which show that the average AICb,
WIC, AIC, and AICc curves are only substantially discrepant for larger model
orders.

Second, one may question how the behavior of AICb and WIC is affected by
the choice of N , the number of bootstrap replications used in the evaluation of
these criteria. As N increases, the averages which comprise the “penalty” terms
of AICb and WIC stabilize. Choosing a value of N which is too small may result
in inaccurate estimation of the bias expression (2.2), yet choosing a value of N

which is too large will waste computational time. How is the behavior of AICb
and WIC affected by the selection of N?

To gain insight into this question, each of the four simulation sets are re-run
using N of 50, 100, 150, 200, and 250 (and a maximum candidate model order of
P = 8). The number of correct order selections for AICb and WIC are reported
in Table 6.

Table 6 indicates that while a value of 50 for N appears insufficient, values
of 100 and higher seem to yield acceptable results. Although the number of
correct selections for both AICb and WIC tends to increase with increasing N ,
the differences among the results for N of 100 to 250 are of debatable importance.
Thus, our choice of N = 250 in the original simulation sets may seem somewhat
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conservative. (This value of N was chosen since in these sets and in others not
reported, smaller values seemed to marginally diminish selection performance
while larger values did not seem to appreciably improve the results.)

Table 6. Number of correct order selections for AICb and WIC based on
various numbers of bootstrap replications (maximum orders: 8)

AICb WIC
Bootstrap Replications Bootstrap Replications

Set 50 100 150 200 250 50 100 150 200 250
(5.1) 79 84 87 87 90 67 73 74 76 74
(5.2) 64 75 75 74 79 46 51 52 50 57
(5.3) 66 73 79 77 78 56 64 66 68 74
(5.4) 73 76 84 84 84 59 69 69 70 66

Of course, an appropriate choice for N depends on several factors: most
importantly, the sample size n, the dimension of the candidate model which
minimizes the expected discrepancy ∆n(k, θo), and the dimension of the largest
model in the candidate class. In practice, we recommend monitoring the values
of AICb (or WIC) for increasing values of N , until the criterion values are stable
enough to clearly discern the minimum. If for even large N , the minimum tends
to oscillate among the criterion values corresponding to two or more fitted can-
didate models, this may serve as an indication that the expected discrepancies
for these models are not significantly different. In such an instance, it would be
reasonable to select the model having the smallest dimension among these final
few candidates.

6. Conclusion

For large-sample applications, AICb is designed to serve the same purpose
as traditional AIC, in that it provides an asymptotically unbiased estimate of
the expected discrepancy ∆n(k, θo) between the generating model and a fitted
approximating model. However, for small-sample applications, our simulation
results illustrate that in the state-space setting of interest, AICb seems to out-
perform traditional AIC in three important ways:
• AICb provides an estimate of the expected discrepancy ∆n(k, θo) which is

considerably less biased than AIC.
• When data is generated from a known finite dimensional model, AICb has a

higher success rate in identifying the correct model dimension than AIC.
• AICb does not exhibit the same tendency to overfit that AIC exhibits.
AICb also appears to outperform WIC and AICc in the same three ways, although
to a somewhat lesser degree.
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AICb is developed in the context of a general model formulation and a non-
restrictive set of conditions. Our justification and application of the criterion
focuses on the state-space framework, yet the criterion could certainly be used
in other model selection settings. (See Shibata (1997).) And although AICb
is more computationally expensive to evaluate than either AIC or AICc, it has
a simplistic form, and would be convenient to compute as part of an overall
bootstrap-based analysis.
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Appendix

Here, we present a formal justification of AICb as a large-sample estimator
of ∆n(k, θo).

We require the following fundamental assumptions:
• The parameter space Θ is a compact subset of k-dimensional Euclidean space.
• Derivatives of the log-likelihood up to order three exist with respect to θ, and

are continuous and suitably bounded over Θ.
• θo is an interior point of Θ.
• For all θ ∈ Θ, the eigenvalues of Φ(θ) are within the unit circle, and AQ(θ)A

′
+

R(θ) is positive definite.
Our arguments rely on an asymptotic theory developed by Ljung and Caines

(1979) for a general class of estimators. This theory can be used to justify the
strong consistency and asymptotic normality of the state-space GML estimator
θ̂n, even in the absence of the normality assumption (3.4). (See Caines (1988),
page 499.) The results of Ljung and Caines (1979) were utilized by Stoffer and
Wall (1991) to provide an asymptotic justification of a nonparametric state-space
bootstrap procedure based on GML estimation. Neither the development in
Stoffer and Wall (1991) nor the development which follows requires the normality
assumption (3.4).

