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Abstract: Randomization is described by Fisher (1935) as the reasoned basis for in-

ference about the effectiveness of treatments. Fisher advocated both using random-

ization in designing experiments and using “randomization inference” to analyze

experiments that have been randomized. Randomization inference is inference that

assumes only the physical act of randomization for its validity. It provides exact,

distribution free inferences in randomized experiments. In this paper, we expand

the scope of randomization inference by developing randomization inference for the

trimmed mean of effects attributable to treatment. Trimmed means of the effects

attributable to treatment are interpretable summaries of the treatment effect that

are robust to outliers. We connect the inference problem for trimmed means of

effects attributable to treatment to a multiple choice knapsack problem, and use

an efficient combinatorial optimization algorithm.
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1. Introduction

Randomization is described by Fisher (1935) as the reasoned basis for infer-

ence about the effectiveness of treatments. Fisher advocated both using random-

ization in designing experiments and using “randomization inference” to analyze

experiments that have been randomized. Randomization inference is inference

that assumes only the physical act of randomization for its validity. It provides

exact, distribution free inferences in randomized experiments.

Traditionally, randomization inference has focused on constant additive and

multiplicative treatment effects (e.g., Moses (1965); Lehmann (1963, 1975)).

However, constant additive or multiplicative treatment effects are often unreal-

istic (Hill (2002)). Rosenbaum (2001, 2002a) developed an approach for making

randomization inferences in the presence of nonconstant treatment effects. For

ordered outcomes, Rosenbaum shows how to make inferences for (a) displace-

ment effects, the number of treated subjects whose outcome if taking the control

would be below a certain quantile of the distribution of outcomes if all subjects
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took the control and whose outcome would be above the quantile if taking the

treatment, and (b) the number of comparisons between outcomes of a treated

subject and a control subject which would be reversed if the treated subject were

instead assigned to the control. Lee (2000) presented conditions under which the

sign of the median treatment effect is identified.

In this paper, we expand the scope of randomization inference by developing

randomization inference for the trimmed mean of effects attributable to treat-

ment. The effects attributable to treatment are the effects of treatment for the

subjects in the experiment who were assigned to the treatment. We find confi-

dence intervals for the trimmed means of the effects attributable to treatment.

We focus on the trimmed means because these are concise summaries of the treat-

ment effect that are robust to outliers. We show that randomization inference

for the trimmed mean of the effects attributable to treatment can be formulated

as a multiple choice knapsack problem. Knapsack problems are a well researched

class of combinatorial optimization problems (Martello and Toth (1990)).

In Section 2, we establish the setup and notation, analogous to Rosenbaum

(2001). In Section 3, we state the statistical problem we are trying to solve – we

would like to perform hypothesis tests and construct confidence intervals for the

trimmed mean of effects attributable to treatment. In Section 4, we show how

to solve this problem by formulating our problem as a multiple choice knapsack

problem. In Section 5, we apply our method to analyze a study of the effect of

intrinsic vs. extrinsic motivation on creative writing and a study of remedying

education in India. Finally, some conclusions are given in Section 6.

2. Setup and Notations

Consider N subjects. Suppose that m out of N subjects are randomly chosen

to be exposed to treatment, and the remaining N −m subjects are exposed to a

control condition. Define the random variables Zi, i = 1, . . . , N , as

Zi =

{
1, The ith subject was exposed to treatment,

0, otherwise.

It follows that
∑N

i=1 Zi = m. Use B to denote the set of all the possible values

of the vector Z = (Z1, . . . , ZN )T , so |B| = N !/[m!(N −m)!], where | · | is used to

indicate the cardinality of the set B. We assume that the experiment is completely

randomized so that Z is selected at random from B, so P (Z = z) = 1/|B| for
each z ∈ B.

Let Y
(t)
i denote the response subject i would have if she were assigned the

treatment and Y
(c)
i the response she would have if assigned the control. In ran-

domization inference, the two potential responses under treatment and control



RANDOMIZATION INFERENCE FOR ATTRIBUTABLE EFFECTS 775

are treated as fixed features, and only the vector Z is random (Rosenbaum (2001);

Fisher (1935)). Y
(t)
i is observed if Zi = 1, and Y

(c)
i is observed if Zi = 0. Hence,

the observed response from subject i is Yi = ZiY
(t)
i +(1−Zi)Y

(c)
i , a random vari-

able depending on the random assignment of the treatment Zi (Fisher (1935)).

Obviously, we can observe both the vector Z and the vector Y = (Y1, . . . , YN ),

which include the information of the treatment assignment and the correspond-

ing responses. In this article, we assume that the treatment has a nonnegative

effect in that Y
(t)
i ≥ Y

(c)
i , for i = 1, . . . , N , as assumed by Rosenbaum (2001).

As discussed by Rosenbaum (2001), the model of a nonnegative treatment effect

cannot be verified or refuted by inspecting the responses of individuals, because

Y
(t)
i and Y

(c)
i are never jointly observed on the same person. However, Hamilton

(1979) noted that the standard epidemiological measures of effect on a binary

response can be reinterpreted in terms of the model of a nonnegative treatment ef-

fect and these measures are all consistent with the assumptions whenever treated

subjects are at increased risk. The nonnegative treatment effect may not hold

marginally, but hold for a subgroup of subjects defined by covariates, in which

case the analysis can be done for this subgroup.

The treatment effects for the subjects are denoted as A1 = Y
(t)
1 − Y

(c)
1 , . . .,

AN = Y
(t)
N − Y

(c)
N . Suppose that the treated subjects are indexed by i1, . . . , im.

The effects attributable to treatment are the treatment effects for the treated

subjects, Ai1 = Y
(t)
i1

− Y
(c)
i1

, . . . , Aim = Y
(t)
im

− Y
(c)
im

. Let A
(t)
(1), . . . , A

(t)
(m) denote the

increasingly ordered effects {Aij , j = 1, . . . ,m}. Our quantities of interest are

the τ trimmed mean of treatment effects on subjects of the treatment group,

Āτ =
(
m− 2

[mτ

2

])−1
m−[mτ/2]∑
k=[mτ/2]+1

A
(t)
(k), (2.1)

where [mτ/2] is the largest integer less than or equal to mτ/2 (Dasgupta (2008,

p.271)). Note that Āτ is a random variable (not a fixed parameter) that indicates

how the observed treatment group would have responded differently under the

control; Āτ is random because the treatment group is random. The regular mean

is the case of τ = 0. We focus on the τ > 0 trimmed means because they are

robust estimates of location (Huber (2009)) so that our inference will not be

seriously affected by outliers.

