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Abstract: The phenomenon of hysteresis has been observed in many economic time

series, especially in unemployment rates. To study the hysteretic patterns at differ-

ent quantiles, this study considers a conditional quantile estimation for hysteretic

autoregressive models, and derives its asymptotic properties. Simulation exper-

iments are conducted to evaluate the finite-sample performance of our method,

and its usefulness is further demonstrated by an analysis of the growth rates of

unemployment rates.
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1. Introduction

The threshold model (Tong and Lim (1980)) has been shown to be highly

successful in interpreting time-irreversibility, limit cycles, asymmetric dynamics,

and so on; see Tong (1990) for a comprehensive exposition. However, it is well

known that the model does not work well around the boundaries between regimes

(Wu and Chen (2007)), possibly due to a sudden change in the probability struc-

ture when a threshold process switches regimes. This problem has been reduced,

to some extent, by other regime-switching models, such as the smooth-transition

threshold models in Chan and Tong (1986), discrete-state Markov switching mod-

els in Hamilton (1989) and McCulloch and Tsay (1994), and a threshold variable-

driven switching model in Wu and Chen (2007). However, although they grant

the threshold model greater flexibility by changing the piecewise linear structure

or introducing latent random variables to the regime-switching mechanism, in

general, they lack a physical interpretation.

The phenomenon of hysteresis has been observed in many economic time

series, especially in unemployment rates (Brunello (1990); Roed (2002); Song

and Wu (1997, 1998)). Economic theory decomposes the unemployment rate

into two components: a short-term cyclical and a long-term natural rate. When
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there is a negative shock to the economy, the cyclical rate will rise, but the natural

rate may also rise, owing to the propagation effect of the shock. There are also

microeconomic interpretations. First, the unemployed may lose skills, and thus

have more difficulty in returning to work. Second, owing to the wage bargaining

institution and labor turnover costs, incumbent workers have an incentive to

bargain for higher wages when the economy begins to recover, which renders the

wage level higher than the market equilibrium level (Blanchard and Summers

(1986)). As a result, the observed unemployment rate will be pushed up, and

remains high for longer than expected; see Amable et al. (1995) and Perez-Alonso

and Sanzo (2011).

Li et al. (2015) proposed a hysteretic autoregressive (HAR) time series model

that combines threshold models and the phenomenon of hysteresis,

yt =

{
θ01 + θ11yt−1 + · · ·+ θp1yt−p + σ1εt, Rt = 1,

θ02 + θ12yt−1 + · · ·+ θp2yt−p + σ2εt, Rt = 0,
(1.1)

with the regime indicator

Rt =


1 yt−d ≤ rL,
0 yt−d > rU ,

Rt−1 rL < yt−d ≤ rU .

(1.2)

Because the hysteresis zone (rL, rU ] acts as a buffer for the regime switching,

a better model fit is expected. Moreover, when rL = rU , the hysteretic model

reduces to a threshold model, which corresponds to the case without hysteresis;

see Section 2. Owing to the phenomenon of hysteresis in unemployment rates, it is

of interest to apply the hysteretic model in (1.1) and (1.2) to the corresponding

sequence. Moreover, the movement of the natural unemployment rate can be

approximately separated into two phases, one rising up and the other returning

back, which may correspond to the upper and lower regimes for (1.2).

In the meanwhile, since the work of Koenker and Bassett (1978), the quan-

tile regression has become a valuable tool for analyzing the conditional quantile

functions of a response variable. Compared with the conditional mean regression,

a quantile regression provides a more comprehensive analysis on how predictors

may influence different aspects of the conditional distribution of the response;

see Koenker (2005) for a comprehensive introduction. Koenker and Xiao (2006)

proposed the quantile autoregressive (AR) model, the first quantile model in the

literature on time series. Kato (2009) extended the convexity arguments to the

scenario under which the estimators are derived as a stochastic process, provid-
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ing a useful tool to theoretically study quantile regression and threshold models.

Kuan, Michalopoulos and Xiao (2017) studied time series models with possible

threshold structures at some quantile levels, and Cai and Stander (2008) con-

sidered a Bayesian approach to estimate the conditional quantiles of threshold

AR processes; see also Cai (2010). Galvao et al. (2014) developed a uniform test

for linearity against the threshold effect of the quantile regression, and Zhang,

Wang and Zhu (2014) suggested a CUSUM-type test for the threshold at some

quantile levels. In particular, Galvao, Montes-Rojas and Olmo (2011) consid-

ered a conditional quantile estimation for the threshold AR model, finding that

the structures differ significantly by quantile for the US monthly unemployment

rate. Together with the phenomenon of hysteresis in economic time series, this

motivates us to consider the conditional quantile estimation for HAR models.

The remainder of this paper is organized as follows. Section 2 describes

the model setting and the estimating procedure. The asymptotic properties are

derived in Section 3. Section 4 conducts simulation experiments to evaluate the

finite-sample performance of the conditional quantile estimation. A sequence of

growth rates of the unemployment rate is analyzed in Section 5. Section 6 gives

a short conclusion and discussion. All technical proofs are provided in the online

Supplementary Material.

