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Abstract: Let y = BTz + € denote the intrinsic relation between the response y
and a covariate vector z, where ¢ represents an unobservable random variable. A
truncated regression model assumes the existence of another (truncation) variable
¢ so that (z,y,t) is observed if and only if ¢ < y and that nothing is observed if
t > y. Tsui, Jewell and Wu (1988) have proposed a bias-corrected method to extend
the classical least squares approach to regression analysis with truncated data and
have found the method to perform well in an extensive simulation study. To develop
an asymptotic theory for this approach, we first introduce a slight modification of
their estimator to make it more tractable and then establish the consistency and
asymptotic normality of the modification under certain regularity conditions. By
making use of the asymptotic normality result, approximate confidence regions for
B are also given.
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1. Introduction

A regression model with incomplete (and therefore potentially biased) ob-
servations is the “truncated regression model” in the econometrics literature (cf.
Tobin (1958), Goldberger (1981), Amemiya (1985)), in astronomy (cf. Segal
(1975), Nicoll and Segal (1980)), and in biomedical studies (cf. Cox and Oakes
(1984)). The model assumes the usual regression structure

y;=pTzi+ ¢, §=1,2,..., (1.1)

between the response y; and a p X 1 vector z7 of covariates, with i.i.d. random
errors €; having a common distribution function F' (which need not have mean 0)
such that [, t*dF(t) < oco. Suppose that (zT,yi,t;) can be observed only when
y; > t;, where (t;,z}) are independent random vectors that are independent of
{e;}. The t; are called (left) truncation variables. A right truncated regression



520 TZE LEUNG LAI AND ZHILIANG YING

model can be similarly defined, with (m?,y;,'t;) observable only when y; < t;,
but can be converted to a left truncated regression model by multiplying each
variable by —1. Hence in the sequel we shall only consider a left truncated model,
for which the observations are

(zF,yit) with g > 65, i=1,... ,n. (1.2)

By assuming the underlying error distribution F' to belong to a parametric
family of distributions, # can be estimated by the method of maximum likeli-
hood; and there is an extensive literature on the subject (cf. Amemiya (1985)).
Without such parametric assumptions, Bhattacharya, Chernoff and Yang (1983)
introduced, for the case of univariate z;, an extension of Adichie’s (1967) rank
estimator of the slope parameter 8 for the linear regression model (1.1), based on
the Wilcoxon score function, to the truncated regression model, and showed that,
under certain regularity conditions, the estimator is consistent and asymptoti-
cally normal. A general rank-type approach was subsequently developed by Lai
and Ying (1992a), where counting processes and their associated martingales are
used as natural vehicles for studying rank estimators based on truncated data,
in the same way as they have been used for censored data (cf. Gill (1980)).

As is well known, the classical least squares estimator of § is biased in
the presence of truncation. A bias-corrected modification of the least squares
estimator was recently introduced by Tsui, Jewell and Wu (1988). Their idea is
to first construct §; in such a way that E(§;|z;) = 7 z;, and then to regress the
¥; on z; to obtain an estimator of 8. A more detailed description of their method
will be given in the next section. In an extensive simulation study, they found
the estimator to perform better than the Bhattacharya-Chernoff-Yang estimator.
On the other hand, while there is a relatively complete asymptotic theory for
the Bhattacharya-Chernoff-Yang estimator and for more general rank estimators
based on truncated data (cf. Lai and Ying (1992a)), a corresponding theory
for the bias-corrected least squares estimator is lacking, and it is therefore not
possible to compare the asymptotic properties of the two approaches.

A similar bias-corrected modification of the least squares estimate has been
introduced by Buckley and James (1979) for the case where the y; in (1.1) are
subject to censorship by (right) censoring variables ¢; (so that the observed re-
sponses are min(y;,¢;), I{y;_<_c,.} , J =1,...,n). Although James and Smith
(1984) have shown the Buckley-James estimator to be consistent under certain
assumptions, there is a gap in their proof, as pointed out recently by Lai and
Ying (1991b). To get around the difficulties with the Buckley-James estimator
caused by the instability at the upper tail of the associated Kaplan-Meier esti-
mator of the underlying error distribution, Lai and Ying (1991b) introduced a
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simple modification of the estimator and were able to prove that the modified es-
timator is indeed consistent and asymptotically normal under certain regularity
conditions.

By extending the ideas developed in Lai and Ying (1991b) for censored data,
we develop, in Section 3 below, a parallel large sample theory for a slight modifi-
cation of the bias-corrected least squares estimator of Tsui, Jewell and Wu (1988).
The modification, introduced in Section 2, enables us to get around certain diffi-
culties with the product-limit estimator of the underlying error distribution used
in the bias-corrected approach. Section 2 also provides basic stochastic integral
representations of certain statistics involved, which enable us to apply martingale
theory and empirical process theory to analyze these statistics. Another useful
idea which makes these tools applicable is to regard the observations (T, yi, 1),
i=1,...,n, as generated from a larger sample of independent random vectors
(z37,95,t3), 7 = 1,2,..., with random sample size

m
n* = inf {m: ZI{t;’Sy;} =n}, (1.3)

i=1
such that the observations (z7,yi,t;) correspond to the (:c’J'-‘T, y:,t3) with 7 < o3
(cf. Lai and Ying (1991a,1992a)). Section 4 makes use of the asymptotic theory
developed for the bias-corrected least squares estimator to construct approximate
confidence regions for 3 and also to make comparisons with the rank estimators

of Bhattacharya, Chernoff and Yang (1983) and of Lai and Ying (1992a).