To see this, consider the following example: the responses of the control group

are 1, 3, 5, . . . , 39 and the responses of the treatment group are 2, 4, 6, . . . , 40. Now

consider testing the hypothesis that the untrimmed mean of effects attributable

to treatment is equal to 1, 000, 000, which appears implausible. One member of

this hypothesis is that the treatment effect is 20, 000, 000 for the treated subject

with response equal to 2 and the treatment effect is 0 for the rest of the subjects;



776 XINGDONG FENG, YANG FENG, YUGUO CHEN AND DYLAN S. SMALL

the corresponding potential responses under control for the treated subjects are

−19999998, 4, 6, . . . , 40. Then, the ranks of the potential responses under control

of the control subjects (2, 3, 5, 7, . . . , 39) are very similar to those of the treated

subjects (1, 4, 6, 8, . . . , 40), so that we cannot reject this hypothesis using a usual

rank test like the Wilcoxon rank sum test that compares the ranks of the potential

responses under control of the control subjects to those of the treated subjects

(the two-sided p-value is 0.81) or the variant of Conover and Salsburg’s (1988)

rank test described in Section 4.4 (the two-sided p-value is 0.77). Furthermore,

this hypothesis cannot be rejected using a permutation t-test that compares the

potential response under control of the control subjects to those of the treated

subjects (the p-value is 0.71). Now consider instead testing the null hypothesis

that the median of the effects attributable to treatment is 1, 000, 000. Every

null in this composite null must have at least ten subjects with treatment effects

greater than or equal to 1, 000, 000. Thus, for the observed data and every null

hypothesis in the composite null, there will be at least ten treated subjects who

have potential responses under control less than −999, 000, which would make

the ranks of the potential responses under control of the treatment group quite

different from those of the control group. Consequently, using the variant of

Conover and Salsburg’s rank test described in Section 4.4, we reject the hypoth-

esis that the median of the effects attributable to treatment is 1, 000, 000 (p-value

< 0.01).

For technical reasons, we will assume that there are no ties among the po-

tential responses under control:

Assumption 1. The potential responses under control Y
(c)
1 , . . . , Y

(c)
N are dis-

tinct.

For continuous responses, Assumption 1 is not a strong assumption because

the set of potential responses under control that have ties has probability zero.

3. Inference for the Trimmed Mean of Effects Attributable to Treat-

ment

Our goal is to construct a confidence interval for the trimmed mean of effects

attributable to treatment, Āτ . We will do this by inverting one-sided hypothesis

tests. Specifically, consider the hypothesis test, H0 : Āτ ≤ C vs. Ha : Āτ > C.

To test this null, we will use rank tests. Rank tests have been found to have

good power properties for testing treatment effects while being robust to outliers

(Lehmann (1975)). We will illustrate our method using Wilcoxon’s rank sum

test but we will show that the method can also be used with generalized rank

tests in Section 4.4.
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Denote the treatment effects as a vector A = (A1 = Y
(t)
1 − Y

(c)
1 , . . . , AN =

Y
(t)
N − Y

(c)
N )T . We could test H0 : A = A∗ by creating adjusted responses

that subtract the treatment effects from the responses of subjects who received

treatment and leave alone the control subjects’ responses, and then applying

Wilcoxon’s rank sum test to test for a difference between the control and treated

adjusted responses. The null hypothesis H0 : Āτ ≤ C is composite, consisting

of many A. Consequently we will reject the composite null if and only if every

member of the null hypothesis is rejected. Let Āτ (A,Z) denote the trimmed

mean of effects attributable to treatment for effects Ā. To carry out the test, we

need to find out if there is any A with Āτ (A,Z) ≤ C such that the Wilcoxon’s

rank sum test applied to the adjusted responses is not rejected. In other words, we

need to find out, does there exist an A such that Āτ (A,Z) ≤ C and Wilcoxon’s

rank sum test does not reject the null hypothesis of no effect when applied to

Y − Z⊙A where ⊙ is element by element multiplication?

To describe how the Wilcoxon rank sum test is applied in more detail, con-

sider a specific group of effects attributable to treatment, A1 = a1, . . . , AN = aN ,

which satisfies the null hypothesis,

(
m− 2

[mτ

2

])−1
m−[mτ/2]∑
k=[mτ/2]+1

a
(t)
(k) ≤ C,

where a
(t)
(1), . . . , a

(t)
(m) are the increasingly ordered values {aij , j = 1, . . . ,m} (the

treated subjects are indexed by i1, . . . , im, so we have Zij = 1). Let Y ∗
i ’s be the

potential response under control if this null hypothesis is true:

Y ∗
i =

{
Yi − ai Zi = 1,

Yi Zi = 0.
(3.1)

Let r∗i denote the rank of Y ∗
i among Y ∗

1 , . . . , Y
∗
N , (r∗i = 1, . . . , N , and r∗1 = 1 for

the smallest observation and r∗N = N for the largest one). The Wilcoxon rank

sum test statistic is

W =
m∑
j=1

r∗ij . (3.2)

Under Assumption 1 that there are no ties among the potential responses under

control, the distribution of W does not depend on A.

For the one-sided test of H0 : Āτ ≤ C vs. Ha : Āτ > C, we reject for large

values of W . Thus, to find the p-value for this composite null hypothesis, we

carry out the following steps:

(P1) find a specific vector A with Āτ ≤ C that minimizes W ;
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(P2) move the treatment observations accordingly and calculate potential out-

comes under control Y ∗ based on (3.1) for the A from Step (P1);

(P3) compute the value of W for this A, which we denote by WA and calculate

the p-value as PH0(W ≥ WA) where PH0 is the usual null distribution of

the Wilcoxon rank sum statistic for testing that two distributions are the

same when there are m observations from one group and N −m from the

other, and there are no ties in the ranks (Lehmann (1975)).

Actually, we need only a specific vector (ai1 , . . . , aim)
T for the treatment group

in Step (P1) because no movement is applied for the control group in Step (P2).

For the one-sided test of H0 : Āτ ≥ C vs. Ha : Āτ < C, we carry out the

same steps as (P1)-(P3) except that we reject for small values of W , so we seek

to maximize W under H0.

