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Abstract: We extend Bergsma and Rudas (2002)’s hierarchical complete marginal

parameterization to allow for logits and higher order effects of global and continu-

ation type which may be more suitable with ordinal data. We introduce a general

definition of marginal interaction parameters and show that this parameterization

constitutes a link function so that linear models defined by equality and inequality

constraints may be fitted and tested by extending the methods of Colombi and

Forcina (2001). Computation and asymptotic properties of maximum likelihood

estimators are discussed, and the asymptotic distribution of the likelihood ratio

test is derived.
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1. Introduction

Marginal models for the analysis of frequency tables have been developed

during the last decade in response to the need to overcome certain limitations

of log-linear models. One limitation is that lower order log-linear effects do not

describe the marginal distribution to which they refer. For instance, main effects

defined as the logits of the variable of interest averaged across all the possible

configurations of the remaining variables may differ substantially from the cor-

responding marginal logits with which they are sometimes confused. The other

limitation is that, for those variables which have an ordinal nature, different types

of logit (and similar higher order effects) based on the cumulative distribution

function or the survival function may be more meaningful; these logits, known

as global, continuation or reverse continuation, are not log-linear parameters.

Molenberghs and Lesaffre (1994) studied a class of regression models where

the univariate marginal logits and log-odds ratios of global type are allowed to

depend on covariates. This approach was generalized by the multivariate logis-

tic transform of Glonek and McCullagh (1995), who proposed a composite link

function whose elements are the highest order interactions that can be defined
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within each possible marginal distribution of the response variables; they also al-

lowed parameters based on global logits for ordinal variables. Lang and Agresti

(1994) and Lang (1996) studied a class of marginal models which is completely

general but, because of this, also less structured. To bypass the fact that mod-

els of conditional independence cannot be expressed as linear constraints on the

parameters of the multivariate logistic transform, Glonek (1996) introduced a hy-

brid parameterization which combines the multivariate logistic transform within

low order marginals with log-linear parameters for the remaining higher order

effects; parametrizations of this type were also used by Fitzmaurice and Laird

(1993) and Fitzmaurice, Laird and Rotnitzky (1993) within regression models

for the analysis of longitudinal data. This approach was further extended by

Bergsma and Rudas (2002) by allowing additional log-linear parameters within

a selected set of marginal distributions of interest.

Models involving linear inequality constraints arise naturally with ordinal

variables and are needed to define hypotheses of stochastic dominance (Dard-

anoni and Forcina (1998)), or various notions of positive dependence (Bartolucci,

Forcina and Dardanoni (2001)). A very general class of models defined by equal-

ity and inequality constraints on marginal parameters similar to those introduced

by Glonek, has been studied by Colombi and Forcina (2001).

In the present paper we extend the marginal parameterization introduced by

Bergsma and Rudas (2002) to allow for logits (and higher order effects) of differ-

ent types and extend the results of Colombi and Forcina (2001) for computing

maximum likelihood estimates under linear equality and inequality constraints,

and for constructing an analysis of deviance table. In Section 2 we propose a

definition of marginal interaction parameters of a general type (local, global,

continuation) and study some of their properties. This throws new light on the

interpretation of parameters and on the connection between hierarchical com-

plete marginal parameterizations and block-recursive models. The main results

are contained in Section 3, where we prove that the proposed parameterization

defines a link function and we indicate when its elements are variation indepen-

dent; our proof combines Bergsma and Rudas’ idea of the recursive use of a mixed

parameterization (Barndorff-Nielsen (1978)) with a new tool based on partially

dichotomized tables. Computation and asymptotic properties of the maximum

likelihood estimator are discussed in Section 4.

2. Generalized Marginal Interactions

This paper is about a new class of models for the joint distribution of a

set of categorical response variables, conditional on a set of discrete explanatory

variables. However as the main issues may be discussed conditionally on a given

configuration of the explanatory variables, explicit reference to it will be omitted.
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More formally, consider the joint distribution of q response variables B1, . . . , Bq,

with Bj taking values in {1, . . . , bj}; this distribution identifies a contingency

table having t =
∏q

1 bj cells. To be concise, the set of response variables that

defines a given marginal distribution will be denoted by the set of indices of the

corresponding variables and Q = {1, . . . , q} will refer to the full joint distribu-

tion. The vector containing the cell probabilities of such a distribution, ordered

lexicographically, will be denoted by π.