2. Conditional Quantile Estimation for HAR Models

For a fixed τ ∈ (0, 1), the τth conditional quantile of the HAR process,

generated by (1.1) and (1.2), has the form of

Qyt(τ |Ft−1) =

{
θ01,τ + θ11,τyt−1 + · · ·+ θp1,τyt−p, Rt,τ = 1,

θ02,τ + θ12,τyt−1 + · · ·+ θp2,τyt−p, Rt,τ = 0,
(2.1)

with the regime indicator

Rt,τ =


1 yt−dτ ≤ rL,τ ,
0 yt−dτ > rU,τ ,

Rt−1,τ rL,τ < yt−dτ ≤ rU,τ ,

where Ft is the σ-field generated by {yt, yt−1, . . . }, dτ is the delay parameter,

yt−dτ is the hysteresis variable, and (rL,τ , rU,τ ] is the hysteresis zone. Here, we use

subscripts to emphasize the dependence on τ . After some algebraic calculation,

it can be verified that, in the almost surely sense,

Rt,τ = I{yt−dτ ≤ rL,τ}+ I{rL,τ < yt−dτ ≤ rU,τ}Rt−1,τ (2.2)
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= I{yt−dτ ≤ rL,τ}+

∞∑
j=0

j∏
i=0

I{rL,τ < yt−dτ−i ≤ rU,τ}I{yt−dτ−j−1 ≤ rL,τ},

where I(·) is the indicator function. When rL,τ = rU,τ , it holds that Rt,τ =

I{yt−dτ ≤ rL,τ}, which corresponds to a threshold AR model without hysteresis.

Let n0 = max(p, dmax). For an observed sequence {yt,−n0 + 1 ≤ t ≤ n}, we next

consider the conditional quantile estimation for model (2.1).

Denote the parameter vector by λτ = (θTτ , dτ , rL,τ , rU,τ )T , where θ1,τ =

(θ01,τ , . . . , θp1,τ )T , θ2,τ = (θ02,τ , . . . , θp2,τ )T , and θτ = (θT1,τ , θ
T
2,τ )T . Let Θ be

a compact set of R2p+2, [a, b] be a predetermined interval, and dmax be a prede-

termined positive integer. For the true value of parameter vector λτ , we assume

that θ0τ is an interior point of Θ, a < r0L,τ < r0U,τ < b, and d0τ ∈ D = {1, . . . , dmax}.
Let xt = (1, yt−1, . . . , yt−p)

T . Then, model (2.1) can be rewritten in the

following compact form:

Qyt(τ |Ft−1) = xTt θ1,τRt(rL,τ , rU,τ , dτ ) + xTt θ2,τ [1−Rt(rL,τ , rU,τ , dτ )], (2.3)

where, from (2.2), the regime indicator function Rt(rL,τ , rU,τ , dτ ) depends on past

observations infinitely far away, because rL,τ < rU,τ . For fixed rL,τ , rU,τ , and

dτ , the first few observations of the hysteresis variable, say {y1−dτ , . . . , yt0−dτ},
may fall within the hysteresis zone (rL,τ , rU,τ ], such that we cannot identify

the corresponding regimes. For simplicity, we can assign them to the lower

regime, and denote the resulting regime indicator function by R̃t(rL,τ , rU,τ , dτ ).

Note that the exact value of Rt0+1(rL,τ , rU,τ , dτ ) is known, and it holds that

R̃t(rL, rU,τ , dτ ) = Rt(rL,τ , rU,τ , dτ ), for t0 < t ≤ n.

Let Ln(λτ ) =
∑n

t=1 ρτ [yt −Mt(λτ )] be the loss function, where

Mt(λτ ) = xTt θ1,τRt(rL,τ , rU,τ , dτ ) + xTt θ2,τ [1−Rt(rL,τ , rU,τ , dτ )],

and ρτ (u) = u[τ − I(u < 0)] is the check function. When the regime indicator

function Rt(rL,τ , rU,τ , dτ ) in Mt(λτ ) and Ln(λτ ) is replaced with R̃t(rL,τ , rU,τ , dτ ),

we denote them by M̃t(λτ ) and L̃n(λτ ), respectively. The conditional quantile

estimator of model (2.1) can then be defined as

λ̂n,τ = argmin L̃n(λτ ),

where λ̂n,τ = (θ̂Tn,τ , d̂τ , r̂L,τ , r̂U,τ )T .

From (2.3), numerically minimizing L̃n(λτ ) for each fixed rL,τ , rU,τ , and dτ
is equivalent to performing a linear quantile regression. We denote the resulting

minimizer by θ̃n,τ (rL,τ , rU,τ , dτ ). Note that L̃n[θ̃n,τ (rL,τ , rU,τ , dτ ), rL,τ , rU,τ , dτ ] is
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a stepwise function with possible jumps at dτ ∈ D and

(rL,τ , rU,τ ) ∈ {(yt−dτ , ys−dτ ) : 1 ≤ t, s ≤ n; yt−dτ ≤ ys−dτ};

see Li and Li (2008, 2011). As a result, it can be minimized by searching over

all jumps, and the corresponding minimizer is our conditional quantile estimator

(d̂τ , r̂L,τ , r̂U,τ ). We can verify that θ̂n,τ = θ̃n,τ (r̂L,τ , r̂U,τ , d̂τ ).