For the two-sided test of H0 : Āτ = C vs. Ha : Āτ ̸= C, we combine the

two one-sided tests of H0 : Āτ ≤ C vs. Ha : Āτ > C and H0 : Ā ≥ C vs.

Ha : Āτ < C. Specifically, for a level α test of H0 : Āτ = C vs. Ha : Āτ ̸= C, we

reject if the p-value for either the one-sided test of H0 : Āτ ≤ C vs. Ha : Āτ > C

or the one-sided test of H0 : Āτ ≥ C vs. Ha : Āτ < C is less than α/2. To find

a 1− α confidence interval for Āτ , we invert the level α test of H0 : Āτ = C vs.

Ha : Āτ ̸= C.

The challenging step in (P1)−(P3) is (P1). In Sections 4.1−4.2, we discuss

how to carry out (P1) and then in Section 4.3, we discuss the corresponding step

for testing H0 : Āτ ≥ C vs. Ha : Āτ < C of maximizing W .

4. Optimization

In this section, we show how step (P1) in Section 3 can be formulated as a

multiple choice knapsack problem and solved. Although we focus on the trimmed

mean Āτ , it is helpful to start by considering the regular mean which is a special

case of the trimmed mean (τ = 0) because certain simplifications arise.

4.1. Testing the hypothesis that the untrimmed mean of attributable

effects is less than or equal to C

We seek to minimize W over all A such that the mean of attributable effects

on subjects of the treatment group, Āτ=0, is less than or equal to a fixed value of

C, where W is defined in (3.2). We can think of this as the problem of “moving”

the treated observations in such a way that the cost of the moves is less than or

equal to C and the sum of the ranks of the moved treated observations among the

pool of moved treated observations and original control observations is minimized.

The moved treated observations correspond to the potential responses under

control of the treated subjects and the costs of the moves correspond to the
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treatment effects. The sum of the ranks of the moved treated observations among

the pool of moved treated observations and control observations is W . Note that

the value of W changes only when at least one response value, denoted as Y , in

the treatment group is changed to be a smaller one than those samples of the

control group that were originally smaller than Y (a small positive number is

used as needed to make sure that the changed response value is slightly smaller

than a sample of the control group, so no ties will be present after we change

some response values in the treatment group).

To clarify the relationship between the movement and the rank changes, we

introduce the following matrices. The first matrix is

D =

 d10 d11 · · · d1,N−m
...

...
. . .

...

dm0 dm1 · · · dm,N−m

 , (4.1)

where

dij =

 0 i = 1, . . . ,m, j = 0,

max(0, Y
(t)
(m+1−i) − Y

(c)
(N−m−j+1)) i = 1, . . . ,m, j = 1, . . . , N −m,

and Y
(t)
(i) and Y

(c)
(j) are the ith and the jth order statistics within the treatment

group and the control group, respectively. Here dij is the cost of moving the ith

largest observation in the treatment group before the jth largest observation in

the control group. It is clear that dij ≤ di,j+1 and dij ≥ di+1,j . The second matrix

is used to count the reduced ranks for the treatment observations associated with

the movements given by the matrix D:

V =

 v10 v11 · · · v1,N−m
...

...
. . .

...

vm0 vm1 · · · vm,N−m

 , (4.2)

where

vij =

{
0 dij = 0

vi,j−1 + 1 dij > 0.

Here vij is the amount of rank reduction we can obtain if we move the ith largest

observation in the treatment group before the jth largest observation in the

control group. Furthermore, for i = 1, . . . ,m and j = 1, . . . , N −m, we define a

sequence of binary variables as

δij =

{
1 Y

(t)
(m+1−i) is moved before Y

(c)
(N−m+1−j),

0 otherwise,
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and δi0 = 1 if Y
(t)
(m+1−i) is kept unchanged, and δi0 = 0 otherwise. These binary

variables are used to indicate how the treatment observations are moved.

When the regular mean Āτ=0 ≤ C, then we must have
∑m

j=1Aij ≤ mC.

Hence, to find a vector of (Ai1 , . . . , Aim)
T that minimizes W , we can consider the

following integer programming problem:

max
δ

m∑
i=1

N−m∑
j=0

δijvij ,

s.t.

m∑
i=1

N−m∑
j=0

δijdij ≤ mC,

N−m∑
j=0

δij = 1, i = 1, . . . ,m.

If we have δij = 1 (j ≥ 1) in the above optimization problem, then the ith largest

subject Y
(t)
(m+1−i) in the treatment group is moved before Y

(c)
(N−m+1−j) by chang-

ing dij . If δi0 = 1, then Y
(t)
(m+1−i) is kept unchanged. This integer programming

is a well-known problem in optimization: the multiple choice knapsack problem

(MCKP). Although this is a non-deterministic polynomial-time hard (NP-hard)

problem (Martello and Toth (1990)), more efficient algorithms than the classi-

cal branch-and-bound algorithm have been developed and these algorithms often

yield an exact solution in a reasonable amount of time. We used the hybrid

dynamic programming/branch-and-bound algorithm of Dyer, Riha, and Walker

(1995) to give the solution of MCKP. A brief review on MCKP is given in Ap-

pendix A.3.

4.2. Testing the hypothesis that the trimmed mean of attributable

effects is less than or equal to C

In this section, we consider the null hypothesis that the trimmed mean is no

greater than a constant C. We first consider the upper trimmed mean, which

is useful to lead to the method for the regular trimmed mean case. The upper

trimmed mean is the smallest m− [mτ/2] effects attributable to treatment.

4.2.1. The general method

When the τ/2 upper trimmed mean of attributable effects is given as a con-

stant no greater than C, we have to consider the orders of the effects for the

subjects in the treatment group. Since the [mτ/2] largest attributable effects in

the treatment group can be infinity, the [mτ/2] largest attributable effects in the

treatment group are given by moving the [mτ/2] largest treatment observations
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to negative infinity (we can move them to somewhere before the smallest observa-
tion of the control group in practice) because this procedure can give the largest
treatment effects among all the possible schemes for moving [mτ/2] out of m
treatment observations, so the movement of the largest [mτ/2] treatment obser-
vations are determined (δi,N−m = 1, for i = 1, . . . , [mτ/2]). Hence, to determine
the moving scheme of other treatment observations, we only need to consider the
lowest (m− [mτ/2]) rows of the matrix D, denoted by D1, as

D1 =

 d[mτ/2]+1,0 d[mτ/2]+1,1 · · · d[mτ/2]+1,N−m
...