2. A Modification of the Bias-Corrected Least Squares Estimator and
Related Stochastic Integrals

For notational convenience, let y;(b) = yi — bTzy, ti(b) = t; — bTx;, yr(b) =

yr — b7z} and t7(b) =t} ~ bTz}, regarding the observed (zT,yi ti),i=1,...,m,

as generated from independent random vectors (z:T,yr,t7),i = 1,2,.... The
usual least squares estimator of § is the solution of

3 aawi(b) = 0, (2.1)

and is biased in the presence of truncation since E(yi(8)|z;) # 0. Tsui, Jewell
and Wu (1988) noted that

E(y:(B)|ti,z:) = Ki(B) where (2.2)

Ki(b) = /t :) wdF(u)/[1 - F(1:())]. (2.3)

They therefore proposed to replace (2.1) by
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ZZe(yi(b) - K;(b)) = 0, (2.4)

and to replace the unknown F in (2.3) by a product-limit estimator defined
below.

To define the product-limit estimator and to analyze functionals thereof in
the sequel, it is convenient to introduce the following empirical processes. Let

NOw) = Iymzay N7(0:0) = 3 eidiumu; (2.5)
i=1 i=1
J(0,u) = Y Lycugui®rys I7(0,0) = Y zilftmycugus))i (2.6).
i=1 =1
Sbyu) =Y Iwycuys S70,u) = D zilie, 1y<u)- (2.7)
1=1 i=1

Define n* as in (1.3) and note that N(b,u) = E:‘;l Lty (b)2u, t<yr)» etc. The
product-limit estimator of F' based on the truncated residuals y;(b) is defined by

. 1
F(b,u) =1- H (1 - m) . (28)

:yi (b)<u

Instead of replacing F(u) by F(b,u) in both the numerator and denominator
of (2.3), one can also estimate (2.3) directly by K;(b) = fv>t,'(b) vdF(b,v|t;(b)),
where -

F(b,v|u) =1- H (1 - J(T;@ﬁ) ,y U 2> U, (2.9)

u<y(b)<v
is the product-limit estimator of the conditional probability
F(v|u) = P(e] < vl|e] > u), v>u (2.10)

(cf. Wang, Jewell and Tsai (1986), Lai and Ying (1991a)). Tsui, Jewell and Wu
(1988) therefore suggested replacing the left hand side of (2.4) by

£(b) = zn:fl’i{yi(b) - ki(b)}

=1

= iz:;xi{yi(b) - /v

vdﬁ'(b,v[t;(b))}. (2.11)
2ti(b)
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In view of (2.6) and (2.7), we can rewrite (2.11) in the form

0= a{u®-u0)- [ 0= Fovle))

=1

o0 (oo}
- / wdJ*(b,u) - / { / (1- ﬁ’(b,vlu))dv}dS”(b,u). (2.12)
Since £(b) is, in general, a discontinuous function of b, we cannot define, in
analogy with (2.4), the bias-corrected least squares estimator g simply as a root
of £(b). It will be assumed in the sequel that an upper bound p > ||8|| is known,
where ||-|| denotes the Euclidean norm. A natural analogue of (2.4), therefore, is
to define 3 as a minimizer of ||€(b)]| with ||b]| < p. For the univariate case p = 1,
it is also possible to define B as a zero-crossing of £(b). An iterative algorithm -
for computing 3 has been provided by Tsui, Jewell and Wu (1988).

The discontinuous random function (2.12) appears to be quite intractable.
Even at b = 3, the product-limit estimator F'(8,v|u) of F(v|u) is known to be
rather unstable when the relative frequency n~1J(,v) is small. Similar difficul-
ties also arise in the analysis of the Buckley-James (1979) estimator for censored
regression data. To get around these difficulties, Lai and Ying (1991b) intro-
duced a slight modification of the Buckley-James estimator by using a smooth
weight function to dampen the instability at the upper tail of the Kaplan-Meier
estimate of F’ based on the censored residuals.

To define an analogous modification in the case of truncated data, let p be
a twice continuously differentiable and nondecreasing function on the real line
such that

p(u)=0for u <0, p(u) =1foru> 1. (2.13)
With S(b,u) and N(b,u) defined in (2.7) and (2.5), define weight functions
S(b,u) N(,u) ¢

n n logn

2 ylogn ), ma,) = yogn),

(2.14)
where ¢;, ¢y are positive constants. As an extension of the ideas of Lai and Ying
(1991b) for censored data to be explained below, we modify £(b) in (2.12) by

ms, = (

£(b) = Z / upi (b, £:(5))d[ Lz by < ugwi (0} P2 (b, 0)]

_/oo {/u (1—F(b,v|u))p2(b,u)dv}pl(b,u)dmb,u). (2.15)

-0

In analogy with (2.6), let
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JZ(byu) =" 2ip1(b,ti(8)) L1 (by<u<yi(b)}- (2.16)
=1

Then the first term on the right hand side of (2.15) is — 2 ud[pa(b,w)
Jo(b,u)]. By letting Apy(b,u) = py(b,u+) — pa(b,u), we can express (2.15)
in the form

£(b) = Ezz’pl(bati(b)){yi(b)p2(b,yi(b)) — ti(b)p2(b, 1:(b))

=1

_ / - E(b, ot:(5))lpa (b, v)dv
£:(b)

= D uib)J5, (b, 3 (8)) Apa(b, wi(b)), (2.17).

which shows more clearly how the Tsui-Jewell-Wu statistics (2.11) are modified.