For the initial value of regime indicator function Rt(rL,τ , rU,τ , dτ ), we may

alternatively assign the first t0 observations to the upper regime, and denote

by R̃∗t (rL,τ , rU,τ , dτ ) the resulting regime indicator function. Let L̃∗n(λτ ) be the

corresponding loss function, and λ̂∗n,τ = argmin L̃∗n(λτ ). We can choose λ̂∗n,τ as

the estimator if L̃∗n(λ̂∗n,τ ) < L̃n(λ̂n,τ ). In practice, the values of a and b can be

set to some percentiles of the observed data.

We next adopt the Bayesian information criterion (BIC) of Lee, Noh and

Park (2014) to select the order p. Denote R̃t,τ = R̃t(r̂L,τ , r̂U,τ , d̂τ ), for simplic-

ity. By temporarily assuming that εt in (1.1) follows an asymmetric Laplace

distribution, with density

f(x) = τ(1− τ) exp {−ρτ (x)} ,

we can define

BIC(p) = 2n1 log σ̂1n + (p+ 1) log n1 + 2n2 log σ̂2n + (p+ 1) log n2, (2.4)

where σ̂1n = n−11

∑n
t=1 ρτ (yt−xTt θ̂1n,τ )R̃t,τ , σ̂2n = n−12

∑n
t=1 ρτ (yt−xTt θ̂2n,τ )(1−

R̃t,τ ), n1 =
∑n

t=1 R̃t,τ , n2 = n− n1, and θ̂n,τ = (θ̂T1n,τ , θ̂
T
2n,τ )T . We can define the

Akaike information criterion (AIC) in a similar way. Moreover, it is possible to

consider different orders, say p1 and p2, for the two regimes of model (2.1) in the

information criteria proposed above.

3. Asymptotic Results

Assumption 1. It holds that θ01,τ 6= θ02,τ , P (yt ∈ [a, b]) < 1, and the time series

{yt} is strictly stationary, with E(|yt|2+ς) <∞, for some ς > 0.

Theorem 1. If Assumption 1 holds, then λ̂n,τ → λ0τ almost surely as n → ∞,

where λ0τ = (θ0Tτ , r0L,τ , r
0
U,τ
, d0τ )T and θ0τ = (θ0T1,τ , θ

0T
2,τ )T .

Note that the delay parameter dτ only takes discrete integer values. It then

holds that d̂τ = d0τ when the sample size n is sufficiently large. Without loss

of generality, the true delay parameter d0τ is assumed to be known for the re-

mainder of this section; hence, we omit it from the parameter vector λτ and the

corresponding functions.
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Let Yt = (yt, . . . , yt−p+1, Rt)
T . From (1.1) and (1.2), it can be verified

that {Yt} is a Markov chain, and we denote its k-step transition probability

by P k(x, z). Let

Ω0 = diag {E{xtxTt Rt,τ}, E{xtxTt (1−Rt,τ )}} ,
Ω1 = diag

{
E{ft[F−1t (τ)]xtxTt Rt,τ}, E{ft[F

−1
t (τ)]xtxTt (1−Rt,τ )}

}
,

where ft(·) and Ft(·) are the density and distribution functions, respectively, of

yt, conditional on Ft−1.

Assumption 2. The Markov chain {Yt} has a unique invariant measure π(·),
such that ∃K > 0 and ∃κ ∈ [0, 1), ∀x ∈ Rp × {0, 1} and ∀k ∈ N, ‖P k(x, ·) −
π(·)‖v ≤ K(1 + ‖x‖)κk, where ‖ · ‖v and ‖ · ‖ denote the total variation norm and

the Euclidean norm, respectively.

Assumption 3. There exist p − 1 constants zp−1, . . . , zp−dτ+1, zp−dτ−1, . . . , z0,

such that ZT (θ01,τ − θ02,τ ) 6= 0 for all zp−dτ ∈ [r0L,τ , r
0
U,τ ], where Z = (1, zp−1, . . . ,

z0)
T . Furthermore, it is assumed that dτ ≤ p, without loss of generality.

Assumption 4. Ft(·) is absolutely continuous, 0 < ft(u) <∞ on U = {u : 0 <

Ft(u) < 1}, and ft[F
−1
t (τ)] > 0.

Assumptions 1–3 are regularity conditions used in Li et al. (2015), and As-

sumption 4 is necessary to derive the conditional quantile estimation (Koenker

and Xiao (2006)).