...
. . .

...

dm0 dm1 · · · dm,N−m

 .

It is clear that the upper trimmed mean is(
m−

[mτ

2

])−1
m∑

i=[mτ/2]+1

N−m∑
j=0

δijdij

for a moving scheme {δij}. With the restriction that Āτ ≤ C, we need to consider
the MCKP

max
δ

m∑
i=[mτ/2]+1

N−m∑
j=0

δijvij

s.t.

m∑
i=[mτ/2]+1

N−m∑
j=0

δijdij ≤
(
m−

[mτ

2

])
C,

N−m∑
j=0

δij = 1, i =
[mτ

2

]
+ 1, . . . ,m.

Thus, with the upper trimmed mean controlled, we need to move the [mτ/2]
largest treatment observations to somewhere before the smallest observation of
the control group (δi,N−m = 1, for i = 1, . . . , [mτ/2]), and move the other treat-
ment observations based on the scheme given by the above optimization solution
{δij , i = [mτ/2] + 1, . . . ,m}.

Unfortunately, it is a much more complicated problem to determine the
[mτ/2] smallest treatment effects with the restriction on the trimmed mean,
while the [mτ/2] largest treatment effects can always be thought as infinity.
We cannot consider just a single optimization problem to determine the moving
scheme of the treatment group for minimizing the rank W , and we use a sequence
of optimization problems to obtain it.

We sort the distinctive entries of the matrix D1 in an increasing order, and
denote the sorted entries as

d(1), . . . , d(l), (4.3)



782 XINGDONG FENG, YANG FENG, YUGUO CHEN AND DYLAN S. SMALL

where d(1) = 0, which implies no movements. Then, we determine the index m1

such that d(m1) ≤ C < d(m1+1). We use d(m1) to consider an initial optimization

problem with feasible solutions in (4.6). Clearly, for the treatment group, the

value d(m1) is the upper bound that the smallest [mτ/2] effects attributable to

treatment can reach based on matrix D1 because we need Āτ ≤ C.

It is difficult to formulate an optimization problem when we need to consider

the orders of the treatment effects. To simplify this problem, we consider the

matrix,

D∗
1 =

 d∗[mτ/2]+1,0 d∗[mτ/2]+1,1 · · · d∗[mτ/2]+1,N−m
...

...
. . .

...

d∗m0 d∗m1 · · · d∗m,N−m

 , (4.4)

and the associated indication matrix,

U =

 u[mτ/2]+1,0 u[mτ/2]+1,1 · · · u[mτ/2]+1,N−m
...

...
. . .

...

um0 um1 · · · um,N−m

 , (4.5)

where d∗ij = max{dij , d(m1)}, uij = 0 if d∗ij ≤ d(m1), and uij = 1 if d∗ij > d(m1). We

use the matrixD∗
1 so that we impose an upper bound d(m1) for the smallest [mτ/2]

trimmed treatment effects. Thus, we can consider a multidimensional multiple

choice knapsack problem (MMKP) by replacing those trimmed treatment effects

that are less than d(m1) with d(m1). The trouble caused by ordering the smallest

treatment effects can be avoided by this modification. In this paper, we use the

numerical algorithm of Sbihi (2007) to give the exact solution for the MMKP. A

brief review on MMKP is given in Appendix A.4.

This MMKP can be expressed mathematically as

max
δ

m∑
i=[mτ/2]+1

N−m∑
j=0

δijvij (4.6)

s.t.

m∑
i=[mτ/2]+1

N−m∑
j=0

δijuijd
∗
ij +

(
m− 2

[mτ

2

]
−

m∑
i=[mτ/2]+1

N−m∑
j=0

δijuij

)
d(m1)

≤
(
m−

[mτ

2

])
C,

m∑
i=[mτ/2]+1

N−m∑
j=0

δijuij ≤ m− 2
[mτ

2

]
,

N−m∑
j=0

δij = 1, i =
[mτ

2

]
+ 1, . . . ,m.
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If
∑N−m

j=0 δijuij = 1, then the ith subject is moved by
∑N−m

j=0 δijuijd
∗
ij , which

is strictly greater than d(m1). If
∑N−m

j=0 δijuij = 0, the corresponding treatment

effect based on D1 is no greater than d(m1), composed of both the trimmed

and the non-trimmed effects when we calculate the trimmed mean. The first

constraint is imposed such that the trimmed mean Āτ ≤ C, and by rearranging

the items, the first constraint can be expressed as

m∑
i=[mτ/2]+1

N−m∑
j=0

δijuij(d
∗
ij − d(m1)) ≤

(
m− 2

[mτ

2

])
(C − d(m1)).

The second constraint requires that the total number of those subjects moved by

more than d(m1) is limited by m− 2[mτ/2].

The optimization problem (4.6) gives the optimal solution based on D∗
1 that

leads to the maximum of total reduced ranks for the treatment group, and we

use δmax to record the moving scheme {δij}, and use Rmax to record the total

reduced ranks, which is
∑m

i=[mτ/2]+1

∑N−m+1
j=1 δijvij . Then, we sequentially con-

sider d(m1−1), d(m1−2), . . . , d(1), which is in decreasing order, update the matrices

D∗
1 and U accordingly, and use the optimization problem (4.6) to give the moving

schemes of the treatment group. We update δmax and Rmax to record the moving

scheme that gives the maximum of the total reduced ranks and the correspond-

ing total reduced ranks, respectively. A summary of the algorithm is given in

Appendix A.1.

The constraints of (4.6) and the fact that 0 ≤ dij ≤ d∗ij imply that any

feasible solution of (4.6) leads to a moving scheme that satisfies the restriction of

Āτ ≤ C. Also, the objective function of (4.6) aims to minimizing W under given

constraints by maximizing total reduced ranks of the treatment group, where

W is defined in (3.2), so it suffices to show that any moving scheme {δ̃ij}, that
minimizes W given the restriction that Āτ ≤ C, is a feasible solution of (4.6) for

some d(k). The result is summarized in a theorem with proof given in Appendix

A.2.