The basic idea underlying (2.15) is the same as that introduced in Lai and
Ying (1991b) to modify the Buckley-James statistics for censored data, but the
details are quite different. In the censored case where the y} in (1.1) are censored
by censoring variables c;, the risk set size Z(b,u) = 3., Liys () A(ci—bzr)>u) 18
small relative to n only at the upper tail of the Kaplan-Meier curve based on the
residuals. Here, for truncated data, the product-limit estimator is unstable at
both the left and right tails corresponding to small values of n=1J(b,u). Hence,
instead of a single weight function of the form p*(b,u) = p(n*{n~"1Z(b,u) —
en™*}) with ¢ > 0, 0 < A < 1, used in Lai and Ying (1991b) for censored data,
we use, here, two weight functions p; and p; for truncated data. As explained
in Lai and Ying (1991b), in view of (2.13), the weight function p*(b,u) is a
smooth analog of the standard trimming function I(z(bu)>cn1->}; and, likewise,
the weight functions p; and p; in (2.15) are introduced to restrict the range of
integration only to u and v for which the risk set sizes J(b,u) and J(b,v) are not
too small relative to n.

Analogous to Lemma 1 of Lai and Ying (1991b), it will be shown in the
Appendix that for any nonrandom functions ¢, and g, of bounded variation on
the real line,

E{ /oo ug1(t7(8))d[g2(w) L ier sy <us<yr (8)}]

+ /_: [/u°°(1 - F(’UIU)).(D(U)dU]gl(u)df{t:(ﬁ)gu,t;(ﬁ)gy;(g)}Iz;“} =0, (2.18)

for i =1,2,...; and this suggests, as in Lai and Ying (1991b), that the modifi-
cation (2.15) does not introduce bias through the trimming operation (at least
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when b = 3), (cf. (3.8) of Section 3). As pointed out in Lai and Ying (1991b), an
important idea to remove the thorny issues of bias in performing such trimming
is to compensate the bias introduced in the second term on the right hand side
of (2.15), for which such trimming is needed, by a corresponding adjustment in
the first term. Without having to worry about bias, we can in fact trim quite
substantially to ensure a moderate risk set size J(b,u); and here, we require it
to be at least of the order n/logn, although for the censored case treated in Lai
and Ying (1991b), a risk set size Z(b,u) of the order n!~> suffices.

As explained in Lai and Ying (1988,1991b), the use of a smooth weight
function instead of straightforward trimming is analogous to the kernel method
in density estimation. Since a key idea in the analysis of é(b) is to approximate
it by a nonrandom function §,,(b), our use of smooth trimming functions p;, p;
leads to a smooth £,,(b) which is essential to the analysis of asymptotic properties
in the next section.

3. Large Sample Properties

In this section we discuss the asymptotic properties of the modified bias-
corrected statistics £(b), defined by (2.15), and the corresponding estimator f,
defined as a minimizer of ||£(b)|| with ||b]| < p. Specifically, our results show that
under certain regularity conditions, B is consistent and asymptotically normal.
The proof of these results uses the same ideas as those developed in Lai and Ying
(1991b) for the censored case. Our development consists of two main steps in
the analysis of f(b), represented by Theorems 1 and 2 below. These two steps
are then combined to provide the desired consistency and asymptotic normality
of ﬁ in Theorem 3.

Theorem 1 establishes the asymptotic normality of £(3) by using martingale
central limit theorems and a decomposition of £(8) in Lemma 2 below. Lemma 1
first reviews a basic martingale structure for truncated data that has been in-
troduced in Lai and Ying (1991a,1992a). This martingale structure enables us
to apply martingale central limit theorems to prove the asymptotic normality
of {(ﬂ) As pointed out in Section 1, we shall regard the observed (z7,y;,t),
i=1,...,n, as generated by a larger sample (z}T,y*, t7),i = 1,... ,n*, where
n* is defined in (1.3).

Lemma 1. Let F be the complete o-field generated by
Lir<yrys Litrcugyry Lemgyrguys B, 27 (<81 =1,2,..0).