Theorem 2. Suppose that E(|yt|4+ς) < ∞ for some ς > 0, and matrix Ω1 is

positive-definite. If Assumptions 1–4 hold, then

(a) n(r̂L,τ − r0L,τ ) = Op(1) and n(r̂U,τ − r0U,τ ) = Op(1);

(b)
√
n supn(|rL,τ−r0L,τ |+|rU,τ−r0U,τ |)≤B ‖θ̃n,τ (rL,τ , rU,τ ) − θ̃n,τ (r0L,τ , r

0
U,τ )‖ = op(1)

for any fixed 0 < B < ∞, where θ̃n,τ (rL,τ , rU,τ ) is defined in the previous

section;

(c)
√
n(θ̂n,τ − θ0τ )→d N(0,Σ), where Σ = τ(1− τ)Ω−11 Ω0Ω

−1
1 .

In real applications, we may be interested in the quantities of Ξθτ , where Ξ

is a known k× (2p+ 2) matrix with a full rank; see, for example, the generalized

linear hypotheses in regression models. From Theorem 2, it holds that
√
nΞ(θ̂n,τ−

θ0τ )→d N(0,ΞΣΞT ); hence, we can design its inference tools accordingly.

The matrix Ω1 in the asymptotic variance of θ̂n,τ involves the conditional

density ft(·). As in Koenker (2005) and Li, Li and Tsai (2015), we first consider
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a nonparametric method to estimate ft[F
−1
t (τ)]:

f̂t[F
−1
t (τ)] =

2h

Q̂yt(τ + h|Ft−1)− Q̂yt(τ − h|Ft−1)
,

where Q̂yt(τ |Ft−1) = Mt(λ̂n,τ ). The matrices Ω0 and Ω1 can then be estimated

by the sample averages, and hence the asymptotic variance Σ.

Alternatively, we may consider a bootstrap method to approximate the vari-

ance of θ̂n,τ . From Theorems 1 and 2, without loss of generality, the parameters of

rL,τ , rU,τ , and dτ can be assumed to be known. By adopting the random weight-

ing method of Rao and Zhao (1992) and Li, Li and Tsai (2015), we suggest the

following bootstrapping procedure:

(a) Generate nonnegative independent and identically distributed (i.i.d.) ran-

dom weights {ωt} with both mean and variance equal one.

(b) Calculate

θ̂∗n,τ = argmin

n∑
t=1

ωtρτ [yt − M̃t(θτ , r̂L,τ , r̂U,τ , d̂τ )],

where (r̂L,τ , r̂U,τ , d̂τ ) denotes the conditional quantile estimator of (rL,τ , rU,τ ,

dτ ).

(c) Repeat Steps (a) and (b) B times, and denote the resulting quantities by

{θ̂∗(1)n,τ , . . . , θ̂
∗(B)
n,τ }. The sample variance of {θ̂∗(k)n,τ − θ̂n,τ , 1 ≤ k ≤ B} can

then be used to approximate the variance of θ̂n,τ .

Theorem 3. Under the conditions of Theorem 2, it holds that, conditional on

y1, . . . , yn,
√
n(θ̂∗n,τ − θ̂n,τ )→d N(0,Σ)

in probability as n→∞.

Let p̂n = argmin0≤p≤pmax
BIC(p). Next, we give a theoretical justification for

the BIC proposed in the previous section.

Theorem 4. Under the conditions of Theorem 2, if pmax ≥ p0, then P{p̂n =

p0} → 1 as n→∞, where p0 is the true order; that is, |θ01,p0 |+ |θ
0
2,p0 | 6= 0.

Using a method similar to that of the above theorem, we can show that

minimizing the AIC tends to select an order that is greater than or equal to p0.
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4. Simulation Experiments

This section conducts three simulation experiments to evaluate the finite-

sample performance of the conditional quantile estimation. In all experiments,

we consider four quantiles, τ = 0.2, 0.4, 0.6, and 0.8, and three sample sizes,

n = 100, 200, and 500. There are 100 replications for each combination of

quantile and sample size. The number of bootstrapped samples B is set to 1,000.

The data-generating process in the first experiment is

yt =

{
θ01(Ut) + θ11(Ut)yt−1, Rt = 1,

θ02(Ut) + θ12(Ut)yt−1, Rt = 0,
(4.1)

with

Rt =


1, yt−2 ≤ 1.12,

0, yt−2 > 1.85,

Rt−1, otherwise,

where {Ut} are i.i.d. standard uniform random variables over [0, 1], θ01(x) =

0.85 + 0.15x, θ11(x) = 1/(e−x + 1), θ02(x) = 0.5, and θ12(x) = 1/(e−x + e0.5).

The conditional quantile estimation in Section 2 is applied with a (or b) being the

10th (or 90th) percentile of each sample. The asymptotic variances of θ̂n,τ are

estimated using both the nonparametric method and a bootstrapping approxi-

mation. As in Koenker and Xiao (2006) and Li, Li and Tsai (2015), we choose

the bandwidth of 3hHS in the nonparametric method, where

hHS = n−1/3
[
Φ−1

(
1− α

2

)]2/3 [ 1.5φ2Φ−1(τ)

2 [Φ−1(τ)]2 + 1

]1/3
,

and Φ(·) is the distribution of the standard normal distribution; see Hall and

Sheather (1988). Tables 1 and 2 list the estimation results for τ = {0.2, 0.4}
and {0.6, 0.8}, respectively. They include the bias (BIAS), and the asymptotic

variances calculated using the nonparametric method (ASD) and the bootstrap

method (BSD). The results show that both the bias and the ESDs get smaller

as the sample size increases. Despite that, in most cases, the BSDs are slightly

above the ASDs. In addition, they are close to each other and close to the ESDs

when the sample size is as small as n = 200.