Theorem 1. By sequentially considering d(m1), . . . , d(1), where d(l) is defined

in (4.3) and m1 is the index such that d(m1) ≤ C < d(m1+1), and solving a

sequence of MMKP problems (4.6), we obtain an optimal moving scheme {δ̃ij}
that minimizes W given the restriction that Āτ ≤ C, where W is defined in (3.2).

Theorem 1 ensures that an optimal solution {δ̃ij} is obtained by sequentially

considering (4.6) because there exists d(k) ≤ d(m1) such that the moving scheme

{δ̃ij} is a feasible solution of (4.6) with d(m1) replaced by d(k).

By inverting the hypothesis testing given the trimmed fraction τ , we can

give the confidence interval (CI) for the trimmed mean of attributable effects at
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the confidence level α. The details about how to invert the hypothesis testing

to CI are given in Section 9.2.1 of Casella and Berger (2002). We use different

“capacity” C, and give the lower bound of the CI by considering the maximum of

the real “capacities” used by the solutions with the p-values no greater than α/2

from the above optimization procedure for testing the hypothesis H0 : Āτ ≤ C

versus Ha : Āτ > C. Similarly, we can determine the upper bound of the CI by

using the minimum of the real “capacities” that give the p-values no greater than

α/2 for testing the hypothesis H0 : Āτ ≥ C versus Ha : Āτ < C discussed in the

following section. This inverting procedure will be used in Section 5 to give the

CIs.

4.2.2. An explanatory example

In this section, we use an example to illustrate how the treatment observa-

tions are moved for testing the hypotheses H0 : Āτ ≤ C versus Ha : Āτ > C, as

discussed in the previous section. Suppose that the treatment group is {1, 3, 5}
and the control group is {0, 2, 4}, and we consider C = 1.5 and τ = 2/3, where

τ = 2/3 implies the median of attributable effects.

First, we move the largest treatment observation to somewhere before the

smallest observation of the control group, and then we have the matrices D1 and

V1 as follow,

D1 =

(
0 0 1 3

0 0 0 1

)
,

V1 =

(
0 0 1 2

0 0 0 1

)
.

Second, we sort the entries of D1 as d(1) = 0, d(2) = 1, d(3) = 3 in increasing

order, and determine the indexm1 such that d(m1) ≤ C < d(m1+1). Since C = 1.5,

we have m1 = 2. With d(m1) = 1, we have the modified matrices,

D∗
1 =

(
1 1 1 3

1 1 1 1

)
,

U =

(
0 0 0 1

0 0 0 0

)
.

For this MMKP problem, the optimal movement scheme of the treatment group

is that 1 → 0−, 3 → 2−, 5 → 0−, where a− denote a − ϵ, where ϵ is a small

positive number, and the total of the reduced ranks is 5 and the “capacity” used

by the median of attributable effects is 1.

Fourth, we consider d(m2) = 0, so the matrices need to be updated as follows,

D∗
1 =

(
0 0 1 3

0 0 0 1

)
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and the associated rank-change matrix

U =

(
0 0 1 1

0 0 0 1

)
.

For this MMKP problem, the optimal movement scheme of the treatment group

is 1 → 1, 3 → 2−, 5 → 0− or 1 → 0−, 3 → 3, 5 → 0− , and the total of the reduced

ranks is 4. Thus, the first scheme is better because it gives a larger reduction of

the total ranks of the treatment group. Hence, we adjust the treatment group to

be {0−, 2−, 0−}, so the p-value is 0.95 based on the Wilcoxon rank sum test as

described in (P3) of Section 3.

4.3. Testing the hypothesis that the trimmed mean of attributable

effects is greater than or equal to C

As stated in Section 3, for the hypothesis of H0 : Āτ ≥ C versus Ha :

Āτ < C, we need to find a moving scheme for the treatment group such that the

total reduced ranks is minimized with the regular mean or the trimmed mean

of attributable effects no less than C. Hence, we consider moving the treatment

observations to somewhere right after the appropriate control observations (some

small numbers may be needed to adjust the relative positions of the observations

in cases of the presence of ties), respectively. Thus, we can define similar matrices

D′ and V′ as the matrices D and V used in Section 4.1, respectively, with the

entries dij and vij replaced by

d′ij =

{
max(0, Y

(t)
(m+1−i) − Y

(c)
(N−m+1−j)) i = 1, . . . ,m, j = 1, . . . , N −m,

+∞ i = 1, . . . ,m, j = N −m+ 1,

and

v′ij =

{
0 d′ij = d′i1

vi,j−1 + 1 d′ij > d′i1.

Thus, given the constraint for the regular mean of attributable effects, we

can consider the following variant of the MCKP to maximize W , where W is

defined in (3.2),

min
δ′

m∑
i=1

N−m+1∑
j=1

δ′ijv
′
ij

s.t.

m∑
i=1

N−m+1∑
j=1

δ′ijd
′
ij ≥ mC,

N−m+1∑
j=1

δ′ij = 1, i = 1, . . . ,m,
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where δ′ indicates how the treatment observations are moved. Let K = max{
maxi,j{dij}, C

}
. Then we can consider an equivalent problem with d′i,N−m+1 =

+∞ replaced by d′i,N−m+1 = K. Let v′i = maxj{v′ij}. Since
∑N−m+1

j=1 δ′ij = 1,

it is clear that this problem is equivalent to the following MCKP by changing

the sign of its objective function and constraint coefficients and adding some

constants to them, respectively,

max
δ

m∑
i=1

N−m+1∑
j=1

δ′ij(v
′
i − v′ij)

s.t.

m∑
i=1

N−m+1∑
j=1

δ′ij(K − d′ij) ≤ m(K − C),

N−m+1∑
j=1

δ′ij = 1, i = 1, . . . ,m.

More generally, for the trimmed mean of attributable effects considered in the

hypothesis testing, we can replace those dij , vij and C in Section 4.2 by K − d′ij ,

v′i − v′ij and K − C, respectively, and directly apply the method developed in

Section 4.2 to give the solution that maximizes W .

4.4. Generalized rank test

The Wilcoxon rank sum test compares the center of the treated and control

groups and does not compare the groups’ dispersions. For obtaining powerful

tests of the trimmed mean of attributable treatment effects, it is valuable to

consider alternative tests that compare both the groups’ centers and dispersions.