Let Π denote the t-dimensional simplex: {π : πi > 0,
∑t

1 πi = 1}. Formally,

any invertible mapping η = g(π): Π → Ω ⊆ ℜt−1 defines a parameterization

and the elements of the vector η will be called parameters. In practice, we are

interested in parameters which describe relevant aspects of the joint distribution

and are such that hypotheses of interest may be expressed by linear constraints.

Parameters defined as contrasts among the logarithms of probabilities of disjoint

subsets of cells will be called interactions. As in Bergsma and Rudas (2002)

(hereafter BR for brevity), an interaction will be characterized by the set I of

variables involved and the marginal distribution M where it is defined. A general

definition of interaction parameters will be formulated in 2.1 and some properties

of linear transformations of these interactions will be examined in 2.2; this will

be used to motivate and extend BR’s definition of marginal parameterizations in

2.3. The aim of the final subsection, 2.4, is to provide additional motivation for

BR’s approach to allocating interactions within marginal distributions.

2.1. Generalized interaction parameters

Logits are the most elementary interaction parameters defined by contrasts

between two disjoint subsets of cells within a univariate marginal (or conditional)

distribution. Logits of four different types have been used in the literature: local

(l), global (g), continuation (c) and reverse continuation (r). Colombi and Forcina

(2001) discuss the interpretation of these logits; essentially, logits of type g, c and

r may be used only when categories follow a natural order. Since logits of type

r may be obtained from logits of type c when the order of categories is reversed,

logits of this type need not be examined explicitly. It is well known that only

logits of type l are log-linear within the corresponding marginal. Clearly, the

type of logits should be chosen so as to suit the nature of each response variable.

Note, however, that while it would be inappropriate to use logits of type g or c

when categories do not follow a natural order, it makes sense to use logits of type

l with both ordinal and non-ordinal variables. Different types of contrast can be

used to define ordinary log-linear interactions; here we adopt contrasts between

adjacent categories because this approach extends naturally to logits of global or

continuation type.
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We define below a general class of interaction parameters which includes the

four types of logit mentioned above and the 16 types of log-odds ratio discussed by

Douglas et al. (1990) as measures of bivariate association. Our approach, which

extends naturally to interactions of any order, is based on the idea that the kind of

dichotomy implied by the type of logit adopted for each variable should carry over

when defining higher order interactions within the same marginal distribution. As

we explain below it may be convenient to allow that interactions defined within

different marginals are based on different types of logit for the same response

variable.

Within a given marginal M, assume that each response variable Bj, j ∈ M,

is assigned a given type of logit. For any cut point xj < bj , define the event

B(xj, 0) to be equal to {xj} if the logit is of local or continuation type and to

{1, . . . , xj} for global logits; similarly, the event B(xj, 1) is equal to {xj + 1} if

the logit is of local type and to {xj + 1, . . . , bj} for global or continuation logits.

Lastly, define the marginal probabilities

pM(xM;hM) = p(Bj ∈ B(xj , hj), ∀j ∈ M),

where xM is a row vector of cut points xj, j ∈ M, and hM is a row vector whose

elements, hj, j ∈ M, are equal to zero or to one. A generalized interaction for

the variables in I, computed within the marginal M, is defined through

ηI;M(xI | xM\I ;hM\I) =
∑

J⊆I

(−1)|I\J | log pM(xM;hM\I ,0I\J ,1J ), (1)

where the binary vector hM has been split into three components, and 1J de-

notes a vector of |J | ones. These parameters may be interpreted as log-linear

contrasts computed within the marginal table obtained by dichotomizing the

original variables according to their respective types of logit. Note that (1) is

defined also for I = ∅, in which case the corresponding interaction parameter

equals log pM(xM;hM). The recursive nature of this definition is made explicit

in the following.

Proposition 1. For any H ⊆ M\I, (1) is equivalent to

ηI∪H;M(xI∪H | xL;hL) =
∑

K⊆H

(−1)|H\K|ηI;M(xI | xM\I ;hL,0H\K,1K), (2)

where L = M\(I ∪H).

Proof of Proposition 1. Expand the left-hand side of (2) as in (1) and note

that, since I and H are disjoint, any subset of I ∪H may be expressed as K∪J ,
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with K ⊆ H and J ⊆ I, so that

ηI∪H;M(xI∪H | xL;hL)

=
∑

K⊆H

(−1)|H\K|
∑

J⊆I

(−1)|I\J | log pM(xM;hL,0(H∪I)\(K∪J ),1K∪J ).