The second experiment employs the same data-generating process as that in

(4.1), with the regime indicator function
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Table 1. Estimation results for the HAR models in the first experiment with τ = 0.2
and 0.4.

n θ̂01,τ θ̂11,τ θ̂02,τ θ̂12,τ r̂L,τ r̂U,τ
τ = 0.2

100 BIAS 0.0035 0.0029 0.0012 −0.0002 −0.0085 −0.0204
ESD 0.0965 0.0693 0.0358 0.0269 0.0126 0.0265
ASD 0.0970 0.0680 0.0392 0.0295
BSD 0.1083 0.0744 0.0413 0.0307

200 BIAS 0.0095 −0.0031 0.0012 −0.0008 −0.0051 −0.0068
ESD 0.0652 0.0471 0.0285 0.0216 0.0080 0.0146
ASD 0.0687 0.0481 0.0278 0.0209
BSD 0.0731 0.0512 0.0291 0.0216

500 BIAS −0.0006 0.0010 0.0024 −0.0009 −0.0062 −0.0060
ESD 0.0476 0.0317 0.0165 0.0124 0.0044 0.0116
ASD 0.0436 0.0305 0.0176 0.0133
BSD 0.0474 0.0328 0.0176 0.0132

τ = 0.4
100 BIAS 0.0033 −0.0016 −0.0015 0.0001 −0.0071 −0.0136

ESD 0.1271 0.0878 0.0382 0.0290 0.0125 0.0247
ASD 0.1167 0.0814 0.0445 0.0334
BSD 0.1192 0.0828 0.0444 0.0329

200 BIAS −0.0072 0.0050 −0.0031 0.0013 −0.0046 −0.0079
ESD 0.0854 0.0590 0.0322 0.0244 0.0094 0.0185
ASD 0.0828 0.0578 0.0317 0.0239
BSD 0.0888 0.0615 0.0327 0.0247

500 BIAS −0.0117 0.0084 0.0055 −0.0035 −0.0026 −0.0007
ESD 0.0512 0.0360 0.0202 0.0153 0.0063 0.0100
ASD 0.0524 0.0367 0.0200 0.0151
BSD 0.0533 0.0369 0.0207 0.0156

Rt =


1, yt−2 ≤ 2.55,

0, yt−2 > 3.57,

Rt−1, otherwise,

where θ01(x) = F−1χ2
1

[1/(e−x + 1)], θ11(x) = 1, θ02(x) = 0.5, θ12(x) = 1/(e−x + 1),

and F−1χ2
1

(·) is the quantile function of the χ2
1 distribution with one degree of

freedom. The generated sequences are all nonnegative. There is a unit root

in the structure at the lower regime, but the overall model remains stationary

(Koenker and Xiao (2004)). All other settings are the same as those in the

first experiment. The estimation results are presented in Tables 3 and 4 for

τ = {0.2, 0.4} and {0.6, 0.8}, respectively. Similar findings are observed.
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Table 2. Estimation results for the HAR models in the first experiment with τ = 0.6
and 0.8.

n θ̂01,τ θ̂11,τ θ̂02,τ θ̂12,τ r̂L,τ r̂U,τ
τ = 0.6

100 BIAS −0.0026 −0.0033 −0.0009 0.0005 −0.0079 −0.0142
ESD 0.1105 0.0753 0.0375 0.0266 0.0133 0.0259
ASD 0.1132 0.0792 0.0406 0.0306
BSD 0.1141 0.0786 0.0424 0.0313

200 BIAS −0.0047 0.0016 0.0042 −0.0026 −0.0008 −0.0049
ESD 0.0845 0.0577 0.0302 0.0225 0.0081 0.0170
ASD 0.0800 0.0558 0.0288 0.0217
BSD 0.0822 0.0567 0.0302 0.0227

500 BIAS −0.0001 −0.0005 −0.0005 0.0005 0.0021 0.0031
ESD 0.0539 0.0385 0.0202 0.0153 0.0059 0.0057
ASD 0.0508 0.0355 0.0182 0.0137
BSD 0.0524 0.0363 0.0185 0.0138

τ = 0.8
100 BIAS −0.0039 −0.0015 0.0095 −0.0088 −0.0049 −0.0134

ESD 0.0923 0.0637 0.0320 0.0255 0.0126 0.0264
ASD 0.0885 0.0616 0.0302 0.0227
BSD 0.0943 0.0661 0.0330 0.0253

200 BIAS −0.0007 −0.0014 0.0004 −0.0010 0.0006 −0.0044
ESD 0.0667 0.0440 0.0206 0.0151 0.0082 0.0165
ASD 0.0627 0.0437 0.0211 0.0158
BSD 0.0635 0.0445 0.0224 0.0168