To see the need for comparing both the centers and dispersions, consider an ex-

ample. The responses of the control group are 1, 3, 5, . . . , 39 and the responses

of the treatment group are 2, 4, 6, . . . , 40. Consider the seemingly implausible

hypothesis that the median of the effects attributable to treatment is 1, 000, 000

or greater. Any member of this composite null hypothesis has at least 10 treated

subjects with potential responses under control less than −999, 000 and conse-

quently, the group that received treatment dominates the left tail of the potential

responses under control distribution for any member of the null hypothesis. To

be able to reject this seemingly implausible null hypothesis, we would like a test

that takes on an extreme value when the left tail of the distribution is dominated

by one group.

Conover and Salsburg (1988) proposed tests that take on extreme values

when the right tail of the distribution of the combined groups’ responses is dom-

inated by one group. By using the reverse ranks of the responses, defined as
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N − ri + 1, where ri is the rank of the ith subject, and applying Conover and

Salsburg’s tests to these reverse ranks, we obtain a test that takes on extreme

values when the left tail of the distribution is dominated by one group. Conover

and Salsburg’s tests look at the rank sum of transformed responses. Suppose

that f is the transformation function, and consider the m × (N − m + 1) rank

matrix

R =

 r1 r1 · · · r1
...

...
. . .

...

rm rm · · · rm

 ,

where rj is the rank of the jth treatment observation among all the observations

including both the treatment and the control groups.

The procedure given in the previous section can be extended to account for

the generalized ranks by replacing the matrix V given in (4.2) with the matrix

Ṽ = f(R) − f(R − V). Furthermore, we use the matrix D given in (4.1) and

the procedure as described in Section 4 to give the movement scheme of the

treatment group. Then, we can carry out the rank test similar to the Wilcoxon

rank sum test by replacing the original ranks with the transformed ranks.

Conover and Salsburg (1988) considered in particular the transformation

f(R) = Rq−1. The Wilcoxon rank sum test is of the form f(R) = Rq−1 with

q = 2. Conover and Salsburg (1988) suggested q = 5, and Podgor and Gastwirth

(1994) showed that the rank test with this transformation has good power for

location-scale alternatives.

Markowski and Hettmansperger (1982) generalized the Wilcoxon’s rank test

by considering ranks of groups. As another example, we can also find a function

f to map the original rank matrix R to the matrix of group ranks. Then, we can

invert this test by using fewer ranks. However, the matrix D stays unchanged, so

we need to solve an MMKP with the different objective function, and few ranks

cannot save us from the “curse” of large datasets.

4.5. Large sample size

Since both MCKP and MMKP are NP-hard assignment problems, the time

to obtain the exact solutions increases exponentially with sample sizes. Thus,

for some large datasets, the proposed procedure may not be able to give results

in reasonable time, which limits its application. To extend the application of

the proposed method, we can consider some approximation methods that lead to

near optimal solutions. Chapter 11 of Kellerer, Pferschy, and Psinger (2004) and

Han, Leblet, and Simon (2010) give good reviews of approximation algorithms

for the MCKP and the MMKP, respectively.
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5. Applications

5.1. Motivation and creativity

Amabile (1985) studied the effect of extrinsic vs. intrinsic motivation on

creative writing. Subjects with considerable experience in creative writing were

randomly assigned to one of two treatment groups: 24 of the subjects were placed

in an “instrinsic” group and 23 in the “extrinsic” group. The intrinsic group com-

pleted a questionnaire which involved ranking intrinsic reasons for writing; it was

intended as a device to establish a thought pattern concerning intrinsic motiva-

tion – doing something because doing it brings satisfaction. The extrinsic group

completed a questionnaire which involved ranking extrinsic reasons for writing;

it was intended as a device to establish a thought pattern concerning extrinsic

motivation – doing something because a reward is associated with its completion.

After completing the questionnaire, all subjects were asked to write a poem in

the Haiku style about “laughter.” All poems were submitted to 12 poets, who

evaluated them on a 40 point scale of creativity, based on their own subjective

views. Judges were not told about the study’s purpose. The outcome is the

average response for each of the 12 subjects. Figure 1 shows a box plot of the

data. The treatment effect does not appear to be additive as subjects assigned to

the extrinsic group have more dispersed scores. Based on the discussion in Am-

abile (1985), we assume that the intrinsic motivation will not decrease creativity

compared to the extrinsic motivation.

Table 1 provides inferences about the trimmed means of effects attributable

to treatment; confidence intervals based on tests using two transformations of

the ranks are considered, f(R) = Rq−1 with q = 2 (the Wilcoxon rank sum test)

and q = 5 (the test suggested by Conover and Salsburg (1988)). We are confident

that the untrimmed and τ = 0.2 trimmed means of the attributable effects of

intrinsic motivation on creativity are positive based on the confidence intervals

derived from q = 2 and q = 5 tests; the lower confidence bounds are positive and

the upper bounds are ∞ for both q = 2 and q = 5. For τ = 0.4 and τ = 0.6,

the confidence intervals range from 0 to ∞. For the τ = 0.8 trimmed mean of

the attributable effects of intrinsic motivation on creativity, the lower confidence

limit remains 0 but the upper confidence limit is finite, 9.88, for the q = 2

test. We also compared the two group means using the regular two-sided t-test

(90% confidence interval: (1.7, 6.5)) and Wilcoxon test (90% confidence interval:

(1.4, 5.9)). The greater width of our confidence intervals than the confidence

intervals based on inverting the t-test and the Wilcoxon test comes from the fact

that our confidence intervals are based on less assumptions, i.e., we do not use

the normal distribution assumed by the t-test based confidence interval or the

additive treatment effect model assumed by the Wilcoxon test based confidence

interval.
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Figure 1. Box plot of the data from the effect of intrinsic vs. extrinsic
motivation on creativitity experiment. The outcome is the average creativity
score from a panel of 12 judges.

Table 1. For the effect of intrinsic vs. extrinsic motivation on creativity
study, 90% confidence intervals for the trimmed mean of effects attributable
to treatment given different trimmed fraction τ and different rank transfor-
mations with the transformation function f(R) = Rq−1.