We begin by briefly outlining the theory of Ljung and Caines (1979). (For
further details, see Ljung and Caines (1979), Theorem 1 and its corollary.)

Let

Vn(θ) =
1
n

n∑
t=1

{log |Σt(θ)| + et(θ)
′
Σ−1

t (θ)et(θ)}.

Let V
(1)
n (θ) denote the kx1 vector of first partials of Vn(θ) with respect to θ, and

let V
(2)
n (θ) denote the kxk matrix of second partials of Vn(θ) with respect to θ.
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Let

Wn(θ) = Eo{Vn(θ)}, W (1)
n (θ) = Eo{V (1)

n (θ)}, W (2)
n (θ) = Eo{V (2)

n (θ)}, and

Un(θ) = n Eo{(V (1)
n (θ))(V (1)

n (θ))
′}.

Let θ̄n represent the unique global minimum of Wn(θ) (assumed to exist).
We assume Wn(θ) → W (θ) uniformly in θ as n → ∞, W (θ) has a unique global
minimum at θo,

√
n W

(1)
n (θo) → 0 as n → ∞, and W (2)(θo) is invertible. We

assume U(θo) = limn→∞ Un(θ̄n) exists, and U(θo) is invertible.
Let Pn(θ) = (W (2)

n (θ))−1 Un(θ)(W (2)
n (θ))−1. Theorem 1 of Ljung and Caines

(1979) provides us with the following results:

(θ̂n − θ̄n) → 0 almost surely as n → ∞, (A.1)

√
n Pn(θ̄n)−1/2 (θ̂n − θ̄n) → Nk(0, I) as n → ∞. (A.2)

We use much of the preceding development in what follows.
We begin our justification by obtaining a useful expansion for ∆n(k, θo).

Lemma 1.

∆n(k, θo) = Eo{Eo{−2 log L(θ |Yn)}|θ=θ̂n
}

= Eo{−2 log L(θ̂n |Yn)} +
n

2
Eo{(θ̂n − θ̄n)

′
W (2)

n (ηn) (θ̂n − θ̄n)}
+

n

2
Eo{(θ̂n − θ̄n)

′
V (2)

n (βn) (θ̂n − θ̄n)}. (A.3)

Here, ηn and βn are random vectors which lie between θ̂n and θ̄n.

Proof. First, we expand Eo{−2 log L(θ |Yn)}|θ=θ̂n
about θ̄n to obtain

Eo{−2 log L(θ |Yn)}|θ=θ̂n
=Eo{−2 log L(θ̄n |Yn)}+

n

2
(θ̂n−θ̄n)′W (2)

n (ηn)(θ̂n−θ̄n).

(A.4)
Here, ηn is a random vector which lies between θ̂n and θ̄n.

Next, we expand −2 log L(θ̄n |Yn) about θ̂n, and take expectations of both
sides of the resulting expression to obtain

Eo{−2 log L(θ̄n |Yn)}=Eo{−2 log L(θ̂n |Yn)}+
n

2
Eo{(θ̂n−θ̄n)

′
V (2)

n (βn)(θ̂n−θ̄n)}.
(A.5)

Here, βn is a random vector which lies between θ̂n and θ̄n.
The lemma is established by taking expectations with respect to both sides

of (A.4), and substituting (A.5) for Eo{−2 log L(θ̄n |Yn)} in the result.
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We next derive a result which leads to a bootstrap estimator of both

n

2
Eo{(θ̂n − θ̄n)

′
W (2)

n (ηn) (θ̂n − θ̄n)} (A.6)

and
n

2
Eo{(θ̂n − θ̄n)

′
V (2)

n (βn) (θ̂n − θ̄n)}. (A.7)

Note by comparing (A.3) to (2.3) in Section 2 that the sum of (A.6) and (A.7)
is equivalent to the bias expression (2.2).

Lemma 2.

n

2
E∗{(θ̂∗n− θ̂n)

′
V (2)

n (γn) (θ̂∗n− θ̂n)} = E∗{−2 log L(θ̂∗n |Yn)}−{−2 log L(θ̂n |Yn)}.

Here, γn is a random vector which lies between θ̂∗n and θ̂n.

Proof. Consider expanding −2 log L(θ̂∗n |Yn) about θ̂n to obtain

−2 log L(θ̂∗n |Yn) = −2 log L(θ̂n |Yn) +
n

2
(θ̂∗n − θ̂n)

′
V (2)

n (γn) (θ̂∗n − θ̂n).