500 BIAS −0.0042 0.0013 0.0011 −0.0010 0.0042 0.0047
ESD 0.0402 0.0272 0.0124 0.0094 0.0043 0.0040
ASD 0.0397 0.0277 0.0134 0.0101
BSD 0.0416 0.0290 0.0141 0.0107

In the third experiment, we perform a conditional least squares estimation

(Li et al. (2015)) on the samples generated in the first two experiments. The

estimation results are given in Table 5, and both the bias and the ESDs decrease

as the sample size increases. Note that the data-generating process in (4.1) can

be rewritten in a mean regression form,

yt =

{
θ01 + θ11yt−1 + ε1t, Rt = 1,

θ02 + θ12yt−1 + ε2t, Rt = 0,

where θij = E[θij(Ut)] for 0 ≤ i ≤ 1 and 1 ≤ j ≤ 2, εjt = θ0j(Ut)−θ0j+[θ1j(Ut)−
θ1j ]yt−1 for 1 ≤ j ≤ 2, and {(ε1t, ε2t),Ft} is a martingale difference sequence. As

a result, both the consistency and the asymptotic normality can be obtained.
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Table 3. Estimation results for the HAR models in the second experiment with τ = 0.2
and 0.4.

n θ̂01,τ θ̂11,τ θ̂02,τ θ̂12,τ r̂L,τ r̂U,τ
τ = 0.2

100 BIAS 0.0225 −0.0039 0.0209 −0.0045 −0.0349 −0.0457
ESD 0.1294 0.0424 0.1441 0.0460 0.0397 0.0582
ASD 0.1298 0.0425 0.1518 0.0509
BSD 0.1425 0.0466 0.1595 0.0524

200 BIAS 0.0034 −0.0001 0.0035 −0.0023 −0.0139 −0.0183
ESD 0.0918 0.0298 0.0993 0.0334 0.0228 0.0313
ASD 0.0918 0.0301 0.1080 0.0361
BSD 0.0948 0.0319 0.1118 0.0370

500 BIAS −0.0080 0.0037 −0.0080 0.0041 −0.0058 −0.0023
ESD 0.0547 0.0186 0.0692 0.0234 0.0142 0.0097
ASD 0.0576 0.0189 0.0678 0.0227
BSD 0.0608 0.0203 0.0702 0.0236

τ = 0.4
100 BIAS 0.0281 −0.0059 −0.0249 0.0070 −0.0273 −0.0385

ESD 0.1954 0.0648 0.1564 0.0552 0.0392 0.0576
ASD 0.1841 0.0605 0.1757 0.0589
BSD 0.1965 0.0640 0.1853 0.0610

200 BIAS −0.0085 0.0029 0.0005 0.0001 −0.0106 −0.0210
ESD 0.1384 0.0446 0.1286 0.0445 0.0216 0.0336
ASD 0.1292 0.0424 0.1257 0.0421
BSD 0.1339 0.0442 0.1313 0.0440

500 BIAS −0.0049 0.0017 0.0022 −0.0003 −0.0019 −0.0019
ESD 0.0752 0.0257 0.0849 0.0274 0.0131 0.0104
ASD 0.0816 0.0268 0.0804 0.0269
BSD 0.0841 0.0276 0.0821 0.0274

5. An Empirical Example

We study unemployment rates, because these have important implications for

economic policymaking. Many researchers have studied the asymmetric dynam-

ics in the response of unemployment to economic expansions and contractions.

Koenker and Xiao (2006) used the quantile AR model to analyze US quarterly

and annual unemployment rates, finding that the estimated AR roots vary over

quantiles. Galvao, Montes-Rojas and Olmo (2011) carried out a thorough study

of the asymmetric dynamics of the conditional distribution of US monthly un-

employment growth after World War II. The study is based on the threshold AR

model, and a stronger asymmetric persistence is suggested in higher quantiles.

At the same time, hysteresis has been studied extensively in the literature, and
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Table 4. Estimation results for the HAR models in the second experiment with τ = 0.6
and 0.8.

n θ̂01,τ θ̂11,τ θ̂02,τ θ̂12,τ r̂L,τ r̂U,τ
τ = 0.6

100 BIAS −0.0010 0.0002 −0.0017 −0.0017 −0.0316 −0.0383
ESD 0.2095 0.0658 0.1680 0.0549 0.0436 0.0487
ASD 0.2061 0.0678 0.1688 0.0566
BSD 0.2097 0.0688 0.1784 0.0606

200 BIAS −0.0292 0.0087 −0.0336 0.0096 −0.0071 −0.0093
ESD 0.1373 0.0456 0.1214 0.0429 0.0216 0.0278
ASD 0.1456 0.0477 0.1199 0.0402
BSD 0.1439 0.0473 0.1293 0.0428

500 BIAS 0.0099 −0.0041 0.0025 −0.0005 0.0014 −0.0009
ESD 0.0997 0.0344 0.0796 0.0276 0.0104 0.0074
ASD 0.0920 0.0302 0.0766 0.0257
BSD 0.0958 0.0316 0.0798 0.0262