Trimmed fraction q = 2 q = 5
τ = 0 (0.54,∞) (0.64,∞)
τ = 0.2 (0.01,∞) (0.05,∞)
τ = 0.4 (0.00,∞) (0.00,∞)
τ = 0.6 (0.00,∞) (0.00,∞)
τ = 0.8 (0.00, 9.88) (0.00,∞)

The algorithm is efficient for this dataset by using the exact solution of

the MMKP (we can obtain the results in a few minutes with a Thinkpad T410

Notebook computer with Intel i5 CPU and 4G memory). However, the MMKP

is an NP-hard problem, so it is time-consuming (and sometimes impractical) for

large datasets. For this dataset, we used the method of Hifi, Michrafy, and Sbihi

(2006) to assess the performance of the approximation in solving MMKPs. We

used 100 iterations, and obtained very good results compared with the exact

solutions. Actually in the confidence intervals, only one confidence bound from

the approximation is different from the exact methods: the upper bound is 9.67

for the trimmed fraction τ = 0.8 and q = 2 test.
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5.2. Remedying education in India

Two randomized experiments were conducted by Banerjee et al. (2007),

among which a computer-assisted learning program was offered to the students

in grade 4 for two hours per week extra to the regular study. In this program,

students played games by solving mathematical problems. The research focused

on those weak students from poor families of Baroda, a city in Western India.

In the sample for the study during 2003–2004, the computer-assisted learning

program was applied in 55 schools serving as the treatment group, and the other

56 schools served as the control group. The average testing scores of each school

were recorded as the raw data for analysis. Since the mathematical games were

offered in the time extra to the regular study, it is reasonable to assume that the

games help students to better understand mathematics taught in classes, which

implies the attributable effects are nonnegative.

The MMKP is NP-hard, and the exact solution for this dataset takes too

long to obtain (more than 5 hours). Instead we used the heuristic approximation

algorithm of Hifi, Michrafy, and Sbihi (2006) to solve the MMKP in our method

with 1000 iterations. It took around 50 minutes in a Thinkpad T410 Notebook

computer with Intel i5 CPU and 4G memory.

Box plots of the data are shown in Figure 2 and confidence intervals for the

effects of the computer-assisted learning program on mathematical ability are

shown in Table 2. Table 2 suggests that it is plausible that the program aid does

not improve mathematical ability for the involved students, which is consistent

with the results given by the regular t test and Wilcoxon test used for comparing

two group means at the significance level 0.05. When the trimmed fraction is

above 0.4 for the q = 2 test and above 0.7 for the q = 5 test, the trimmed

mean of attributable effects can exclude the extreme attributable effects (in this

example, these extreme effects could be infinite when we inverting the second

test of Section 4.3 to construct confidence intervals) such that the upper bounds

of confidence intervals are bounded.

6. Conclusion

Randomization inference is well developed for additive treatment effects, but

often treatment effects are not additive. Figures 1 and 2 are two examples. We

developed new methods for randomization inference for trimmed means of effects

attributable to treatment which provide useful information about the treatment

effect regardless of whether the additive treatment effect model holds.

To compute randomization inferences for the regular mean or upper trimmed

mean of attributable effects, we considered appropriate knapsack problems. For

the regular mean or upper trimmed mean of attributable effects, we used the

MCKP procedure, and for the regular trimmed mean case, we used the MMKP
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Figure 2. Box plot of the data from the computer-assisted learning program.
The outcome is the average testing scores of participating students of each
school.

Table 2. For the effect of the computer-assisted learning program on math-
ematical scores, 95% confidence intervals for the trimmed mean of effects
attributable to treatment given different trimmed fraction τ and different
rank transformations with the transformation function f(R) = Rq−1, where
τ = 0.99 refers to the median of effects attributable to treatment.

Trimmed fraction q = 2 q = 5
τ = 0 (0.00,∞) (0.00,∞)
τ = 0.1 (0.00,∞) (0.00,∞)
τ = 0.2 (0.00,∞) (0.00,∞)
τ = 0.3 (0.00,∞) (0.00,∞)
τ = 0.4 (0.00, 0.33) (0.00,∞)
τ = 0.5 (0.00, 0.36) (0.00,∞)
τ = 0.6 (0.00, 0.39) (0.00,∞)
τ = 0.7 (0.00, 0.42) (0.00, 0.27)
τ = 0.8 (0.00, 0.46) (0.00, 0.25)
τ = 0.9 (0.00, 0.49) (0.00, 0.25)
τ = 0.99 (0.00, 0.53) (0.00, 0.25)

procedure. Although the MMKP procedure can also be used for the regular mean

case, we strongly suggest using the MCKP procedure for the regular mean be-

cause the exact MCKP algorithm is much more efficient than the existing exact

MMKP algorithms. By inverting the rank tests, we constructed the confidence

intervals for the trimmed means of effects attributable to treatment. Although

the inference is based on solving NP-hard problems, the procedure is still com-
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putationally efficient for small or medium sample size. For example, in our first

example, the proposed procedure can output results in a few minutes for the

sample with the size no greater than 25. For relatively large datasets, the ap-

proximation methods can be used to solve MMKPs, which makes the proposed

method practical in these cases. For example, in the second example analyzed

in this paper, the proposed procedure used around 50 minutes to output results

with the approximation method of Hifi, Michrafy, and Sbihi (2006) using 1,000

iterations to solve MMKPs. According to the discussion of Hifi, Michrafy, and

Sbihi (2006), the approximation method used in this paper gives encouraging

results in solving MMKPs, which can probably lead to good performance of the

proposed method in this paper.

We have focused on inference for trimmed means of effects attributable to

treatment, that has the desirable feature of being robust to outliers. Beyond

the robustness properties, it is necessary to focus on trimmed means rather than

untrimmed means to gain any power in randomization inference. For example,

even if the treatment and control groups’ responses are very similar, the width

of the confidence interval for the untrimmed mean will be infinity whereas the

confidence interval for the trimmed mean might be finite and informative.

Since the inferences for different trimming fractions τ provide different and

useful information about the treatment effect, we recommend reporting a table

of results for different trimming fractions τ as in Section 5. However, if one

needs to choose a single τ to report conclusions for, then one must consider both

the robustness properties of different trimming fractions and the considerations

of power for randomization inference for trimmed means of attributable effects

discussed above. For the robustness properties of different trimming fractions,

Andrews et al. (1972) and Hettmansperger (1968) provide good discussion.

The trimmed means of effects attributable to treatment that we have devel-

oped inferences for are concise and robust measures of the effects of treatment.