Let Y(s) = 27;1 I gy <yr(py<sy ond A(u) = —log(1l — F(u)), where F is the

common continuous distribution function of y*(B). Define
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L

W(s)=Y(s) - / J(B,u)dA(u), —o0 < s < 00. (3.1)

- 00

Then {W(s), Fs,—00 < 8 < 0o} is a martingale with predictable variation process

W)= [ 96w

— 00

Lemma 2. Define £(b) as in (2.15) and J5, as in (2.16). Then

P{E(B) = & + & for all large n} = 1, (3.2)

where

b= [ udpa(s, 095, (6,0)
- /o0 { /uoo(l - F(v|u))p2(ﬁ,v)dv}p1(ﬂ, u)dS*(B,u),

-0

b= [ { [ 0-F6u-imGoesm6)

{ / (1- F(slu))Pz(ﬁ,s)ds} ?qug

The proof of Lemma 2 is given in the Appendix. As in Lai and Ying (1991b)
for the censored case, certain regularity conditions are needed for a rigorous
justification of the results given in Theorems 1 and 2 below. These conditions
are listed as follows:

C1. ||z}|| £ B for all © and some nonrandom constant B.

C2. F has a twice continuously differentiable density f such that [ u?dF(u)
< oo and ffooo(f’(u)/f(u))2dF(u) < .

C3. [Z7 supjp<s{lf'(u + h)| + |f"(u + h)|}du < oo for some 6 > 0.

C4. sup,, E|t;| < oo.

C5. SUP|p<p—cocu<oo 21 P{u < 1 - 4Tz} < u+ h}=0(mh)as h — 0 and
mh — o0.

C6. limmocom™t 300, E{2* [ (4 _pror<uy} = Ti(u) exists for all w < F~1(1)
and k = 0,1,2, and [*° T3(u)dF(u) > 0, where a® = 1,a’ = a and @* =

aaT for vectors a.

The requirement that the covariates be uniformly bounded in C1 is a tech-
nical assumption, which enables us to simply apply the results developed in Lai
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and Ying (1988). Condition C2 requires that the error density have a finite sec-
ond moment and finite Fisher information with respect to location shift. C3-C6,
which correspond to (3.3)-(3.6) of Lai and Ying (1991b), are needed to derive
a basic asymptotic linearity result for the bias-corrected statistics f(b) and to
ensure that n!/2(4 — ) has a limiting normal distribution.

By the strong law of large numbers, as m — oo,

1 « 1 [®
E;I{i.’sy.’}"‘ ;n—;[-m Gi(u)dF(u) - 0 as.,

where G; is the distribution function of t; — 8T7z}. Therefore (1.3), C6 and the
dominated convergence theorem imply that

SN /_ Ti(u)dF(u) as. (3.3)
Assume C6 and define
Ty (u) = Ti(u)/ /_ T Dy(wdF), E=0,1,2 (3.4)

From the strong law of large numbers together with (3.3) and C6, it follows that
n~t 3, x;‘kl{t:_ﬁrx.ys“} — T'k(u) a.s. for k=0,1,2.

Theorem 1. Suppose that the conditions C1-C6 hold. Define £(B) by (2.15)
and Ty (u) by (3.4). Then n~1/2¢(B) converges, in distribution, to a multivariate
normal random variable with mean vector 0 and covariance matriz

oo oo M O

The proof of Theorem 1 is similar to that of Lemmas 4, 6 and Theorem 2
of Lai and Ying (1991b). Here we make use of the martingale structure in
Lemma 1 in place of Lemma 5 of that paper. An outline of the proof is given
in the Appendix. The next theorem provides two approximation results for
the random function £(b). The first result, which will be used to establish the
strong consistency of B, shows that in any bounded region of b, f(b) can be
approximated by £,-(b), where £,,(b) is a nonrandom function defined in (3.7)
below. The second result, which together with Theorem 1 implies the asymptotic
normality of 4, shows that é(b)— f(ﬂ) is asymptotically linearin b— S as n — o
and b — B. To define £, (b), first define, for m > 1,
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N (b,u) = Z Elf o)<y (9),usyr ()}

i=1

m
NZ(b,u) =Y E[2i Ity <ur ) ucor ()}

i=1

Im(b,u) = EEI{t:‘(b)SuSy;‘(b)}v

=1

m
T (b,w) = Y E[ai i y<usyr o)}

i=1

Sm(byu) = D Elfse (5)<minu,g: ()}

i=1

S (b,u) = Y E[2 Lz (b)<min(ugz (0)}]»

i=1

a(m) = P{t; <y}

Also let
o) = p( (2228 - 8 )1oga(m)),
(s,9) = p( (F28t) 2 iogi(m)),
T g, (0,2) = X:n;E 27 a1(5, 87 (0)) Itz 5y <usur (3]
and define

en(®) == [ udlaa(b,)75,0,(b,0)]

-0

(3.6)

- /_ Z{ /u oo(l—Fm(b,vlu))qg(b,v)dv}ql(b,u)dS'fn(b,u). (3.7)

Analogous to Lemma 3(ii) of Lai and Ying (1991b), application of (2.18) shows

that
£m(ﬂ) = 0.