τ = 0.8
100 BIAS −0.0042 0.0006 −0.0121 0.0019 −0.0204 −0.0384

ESD 0.2004 0.0684 0.1438 0.0458 0.0357 0.0549
ASD 0.1881 0.0615 0.1323 0.0443
BSD 0.1947 0.0639 0.1375 0.0454

200 BIAS 0.0023 −0.0027 0.0023 −0.0020 −0.0084 −0.0153
ESD 0.1436 0.0452 0.1057 0.0357 0.0188 0.0337
ASD 0.1328 0.0435 0.0928 0.0311
BSD 0.1349 0.0440 0.1006 0.0335

500 BIAS −0.0077 0.0004 −0.0117 0.0037 0.0036 −0.0016
ESD 0.0838 0.0274 0.0631 0.0209 0.0079 0.0087
ASD 0.0841 0.0276 0.0589 0.0198
BSD 0.0877 0.0288 0.0617 0.0205

has been confirmed for the unemployment rate (Blanchard and Summers (1986);

Jaeger and Parkinson (1994); Perez-Alonso and Sanzo (2011)). As a result, the

HAR model may be more suitable for modeling such asymmetry.

This section considers the growth rate of US monthly unemployment rates,

rather than the unemployment rates themselves, as the mean reverting behavior

(Galvao, Montes-Rojas and Olmo (2011)). The study period is January 1948

to December 2007; the time plot is presented in Figure 1. We consider eight

different quantiles τ = {0.05, 0.10, 0.25, 0.40, 0.60, 0.75, 0.90, 0.95}. The BIC at

(2.4) is employed to select the values of p and d, with pmax = dmax = 5; the

selection results are given in Table 6. It can be seen that p = 1 is selected for all

τ except 0.05 and 0.90, whereas d = 1 is chosen in all except three quantiles. For
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Table 5. Estimation results for the HAR models under a mean regression in the first
and second experiments.

n θ̂01,τ θ̂11,τ θ̂02,τ θ̂12,τ r̂L,τ r̂U,τ
First Experiment

100 BIAS −0.0078 0.0059 −0.0045 0.0021 −0.0088 −0.0189
ESD 0.0733 0.0509 0.0300 0.0230 0.0106 0.0238

200 BIAS −0.0032 0.0034 −0.0019 0.0017 −0.0036 −0.0045
ESD 0.0516 0.0387 0.0192 0.0137 0.0068 0.0084

500 BIAS 0.0039 −0.0035 −0.0023 0.0023 −0.0004 −0.0020
ESD 0.0334 0.0229 0.0149 0.0116 0.0018 0.0053

Second Experiment
100 BIAS −0.0268 0.0079 −0.0081 0.0016 −0.0382 −0.0544

ESD 0.1220 0.0408 0.1236 0.0392 0.0453 0.0560
200 BIAS 0.0012 0.0003 −0.0015 0.0012 −0.0153 −0.0182

ESD 0.0848 0.0278 0.0848 0.0283 0.0202 0.0251
500 BIAS 0.0076 −0.0025 0.0037 −0.0009 −0.0017 −0.0048

ESD 0.0586 0.0185 0.0527 0.0178 0.0095 0.0094

Figure 1. Growth rates, in percentages, of US monthly unemployment rates from January
1948 to December 2007.

ease of comparison, we fix p = d = 1. The estimation results are listed in Table

7 and Figure 2.

The fitted intercept for the upper regime crosses zero at τ = 0.40, but crosses

zero at τ = 0.60 for the lower regime; both are monotonically increasing with

τ . The slopes of the lower regime are all significantly greater than zero, which

suggests strong serially correlated behavior of the unemployment rates for this
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Table 6. Values of p and d selected by the BIC.

τ 0.05 0.1 0.25 0.4 0.6 0.75 0.9 0.95
p 4 1 1 1 1 1 2 1
d 2 1 1 2 1 1 1 2

−
−

−

−

−
−

−

− −

Figure 2. Estimated coefficients (solid lines) and their 95% confidence intervals (dotted
lines) for the AR (left panel) and HAR (middle and right panels) models from the
conditional quantile estimation.

regime. However, the slopes of the upper regime are all nonsignificant except for

the lower quantiles τ = 0.05 and 0.10; thus, the return series of the unemployment

rate exhibits memoryless behavior for this regime. This observation is in line with

the economic intuition that economic growth is usually considered the “normal”

state of an economy, whereas economic recessions are considered anomalies, and

should not last long. Therefore, for most of the sample period, the return series
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Table 7. Estimated coefficients, together with standard errors in parentheses, of the HAR
model from the conditional quantile estimation, and the percentages of observations (PO)
falling within the hysteresis zone.