For a given K ⊆ H, the binary vector hM\I = (hL,0H\K,1K) is fixed while the

component (0I\J ,1J ) varies within the inner sum and this sum is equal to the

right-hand side of (1), so that (2) follows by substitution.

In the special case where H = {h}, if we write G = I ∪ {h}, (2) becomes

ηG;M(xG |xM\G ;hM\G) = ηI;M(xI |xM\I ;hL, 1) − ηI;M(xI |xM\I ;hL, 0); (3)

this recursive relation implies that any interaction parameter for variables in

G may be interpreted as the difference between the corresponding interaction

parameter involving I = G\{h} by changing the conditioning variable Bh from

B(xh, 0) to B(xh, 1), no matter how we choose {h} ∈ G.

2.2. Linear transformations of generalized interaction parameters

Interaction parameters, as defined in (1), depend on conditioning variables

through their cut points xM\I and the binary vector hM\I . Thus, when M\I
is not empty, the same intuitive notion of interaction could be parameterized

in many different ways. In this section, we indicate how such parameters are

linearly related; these results indicate that we may limit our attention to the

interaction parameters with xM\I = 1M\I and hM\I = 0M\I , that is to say to

the interactions where the conditioning variables are fixed at their first category.

Now let hL = 0L in (2) and apply the Möbius Inversion Lemma (Lauritzen

(1996, p.239)) to write ηI;M(xI |xM\I ;0L,1H) as a sum of higher order interac-

tions ηI∪K;M(xI∪K | xM\(I∪K);0M\(I∪K)) :

ηI;M(xI | xM\I ;0L,1H) =
∑

K⊆H

ηI∪K;M(xI∪K | xM\(I∪K);0M\(I∪K)). (4)

This equation says that, once the interactions of type ηJ ;M(xJ | xM\J ; hM\J )

with hM\J = 0 are known, any other generalized interaction may be recon-

structed by linear transformation. In addition note that, when Bj has logits of

local type, B(xj , 0) = B(xj − 1, 1), so that if all variables in M\I have logits of

local type, repeated use of (4) leads to an expression for ηI;M(xI | xM\I ;0L,1H)

in terms of interactions of the form ηJ ;M(xJ | 1M\J ;0M\J ), with I ⊆ J ; from

now on these interaction parameters will be simply denoted by ηJ ;M(xJ ).
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Before deriving the general expression for reducing any interaction parameter

to a linear function of simpler interactions of the form ηJ ;M(xJ ), we give an

example which may help to illustrate the basic idea.

Example 2.1. Let M = {1, 2, 3} with B2 and B3 having logits of local type

with four and two levels, respectively. By (4) we have η{1};M(1 | (3 2); (0 1)) =

η{1};M(1 | (3 2); (0 0)) + η{1,3};M((1 2) | 3; 0); the first term on the right-hand

side is equal to η{1};M(1 | (2 1); (1 1)) which, in turn, is equal to η{1};M(1) +

η{1,2};M((1 1))+ η{1,2};M((1 2))+ η{1,3};M((1 1))+ ηM;M((1 1 1))+ ηM;M((1 2 1)),

while the second term may be expanded as η{1,3};M((1 2)) + ηM;M((1 1 2)) +

ηM;M((1 2 2)).

If we let J (1) = {j ∈ M\(I ∪ K) : xj > 1} and G = M\(I ∪ K ∪ J (1)), we

can rewrite each term on the right-hand side of (4) as ηI∪K;M(xI∪K | xG ,xJ (1)−
1;0G ,1J (1)), which can be expanded again as in (4) and the process can be

iterated until all terms on the right-hand side are in the form ηJ ;M(xJ ), with

I ⊆ J . To describe this process formally, let m be the value of the largest

element of xM\I minus 1, and define J (h) = {j ∈ M\(I ∪ K ∪ L(1) ∪ · · · ∪
L(h − 1)) : xj > h}, h = 2, . . . m, where L(h) ⊆ J (h), L̄ = J (1)\L(1) and

H(h) = I ∪ K ∪ L(1) ∪ · · · ∪ L(h). Then

ηI;M(xI | xM\I ;0L,1H)

=
∑

K⊆H

∑

L(1)⊆J (1)

ηH(1);M(xI∪K,xL(1) − 1 | xG,xL̄ − 1;0M\H(1))

=
∑

K⊆H

∑

L(1)⊆J (1)

· · ·
∑

L(m)⊆J (m)

ηH(m);M(xI∪K,xL(1) − 1, . . . ,xL(m) − m). (5)

Below we limit our attention only to interactions of the simple form ηJ ;M(xJ ),

where the conditioning variables are fixed at their initial level.