Here, γn is a random vector which lies between θ̂∗n and θ̂n.
Taking expectations of both sides of this expression with respect to the boot-

strap distribution of θ̂∗n, we have

E∗{−2 log L(θ̂∗n |Yn)} = {−2 log L(θ̂n |Yn)}+
n

2
E∗{(θ̂∗n− θ̂n)

′
V (2)

n (γn) (θ̂∗n− θ̂n)}.

Thus, the result is established.

At the end of the Appendix, we state and prove a final lemma (Lemma 3) that
will show as n → ∞, the difference between (n/2)E∗{(θ̂∗n−θ̂n)

′
V

(2)
n (γn) (θ̂∗n−θ̂n)}

and either (A.6) or (A.7) converges almost surely to zero. By the strong law of
large numbers, as N → ∞, N−1∑N

i=1 −2 log L(θ̂∗n(i) |Yn) converges almost surely
to E∗{−2 log L(θ̂∗n |Yn)}. Thus, with Lemma 2, we will be able to conclude that
for n,N → ∞,

{ 1
N

N∑
i=1

−2 log L(θ̂∗n(i) |Yn)
}
− {−2 log L(θ̂n |Yn)} (A.8)

is almost surely the same as either (A.6) or (A.7). This will justify AICb as a
large-sample estimator of ∆n(k, θo), in that it will show the “penalty” term of
AICb (twice (A.8)) is asymptotically equal to the sum of (A.6) and (A.7), or
equivalently, to the bias expression (2.2).

We first introduce some additional notation and results.
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In the bootstrap setting, to parallel the definitions for

Vn(θ), V (1)
n (θ), V (2)

n (θ), Wn(θ), W (1)
n (θ), W (2)

n (θ), Un(θ), θ̂n, and θ̄n,

let

V ∗
n (θ) =

1
n

n∑
t=1

{log |Σt(θ)| + e∗t (θ)
′
Σ−1

t (θ)e∗t (θ)}

where the innovations e∗t (θ) correspond to a bootstrap sample, let V
∗(1)
n (θ) denote

the kx1 vector of first partials of V ∗
n (θ) with respect to θ, and let V

∗(2)
n (θ) denote

the kxk matrix of second partials of V ∗
n (θ) with respect to θ. Let

W ∗
n(θ)=E∗{V ∗

n (θ)}, W ∗(1)
n (θ)=E∗{V ∗(1)

n (θ)}, W ∗(2)
n (θ)=E∗{V ∗(2)

n (θ)}, and

U∗
n(θ)=n E∗{(V ∗(1)

n (θ))(V ∗(1)
n (θ))

′}.
Also, let θ̂∗n = argmin θ∈Θ V ∗

n (θ), and θ̄∗n = argmin θ∈Θ W ∗
n(θ).

We make use of the following important result from Lemma 3 of Ljung and
Caines (1979):

V (2)
n (θ) − W (2)

n (θ) → 0 almost surely as n → ∞, uniformly in θ. (A.9)

Now from Lemma 1 of Stoffer and Wall (1991),

W ∗
n(θ) = Vn(θ) for all θ ∈ Θ, (A.10)

meaning
θ̄∗n = θ̂n. (A.11)

Also, from Lemma 2 of Stoffer and Wall (1991),

U∗
n(θ̂n) − Un(θ̄n) → 0 almost surely as n → ∞. (A.12)

Let P ∗
n(θ) = (W ∗(2)

n (θ))−1U∗
n(θ)(W ∗(2)

n (θ))−1. Stoffer and Wall (1991) appeal
to Theorem 1 of Ljung and Caines (1979) to establish the following analogue of
(A.2) for the bootstrap GML estimator θ̂∗n:

√
nPn(θ̂n)−1/2(θ̂∗n − θ̂n) → Nk(0, I) as n → ∞. (A.13)

One can also appeal to Theorem 1 and Lemma 3 of Ljung and Caines (1979) to
establish the bootstrap analogues of (A.1) and (A.9):

(θ̂∗n − θ̂n) → 0 almost surely as n → ∞, (A.14)

V ∗(2)
n (θ) − W ∗(2)

n (θ) → 0 almost surely as n → ∞, uniformly in θ. (A.15)

We now present the statement and proof of our final lemma.

Lemma 3.
(a) nE∗{(θ̂∗n − θ̂n)

′
V

(2)
n (γn)(θ̂∗n − θ̂n)} − nEo{(θ̂n − θ̄n)

′
V

(2)
n (βn)(θ̂n − θ̄n)} → 0

almost surely as n → ∞.
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(b) nE∗{(θ̂∗n − θ̂n)
′
V

(2)
n (γn)(θ̂∗n − θ̂n)} − nEo{(θ̂n − θ̄n)

′
W

(2)
n (ηn)(θ̂n − θ̄n)} → 0

almost surely as n → ∞.