Other concise, robust measures include the trimean and Gastwirth’s (1966) esti-

mate (0.3× first tercile + .4× median + .3× second tercile). It is of interest to

develop randomization inference for these measures in future work.
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Appendix

A.1. Algorithm of sequential MMKPs

The following algorithm can be used to find a solution {δij} that leads to

the minimized Wilcoxon rank sum test statistic W as described in Section 4.2.

(S1) Let δi,N−m = 1 and δij = 0 for j ̸= N −m and i = 1, . . . , [mτ/2].

(S2) Sort the distinctive entries of the matrix D1 in an increasing order, and

denote the sorted entries as d(1), . . . , d(l), where d(1) = 0.

(S3) Determine the index m1 such that d(m1) ≤ C < d(m1+1), and solve the

optimization problem (4.6); Denote the solution as {δ(1)ij }; Let Rmax =∑m
i=[mτ/2]+1

∑N−m+1
j=1 δ

(1)
ij vij and δmax = {δ(1)ij }; Let k = 2.

(S4) At the kth step for k ≥ 2, use d(m1−k+1) to update the matrices D∗
1

and U accordingly, and solve the optimization problem (4.6); Denote the

solution as {δ(k)ij }; If Rmax <
∑m

i=[mτ/2]+1

∑N−m+1
j=1 δ

(k)
ij vij , let Rmax =∑m

i=[mτ/2]+1

∑N−m+1
j=1 δ

(k)
ij vij and δmax = {δ(k)ij }.

(S5) Let k = k + 1 and continue Step (S4) if k ≤ m1; Output Rmax and δmax.

A.2. Proof of Theorem 1

Suppose that the moving scheme {δ̃ij} maximizes the total reduced rank

m∑
i=[mτ/2]+1

N−m∑
j=0

δijvij ,

under the restriction that Āτ ≤ C. For i = 1, . . . , [mτ/2], we must have δ̃i,N−m =

1 and δ̃ij = 0 for j ̸= N − m because the [mτ/2] largest treatment effects are

always obtained by moving the largest observations in the treatment group to

negative infinity.

Since
∑N−m

j=0 δ̃ij = 1, there exists k such that d(k) = d̃([mτ/2]). Now we

use d(k) to update the matrix D∗
1, defined in (4.4). Let d̃(i−[mτ/2]) and d̃∗(i−[mτ/2])

denote the (i−[mτ/2])th order statistic of
∑N−m

j=0 δ̃ijdij and
∑N−m

j=0 δ̃ijuijd
∗
ij , i =

[mτ/2] + 1, . . . ,m, respectively, where uij is the entry of the matrix U (defined

in (4.5)) at the ith row and the jth column, and dij ’s and d∗ij ’s are the entries of

the matrices D1 and D∗
1, respectively.

Suppose that d̃∗([mτ/2]+l) = d(k) for l = 0, . . . , p − 1, where p is an integer

greater than 1. Thus, d̃∗(l) = d̃(l) for l ≥ [mτ/2] + p, since d∗ij = dij if dij ≥ d(k)



794 XINGDONG FENG, YANG FENG, YUGUO CHEN AND DYLAN S. SMALL

in the definition of the matrix U. It then follows that

m−[mτ/2]∑
l=[mτ/2]+1

d̃(l) =

m−[mτ/2]∑
l=[mτ/2]+p

d̃∗(l) + (p− 1)d(k),

m−[mτ/2]∑
l=[mτ/2]+p

d̃∗(l) =

m∑
i=[mτ/2]+1

N−m∑
j=0

δ̃ijuijd
∗
ij .

Note that the moving scheme {δ̃ij} satisfies the restriction that

(
m− 2

[mτ

2

])−1
m−[mτ/2]∑
l=[mτ/2]+1

d̃(l) ≤ C.

Hence, if we use d̃([mτ/2]) to replace d(m1) in the optimization problem (4.6), then

{δ̃ij} is a feasible solution of (4.6). Therefore, after we enumerate d(m1), . . . , d(1),

we can give the optimal moving scheme {δij} that minimize W . ⋄

A.3. Multiple choice knapsack problem (MCKP)

The MCKP has been addressed in rich literatures, and various algorithms

have been proposed to give the optimal solution. Assume that there are m

classes and ri items in the ith class. The MCKP is the problem to give the

selection scheme if we need to select exactly one item from each class, subject

to a constraint, and maximize some criteria. Mathematically, the MCKP can be

defined to be of the form

max
δ

m∑
i=1

ri∑
j=1

vijδij

s.t.

m∑
i=1

ri∑
j=1

wijδij ≤ C0,

ri∑
j=1

δij = 1, i = 1, . . . ,m,

δij ∈ {0, 1}, i = 1, . . . ,m, j = 1, . . . , ri,

where the nonnegative coefficients vij and wij are the values and the costs of the

jth item in the ith class, respectively. Here δij indicates if the item j of the ith

class is picked or not.

We use the algorithm developed by Dyer, Riha, and Walker (1995). They

considered a hybrid algorithm with the breadth-first search strategy when a
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searching tree is expanded. They partitioned the MCKP into stage subprob-

lems, and used Lagrangian duality to give tight bounds for the bounding tests on

the subproblems. By eliminating any partial solutions that cannot be optimal,

this algorithm efficiently reduces the branch space. It is not our focus to analyze

how the numerical algorithm works, so we do not describe detailed steps of the

algorithm here.

A.4. Multidimensional multiple choice knapsack problem (MMKP)

The MMKP is a harder variant of the knapsack problem than the MCKP.

This problem also is to give a selection scheme by picking one item from each

class, but it allows multiple constraints. It can be formally stated as

max
δ

m∑
i=1

ri∑
j=1

δijvij

s.t.

m∑
i=1

ri∑
j=1

δijwkij ≤ Ck, k = 1, . . . , n

ri∑
j=1

δij = 1, i = 1, . . . ,m,

δij ∈ {0, 1}, i = 1, . . . ,m, j = 1, . . . , ri,

where wkij is the nonnegative weight of the kth constraint equation and Ck is

the kth constraint, which are nonnegative.

Sbihi (2007) expanded a tree by considering the classes one by one, and each

node of the tree corresponding to one item is added in the order of the decreasing

v values for each class. Then, the best-first search strategy is applied by searching

the first feasible solution by checking all the constraints. We do not address the

details about how to expand the searching tree because it is not our purpose

here.
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