(3.8)
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Theorem 2. Suppose that conditions C1-C6 are satisfied. Then for any ¢ > 0,

sup [[€6) = €nr ()] = o(n'/**) s (39)

Let 7o = inf{s : To(s) > 0} and assume that

Iog m

lim
m—+ 00

ZP{t* BTz} < 19 — €} = 0 for every € > 0 if F(r) > 0. (3.10)

Then, with probability 1,

£(b) = £(B) — An(b — B) + o(max{n'/?, n|[b - §]|}) (3.11)

uniformly in [|b — B|| < n~¢ for every € > 0, where

o [ oo B [ e

BELOTEE O Ny
{f(u) + 1_F(u)}auv( ). (3.12)

The proof of Theorem 2 uses essentially the same arguments as those used in
the proofs of Lemmas 2, 3 and Theorem 1 of Lai and Ying (1991b) for the modi-
fied Buckley-James statistics. The details are omitted. By combining Theorems 1
and 2, we obtain the consistency and asymptotic normality of the minimizer 3
of ||€(b)|| in the following.

Theorem 3. Suppose that conditions C1-C6 are satisfied. Define 3 by

1B =  min {|IE@)I|}- (3.13)

b:(lbll<p

(i) Assume that for every § > 0,

m™! {llEm(®)II} > 0. (3.14)

lim
m—00 IIbII<p,IIb —-Bll>6

Then f — [ a.s.
(ii) Assume that (3.10) holds and that there ezists € € (0,1/2) for which

1
lim —— inf m(B)]| = oo, 3.15
o T/ pugptbopzmes o O (3.15)

and that the matriz A defined in (3.12) is nonsingular. Then |3 — B|| = O(n™¢)
a.s. and /n(—B) has a limiting normal distribution with mean 0 and covariance
matric A~V A™1, where V is defined in (3.5).
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Proof. Since £n(8) = 0, (i) follows from (3.9) and (3.13). Moreover, from
(3.15) and (3.9), we similarly conclude that
: : -1/2-¢||¢ —
L otz €O =00 s

which implies, in view of (3.11) and (3.13), that 3-8l = O(n~¢) a.s. Therefore,
we can apply (3.11) (with b = ) and Theorem 1 to conclude that V7(B — B) has
a limiting normal distribution with mean 0 and covariance matrix A"lvATL
This completes the proof of (ii).

Suppose that (z77,t;) arei.i.d. and thatf_c_x;oP{t;—ﬁTz; <u}dF(u)>0. Then
C6 holds with I';(u) = E(z{kf{t:_ﬂrx:Su}) and (3.10) is obviously satisfied.
Under assumptions C1-C5, the conclusion (3.11) of Theorem 2 can be shown to
hold as n — oo and b — 8 (without having to restrict to [|b — || < n™¢) for this
ii.d. setting. Moreover, m~1&,(b) — £(b), the convergence being uniform in

lIb]| < p, where the limit function £(b) is defined below. Let H(z) = P{z} < z}
and Gg(s) = P{t} < s|z} = z}. Define

v % Ga(s+bT2)f(s+ (b~ f)Tz)dH(a) ds}
u ff°°o Gz(s+bTz)[1 - F(s+ (b- B)Tz)|dH(z) ’

F(b,v]u) = 1= exp {_

. (3.16)
¢ = — /_: x{/:o wd[Go(u + bT2)(1 — F(u+ (b~ §)Tz))]
+ [ 1 = P o)l - Pt @~ 6)72)
dGz(u + bT.’c)}dH(:z:). (3.17)

Note that £(b) is continuous for ||b|| < p and that £(B) = 0 by (2.18). Hence, if

€(b) # 0 for b # B (with [[b]] < p), (3.18)

then (3.14) is satisfied and 8 is strongly consistent. If, furthermore, A is nonsin-
gular, then (3.18) holds for every 0 < € < 1/2 in view of (3.11) (with b — B) and
(3.14), and therefore B is asymptotically normal by Theorem 3(ii).

By assuming z; to be i.i.d. and ¢; = c¢ (some constant), Tsui (1988) es-
tablished the strong consistency of the Tsui-Jewell-Wu estimator under certain
additional assumptions which are considerably more restrictive than C1-C5 and
(3.18). While our proof follows basically the same lines developed in Lai and Ying
(1991b) for the Buckley-James estimator based on censored data, Tsui’s proof
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uses a different argument that is based on approximating the estimating equa-
tion (2.4) by a more tractable minimization problem. His approach, however,
requires knowledge of a finite set to which 3 belongs so that the minimization is
performed over this finite set to make the problem tractable.

4. Confidence Regions and Asymptotic Efficiency

To make use of Theorem 3(ii) to construct approximate (1 — a)-level con-
fidence regions for 3, we first consider consistent estimation of the matrix V
defined in (3.5), which can be rewritten as

[(1 = F(u)T1 (w)][(1 — F(U))Tl(U)]T}
(1= F(u))To(v)

x { /uoo(l - F(vlu))dv}2dA(u). (4.1)

v=["{a-Femw-

An obvious estimator of (4.1) is therefore

R S R J=(8,3-(B)(I=(B, 9 (B))”
V=z{” ;ziz?l{n(é)smé)smﬁ)}“ ( yngﬁ,yr(g)?)j }
x { Tﬁ) [1 - F(B,0ly-(8))) 1 (8, v)pa (B, v)dv} [T (B, (8)),  (4:2)

which can be shown to converge a.s. to V under the conditions C1-C6 and (3.14).