τ θ̂01,τ θ̂11,τ θ̂02,τ θ̂12,τ r̂L,τ r̂U,τ PO
0.05 −5.66 0.48 −5.24 0.27 −1.30 3.65 0.47

(0.99) (0.13) (0.36) (0.08)
0.1 −3.99 0.37 −4.10 0.18 −1.30 3.65 0.47

(0.61) (0.08) (0.19) (0.06)
0.25 −2.10 0.31 −2.00 0.08 −1.70 0.00 0.06

(0.21) (0.06) (0.13) (0.06)
0.4 −1.02 0.35 −0.76 0.14 −1.70 0.00 0.06

(0.20) (0.05) (0.51) (0.08)
0.6 1.53 0.32 0.00 0.00 −1.30 3.10 0.44

(0.31) (0.08) (0.00) (0.00)
0.75 2.87 0.39 1.70 −0.03 −1.30 2.30 0.38

(0.33) (0.09) (0.23) (0.06)
0.9 7.45 0.56 3.76 0.01 1.30 3.65 0.21

(0.84) (0.18) (0.31) (0.08)
0.95 8.70 0.62 5.70 0.08 1.30 3.65 0.21

(0.91) (0.22) (0.40) (0.11)
Note: “0.00” refers to a value smaller than 0.005.

Table 8. Values of the BIC for the fitted HAR and TAR models with two (TAR2) and
three regimes (TAR3).

τ 0.05 0.1 0.25 0.4 0.6 0.75 0.9 0.95
HAR −694 −344 57 204 198 114 −243 −584
TAR2 −662 −322 65 213 221 127 −224 −565
TAR3 −685 −333 65 210 221 128 −232 −577

of the unemployment rate tend to exhibit strong serially correlated behavior

at relatively low levels (lower regime). Occasional large shocks might push the

series into the upper regime, but they will exit quickly owing to the lack of

memory. However, with the presence of the hysteresis zone, the series will not

immediately fall back into the lower regime, but instead will encounter delays,

or may even switch back and forth, leading to a period of high unemployment

that lasts longer than expected. Hence, by explicitly incorporating a hysteresis

zone, our model leads to an interpretation that dramatically differs from that of

the quantile threshold autoregressive (TAR) model of Galvao, Montes-Rojas and

Olmo (2011), and is more consistent with the economic intuition.

We also compare the HAR and TAR models with two and three regimes in



824 LI ET AL.

terms of the BIC; the results are given in Table 8. The evidence of hysteresis

is further reinforced by the observation that the BIC of the HAR model is the

lowest at all quantiles. We conclude that the HAR model is more suitable than

the TAR model for interpreting unemployment rates. Note that the BIC for the

HAR is supposed to be smaller than that for the TAR model with two regimes,

because the former includes the latter as a special case.

For the sake of comparison, we also fit the quantile AR model in Koenker

and Xiao (2006) to the data. The order is chosen as one, in line with the choice of

p in the HAR models; the fitted coefficients are presented in Figure 2. It can be

seen that the slope parameters of the fitted model do not significantly differ from

zero for lower quantiles, but are significantly positive for the upper quantiles,

τ = 0.75, 0.90, and 0.95. This implies the presence of asymmetric dynamics, and

hence the necessity of a regime-switching model; see also Figure 4 in Koenker

and Xiao (2006). Moreover, we calculate the conditional least squares estimation

for the AR and HAR models,

yt = 0.140.17 + 0.130.04yt−1 + εt,

and

yt =

{
0.150.19 + 0.440.07yt−1 + ε1t, Rt = 1,

−0.020.19 + 0.050.06yt−1 + ε2t, Rt = 0,

respectively, with d = 2, rL = −1.80, and rU = 0.00, where the standard errors

are given in the subscripts. For the fitted HAR model, the slope parameter of

the lower regime is significant and positive, whereas that of the upper regime,

similarly to its quantile counterparts, is not significantly different from zero. In

fact, they can be considered the averaged values over all quantiles; see also the

third experiment in the previous section. Finally, the fitted AR model seems to

offer a compromise between these two structures in the HAR model.

6. Conclusion

This study develops a conditional quantile estimation for HAR models, which

is useful for modeling economic time series with hysteresis, for example, unem-

ployment rates. This estimation gives us greater flexibility in understanding

the hysteresis patterns at different quantiles. The asymptotic behaviors of the

estimators are established.

Several open problems related to the conditional quantile estimation for HAR

models remain, which we leave to future research. First, an important task is to
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test for the existence of the threshold. Galvao et al. (2014) and Zhang, Wang and

Zhu (2014) proposed tests for the threshold effect at some quantile levels, and

Zhu, Yu and Li (2014) conducted a quasi-likelihood ratio test for the linearity

against hysteresis AR processes. It should be feasible to construct a test for

θ01,τ 6= θ02,τ in Assumption 1 by following Kato (2009), Galvao et al. (2014),

Zhang, Wang and Zhu (2014), and Zhu, Yu and Li (2014).

Second, we provide theoretical justifications for the super-consistency of the

estimated boundary parameters, r̂L,τ and r̂U,τ , only; thus, it is of interest to derive

their asymptotic distributions, as in Li et al. (2015) and Kuan, Michalopoulos

and Xiao (2017). Third, we would like to extend our theoretical results from a

fixed τ to a close set I ∈ (0, 1); the theoretical tools in Kato (2009) may be of

assistance here. Finally, it is important to construct a diagnostic tool to check

the adequacy of the fitted HAR model using the conditional quantile estimation.

Supplementary Material

The online Supplementary Material contains the proofs of Theorems 1 to 4.
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