Here, γn is a random vector which lies between θ̂∗n and θ̂n, and βn and ηn are
random vectors which lie between θ̂n and θ̄n.

Proof. First, we consider the expression nE∗{(θ̂∗n − θ̂n)
′
V

(2)
n (γn)(θ̂∗n − θ̂n)}. We

show that as n → ∞, this quantity differs from

tr{(W (2)
n (θ̄n))−1Un(θ̄n)} (A.16)

by an amount tending to zero almost surely.
Using (3.5) of Ljung and Caines (1979) along with (A.11), we can write

√
n(θ̂∗n − θ̂n)

′
=

√
nV ∗(1)

n (θ̂n)
′
(V ∗(2)

n (αn))−1, (A.17)

where αn is a random vector between θ̂∗n and θ̂n. Now by (A.15), (A.10), (A.9),
and the consistency results (A.14) and (A.1),

V ∗(2)
n (αn) = W (2)

n (θ̄n) + oa.s.(1). (A.18)

Also, by (A.9), and the consistency results (A.14) and (A.1),

V (2)
n (γn) = W (2)

n (θ̄n) + oa.s.(1). (A.19)

Using representation (A.17) along with (A.18) and (A.19), we can establish that

n(θ̂∗n − θ̂n)
′
V (2)

n (γn)(θ̂∗n − θ̂n) = n(V ∗(1)
n (θ̂n))

′
(W (2)

n (θ̄n))−1(V ∗(1)
n (θ̂n)) + oa.s.(1).

Applying the bootstrap expectation operator to both sides of the preceding ex-
pression and utilizing (A.12), we obtain

nE∗{(θ̂∗n − θ̂n)
′
V (2)

n (γn)(θ̂∗n − θ̂n)}
= nE∗{(V ∗(1)

n (θ̂n))
′
(W (2)

n (θ̄n))−1(V ∗(1)
n (θ̂n))} + oa.s.(1)

= tr{(W (2)
n (θ̄n))−1[nE∗{(V ∗(1)

n (θ̂n))(V ∗(1)
n (θ̂n))

′}]} + oa.s.(1)

= tr{(W (2)
n (θ̄n))−1U∗

n(θ̂n)} + oa.s.(1)

= tr{(W (2)
n (θ̄n))−1Un(θ̄n)} + oa.s.(1). (A.20)

Next, consider the quadratic expressions

n(θ̂n − θ̄n)
′
V (2)

n (βn)(θ̂n − θ̄n) and n(θ̂n − θ̄n)
′
W (2)

n (ηn)(θ̂n − θ̄n).

We show that as n → ∞, the difference between these quadratics tends almost
surely to zero. We then show that as n → ∞, the difference between the expec-
tation of either quadratic and (A.16) tends to zero. This combined with (A.20)
will establish the lemma.
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Using (3.5) of Ljung and Caines (1979), we can write
√

n(θ̂n − θ̄n)
′
=

√
nV (1)

n (θ̄n)
′
(V (2)

n (δn))−1, (A.21)

where δn is a random vector between θ̂n and θ̄n. Now by (A.9) and the consistency
result (A.1), we have

V (2)
n (δn) = W (2)

n (θ̄n) + oa.s.(1). (A.22)

Also by (A.9) and (A.1),

V (2)
n (βn) = W (2)

n (θ̄n) + oa.s.(1) and W (2)
n (ηn) = W (2)

n (θ̄n) + oa.s.(1). (A.23)

Using representation (A.21) along with (A.22) and (A.23), we can argue that as
n → ∞,

n(θ̂n − θ̄n)
′
V (2)

n (βn)(θ̂n − θ̄n) and n(θ̂n − θ̄n)
′
W (2)

n (ηn)(θ̂n − θ̄n)

each differ from
n(V (1)

n (θ̄n))
′
(W (2)

n (θ̄n))−1(V (1)
n (θ̄n))

by an amount which tends almost surely to zero.
Thus, as n → ∞,

nEo{(θ̂n − θ̄n)
′
V (2)

n (βn)(θ̂n − θ̄n)} and nEo{(θ̂n − θ̄n)
′
W (2)

n (ηn)(θ̂n − θ̄n)}
each differ from

nEo{(V (1)
n (θ̄n))

′
(W (2)

n (θ̄n))−1(V (1)
n (θ̄n))}

= tr{(W (2)
n (θ̄n))−1[nEo{(V (1)

n (θ̄n))(V (1)
n (θ̄n))

′}]}
= tr{(W (2)

n (θ̄n))−1Un(θ̄n)}
by an amount which converges to zero.

This completes the proof of the lemma.
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