Since the limiting covariance matrix of V(8 — B) in Theorem 3(ii) is
A1V A-1, the problem of estimating A consistently has also to be addressed.
In view of (3.12), A involves both the density f and its derivative f' of the un-
derlying error distribution. Although in principle one can resort to kernel and
other methods to estimate these quantities, there are practical difficulties of es-
timating them well enough to provide a reliable estimate of A. It is, however,
possible to avoid these difficulties by extending the method of Wei, Ying and Lin
(1990) for censored data to completely bypass estimation of A. First note that
by Theorem 1, n~1€T(8)V~1(B) converges in distribution to a x*(p) random
variable. Since V. — V a.s., it then follows that n_lfT(ﬁ)f/'lé(ﬂ) also has a
limiting x?(p) distribution, and therefore

{b:||bll < p,n LBV THED) < Xy ) (4.3)

is an approximate (1 — a)-level confidence region for 3, where x%, denotes the
100(1 — a)-percentile of the x*(p) distribution.

If we are only interested in some components of the parameter vector G, we
can also use the procedure of Wei, Ying and Lin (1990) to construct an approxi-
mate confidence region for these components. Let § = (87,57)7. Suppose that
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f1 is the parameter of interest and that we want to construct a (1 — a)—le\:el
confidence region only for 8;. Choose constants § € (0,1/2) and ¢ > 0. Let 3,
B, denote the corresponding components in the bias-corrected least squares es-
timator 3. Let Q(b1,by) = n~1ET(B)V-1£(b). Then it follows from Theorems 2
and 3 and an argument similar to Appendix B of Wei, Ying and Lin (1990)
that D(B1) = min{Q(f1,b2) : ||bs — ,Bg” < cn%} is asymptotically x2(p;) dis-
tributed, where p; is the dimension of §;. Therefore an approximate (1 — a)-level
confidence region for 8; is the set {by : ||by|| < p, D(b1) < X2.,, }-

The asymptotic variance formula of Theorem 3 also enables us to compare
large sample performance of the bias-corrected least squares estimator with other
available methods. In particular, we can compare it with the estimator of Bhat-
tacharya et al. (1983). By applying this variance formula to the truncated
regression model (1.1)~1.2) with 8 = 1, t; = t and z; being i.i.d. uniform on
(—1,0), Table 1 gives the variances of the limiting normal distributions of three
estimators, namely, the bias-corrected least squares estimator ,@, the rank esti-
mator §* of Bhattacharya et al. (1983) based on an extension of the Wilcoxon
rank statistics to truncated data, and the rank estimator $** of Lai and Ying
(1992a) based on an alternative extension of the Wilcoxon statistics to truncated
data. In each case, the error distribution is assumed to be normal with mean
0 and its standard deviation o is specified. Note that assumptions C1-C6 are
satisfied and that A # 0 in the examples considered in Table 1. Moreover, as will
be shown in Lemma 3 below, condition (3.18) is satisfied. The limiting variance
A~V of \/n(B — B) as n — o is evaluated from (3.5) and (3.12) in Table 1 by
numerical integration. As shown by Bhattacharya et al. (1983) and Lai and Ying
(1992a), under certain regularity conditions, /n(8* — 8) has a limiting normal
distribution with mean 0 and variance

J(Ta(w) = T3 (u)/To(u))T3(u)(1 — F(u))*dF(u)
{/(T2(u)= T(w)/To(u)To(u)(1~ F(w))[f'(u)/ f(u) + f()/(1- F(U))]dF(ztz}:)
while /n(8** — ) has a limiting normal distribution with mean 0 and variar;ce

J(Ta(u) = T3 (u)/To(u))(1 = F(u))*dF(u)
{/(T2(w) = T(w)/To(u))(1 = F(w))[f'(w)/ f(u) + f(u)/(1 - F(U))]dF(U)}(:'S)
Both (4.4) and (4.5) are also evaluated by numerical integration in Table 1.

In Table 2 we replace the underlying normal distribution N(0,0?%) consid-
ered in Table 1 by a logistic distribution with density f(u) = de=**/(1 +e*)?,
—00 < u < 00, s0 its standard deviation is ¢ = A~'7/v/3. The examples in
Table 2 again satisfy assumptions C1-C6 and the condition A # 0. Moreover,
condition (3.18) is satisfied in view of the following lemma, whose proof is given
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Table 1. Variances of limiting normal distributions of three estimators. Normal error

distributions.

PN

t, ﬂ ﬁ* ﬂ**

3 —.50 6.94 7.66 8.46
-.75 3.53 3.80 3.91

-1.00 2.07 2.22 2.19

5 -.50 15.27 16.67 18.22
—.75 10.06 10.88 11.23

-1.00 7.00 7.55 7.53

1.0 -.50 45.86 50.60 52.11
-.75 37.96 41.57 42.21

—-1.00 31.78 34.55 34.70

in the Appendix. Note that both the normal and the logistic distributions con-
sidered in Tables 1 and 2 have increasing failure rates (IFR), i.e., the hazard
function f/(1 — F) is increasing. The following lemma shows that the function
¢(b) defined in (3.17) has a unique zero at b = j for IFR distributions F'.

Lemma 3. Define F(b,v|u) by (3.16) and £(b) by (3.17), in which F, H and
G. are distribution functions on the real line such that F has a bounded density
function f and [% u?dF(u)+sup, [, |u|dG4(u) < co. Suppose that the hazard
function f/(1 — F) is strictly increasing and positive everywhere, and that the
support of the probability measure associated with H is compact and contains

more than one point. Then £(b) has a unique zero at b = (3.

Table 2. Variances of limiting normal distributions of three estimators. Logistic error

distributions.

t, ﬁ ﬁ* ﬂ**

3 -.50 13.72 10.29 9.50
-.75 4.33 3.73 3.55

-1.00 1.94 1.78 1.74

5 -.50 36.56 28.96 26.35
-.75 14.09 12.14 11.43

—-1.00 7.04 6.35 6.14

1.0 -.50 101.27 84.57 79.75
-.75 59.43 50.82 48.63

-1.00 38.28 33.45 32.41

Tables 1 and 2 show that the limiting variances change quite substantially
for different values of t. Note that as t increases the heavier the truncation be-
comes. Table 1 shows that for normally distributed ¢;, the bias-corrected least
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squares estimator J is asymptotically more efficient than the rank estimators
B* and ** that are based on extensions of the Wilcoxon statistics to truncated
data. This is in agreement with the simulation results reported by Tsui et al.
(1988) comparing their bias-corrected least squares estimator (which has been
reviewed in Section 2) with the rank estimator 3* in a setting similar to that
of Table 1 but with right instead of left truncation. This is also consistent with
the case of complete data, for which the least squares estimator is asymptotically
most efficient when the underlying error distribution is normal. When the under-
lying error distribution is non-normal, it is well known that rank estimators can
substantially outperform least squares estimators in the case of complete data.
Table 2 shows that for truncated data the bias-corrected least squares estimator
B is less efficient than the rank estimators #** and #* when the underlying error
distribution is logistic.

In the univariate case p = 1, application of the Schwarz inequality to the
integral (3.12) defining A gives

A% < D/ {r (u) — ;‘2%“3}{ /:0(1 _ F(v|u))dv}2dF(u), (4.6)

_ [T _ T%(U)}{f’(u) f(u) }2
o= [ Amo-fH T Tl e 6
Consequently, the variance A~?V of the limiting normal distribution of ﬁ(ﬁ—ﬁ)

is bounded below by D~!. The inequality in (4.6) is strict unless there exists
a # 0 for which

where

/w(l - F(vlw))dv = o f'(v)/ f(u) + f(u)/(1 = F(u))} ae. (F).  (4.8)

When f is the densxty of a normal distribution with mean x and variance o2, (4.8)
holds with a = o2, and therefore the variance of the limiting normal distribution
of \/n(f — ) attains the lower bound D~1. I, in addition, the t7 — Bz} are i.i.d.
and are independent of the z}, then the usual maximum likelihood estimator of /3
is also asymptotically normal with the same asymptotic variance, and therefore
the bias-corrected least squares estimator is asymptotically as efficient as the
parametric (normal) maximum likelihood estimator.

Without assuming 7 — Bz} and z to be independent, the general theory of
asymptotic lower bounds for the variances of the limiting distributions of regular
estimators in semiparametric estimation developed by Begun, Hall, Huang and
Wellner (1983) can be applied if the (¢f,z}) are assumed to be i.i.d. More
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generally, for i.i.d. (¢f,2z}7)in the truncated regression model (1.1)-(1.2) with p-

191

dimensional regressors z?, define the pxp matrix D by (4.7). The results of Begun
et al. (1983) show that the limiting distribution of \/n(T» — B) for a sequence
of regular estimators {T},} is a convolution of N(0,D~") with some distribution.
Extension of this theory to the setting of Theorem 3, in which (¢},z}7) need

194

not be identically distributed, is given in Lai and Ying (1992b). Note that if
(4.8) holds for some a # 0, as is the case of normal f, then D~' = ATIWVAT! =
the covariance matrix of the asymptotic distribution of the bias-corrected least
squares estimator B
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Appendix

Proof of (2.18). Let H;(u) = P{t}(B) < ulz}}. The left hand side of (2.18) is
equal to

/_ Z / ‘: ug1 ()d{Ioguy(1 = F(u))g2(w)}dH ()
+ [ - Fe)m@)ilnwani

== [T Iogn(1 - Foamduan()dbi(v
+ [ a- Foymepn@inim = o

where the first equality follows from integration by parts.

Proof of Lemma 2. To prove (3.2), it suffices, in view of (2.15), to show that
with probability 1, for all large n,

[:;{/oo(l — F(v|u))p2(B, v)dv}pi (B, u)dS*(B,u)
- /_o:o{/uw(l - F(ﬁ’vlu))m(ﬂvv)dv}pl(ﬂ,u)dS’(ﬁ,u)

- /_oo { /_ (1= F(8,u ~ 10))p1 (8, v)dS7 (B, v))}

dW (u)
J(B,u)

(7= Fehp(s,9ds) (A1)
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By Doleans-Dade’s exponential formula (cf. Shorack and Wellner (1986, p.897)),
we have

- I:"(ﬂ,v|u) 4 v1- F(ﬁ,s — |u) dW(s)
1 - F(vlu) 1 /u+ 1- F(slu) J(B,s) (A.2)

if infy<s<o J(B,8) > 0, in which case (A.2) implies that

1= F(ula) - (1= F(B,vh)) = (1 Fol) [ 2G2S (4

Since for large n, infu<s<o J(B,5) > 0 if p1(B,u) > 0 and p2(8,v) > 0, it follows
from (A.3) that the left hand side of (A.1) becomes, with probability 1,

/. {/ (1-F (”'“))[/ F(%(slu)lu)%fgl”z(ﬁ’”)dv}px(ﬂ,u)dmﬁ,u),'

(A4)
for all large n. (A.l) then follows from (A.4) by interchanging the order of
integration.

Proof of Theorem 1. In view of Lemma 2 it suffices to establish the asymptotic
normality of £; +&,. Since &, is a stochastic integral with respect to the martingale
process W, we can use arguments similar to those in the proof of Lemmas 5 and
6 of Lai and Ying (1991b) to show that with probability 1,

b= { ) a-Famae.ves.em)
A [T Fene. a2 o0 4

Moreover, analogous to the proof of Lemma 4 of Lai and Ying (1991b), we
approximate the random weight functions p; and p; in & by their nonrandom
counterparts q; and g and obtain

= - wapl(ﬂ,t?(ﬂ))/ ud(g2 (B, w) (e (p) <ugyr (8)})
i=1 =00

- Z [ [ - Pole.9is fa6.vircmsn + oV,

(A.6)
By making use of (A.5), (A.6) and (3.3), we can use an argument similar to that
in the proof of Theorem 2(ii) of Lai and Ying (1991b) to show that n=1/2(§£; +£;)
has a limiting normal distribution with mean 0 and covariance matrix (3.5).



TRUNCATED REGESSION 937

Proof of Lemma 3. The change of variables v = u + bz yields

o0

/ " wd[Go(u + bz)(1 = F(u+ (b - B)z)] = / vd[G(v)(1 - F(v - Bz))),

—00 —o00

since bz [ d[G4(v)(1- F(v—fz))] = 0. Hence, the first summand on the right

- 00

hand side of (3.17) is [°°_ z{ [ vd[G(v)(1 — F(v — Bz))]}dH(z), which does

not depend on b. To show that £(b) # 0 for b # 3, it therefore suffices to prove
that £*(b) # £*(8) for b # B, where £*(b) denotes the second summand on the

right hand side of (3.17). Let

22, Gyls + by)f(s + (b— B)y)dH (y)
2% Gy(s + b)[1 = F(s + (b= B)y)ldH (y)’ (A7)

ep(u) = /:0{1 — F(b,v|u)}dv = /:o exp{— ./: ¥y(s)ds}ds.

¥p(s) =

Integration by parts yields

/—00 ep(u)[1 — F(u+ (b— B)z)ldG(u + bz) = /—00 G(u + bz)
x {[1 = F(u+ (b= B))][1 — ve(u)es(w)] + es(w) f(u + (b~ B)z)}du.

Putting this in the second summand of (3.17) gives

o0 o0 o0
(b)) = - / z / G(w)[1 — F(w — fz)|dwdH (z) + / ep(u)hp(u)du,
) )

- 00

where

hy(u) =¢p(u) /—00 Gz (u + bz)[1 — F(u+ (b— B)z)]dH(z)

_ / " 2Gau+ bz)f(u + (b— B)z)dH(2). (A-8)

- 00

Fix b > 8 and let § = b — B(> 0). We now show that hy(u) < 0 and that
strict inequality holds for all large u. From the definition of ¥y(u) in (A.7), it
suffices to show that
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{ [ Z f(u+ 8y)Gy(u + by)dH (y)}
. { /00 z[1 — F(u + 62))Go(u + bz)dH(m)}

-0

<{ [0 Pt 6y + aa )}
. { / " ef(u+ 62)Go(u+t bz)dH(z)}, (A.9)

with strict inequality for all large u. Since f(v)/(1 — F(v)) is strictly increasing,
it follows that for z > v,

(- y){f(u+éy)[1 — F(u+ 6z)] — f(u+6z)[1 — F(u+ 6y)]} <0. (A.10)

Expressing both sides of (A.9) as double integrals of the form [ [°° and
then representing their difference as a double integral of the form [ fy <g» We can
use (A.10) to establish (A.9), with strict inequality if [ __ Gy(u+ by)Ga(u +
bz)dH(z)dH(y) > 0, which holds for all large u since the support of H has more
than one point.

Similarly, it can be shown, for fixed b < f, that hy(u) > 0, with strict
inequality for all large u. Since es(u) > 0, it then follows that

/00 ep(u)hp(u)du < 0if b > 3, /°° es(u)hp(u)du > 0 if b< p. (A.11)

— o0

By (A.7) and (A.8), we have hg(u) = 0. From (A.8) and (A.11), it then follows
that £*(b) < £*(B) if b > § and €*(b) > £*(B) if b < B.
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