When the conditioning variables have logits of local type, (5) implies that any

linear constraint on the generalized interactions ηI;M(xI | xM\I ;hM\I) may be

written as a linear constraint on ηJ ;M(xJ ), so there is no restriction in limiting

our attention to these parameters. Setting the type of logits of variables in M\I
to local within M makes sense in certain recursive models described toward the

end of this section. When not all the variables in M\I have logits of local type,

parameters defined by fixing the conditioning variables to a different reference

category, or by averaging across all possible configurations of the conditioning

variables, are no longer linearly related.

2.3. Marginal parameterizations

We now examine the issue of allocating interaction parameters among the

marginals within which they may be defined. In doing so we extend BR’s notion
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of complete hierarchical parameterization to the generalized interaction param-

eters ηI;M(xI); we also rephrase their formulation in a way which is useful for

the following treatment and provide some additional motivation. Denote by

M1, . . . ,Ms an ordered set of marginals of interest, and by Fm the collection of

the sets I such that ηI;M(xI) is defined within Mm. Also let P(J ) be the set

of all non-empty subsets of J and Pm be a short-hand notation for P(Mm).

Definition 1. A marginal parameterization is called complete and hierarchical

if (i) the sequence of marginals M1, . . . ,Ms is non-decreasing and Ms = Q, (ii)

F1 = P1 and Fm = Pm\⋃m−1
1 Fh for m > 1.

The definition implies that any interaction with I ∈ P(Q) is defined in one

and only one marginal distribution Mm, a feature which is called completeness.

The definition also implies that Fm cannot be empty and constitutes an ascend-

ing class of subsets of Pm, while its complement with respect to Pm, which we

denote by Rm, is a descending class in BR’s terminology. Ascending means that,

if a subset of Pm belongs to Fm, the same is true for any larger subset. Because of

this latter property, the parameterization is called hierarchical; in practice each

interaction is defined within the first marginal within which it is contained. We

limit our attention below to parameterizations which are complete and hierarchi-

cal. If a parameterization was complete but one or more Fm were not ascending

classes, (5) could no longer be applied. This means that if, for instance, the inter-

actions for I = {1, 2, 3} are defined within a marginal larger than M = {1, 2, 3},
interactions defined within M by fixing the conditioning variables to a reference

category, or by averaging with respect to all possible configurations, are no longer

linearly related.

A complete and hierarchical set of generalized marginal interaction param-

eters has elements ηI;Mm
(xI), for any m = 1, . . . , s, any I ∈ Fm, and any

configuration of cut points xI ∈ ∏

j∈I{1, . . . , bj − 1}; this set has t− 1 elements,

as can be verified by ordinary calculation. These elements may be arranged into

the vector η explicitly written in matrix form as

η = C log(Mπ), (6)

where the rows of the matrix C are contrasts, M is a matrix of zeros and

ones which sums the probabilities of appropriate cells, and the log(·) operator is

coordinate-wise. A simple algorithm for constructing these matrices is given in

the appendix (see also Colombi and Forcina (2001)). A given parameterization

determines the matrices C and M and thus Ω, the range of values for η which

correspond to a probability distribution π. Within a given parameterization, a

value η ∈ Ω will be called compatible.
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Following BR, we should also recall that the sequence M1, . . . ,Ms is ordered

decomposable if the class of maximal sets within any subsequence M1, . . . ,Mm,

m ≥ 3, is decomposable (Haberman (1974, p.166)), where a set is maximal if it

is not contained in any other set. This notion is crucial for understanding when

a marginal parameterization is variation independent, i.e., when Ω = Rt−1.

2.4. Block-recursive models

An important context where the flexibility allowed by complete hierarchical

parameterizations can be exploited is when Q is partitioned into U1, . . . ,Us, so

that, for any m = 2, . . . , s, the variables in
⋃m−1

1 Uh are potentially explanatory

for the variables in Um. In this case a model with a block-recursive structure

(Lauritzen (1996, Ch.4)) may be formulated by letting M1 = U1 and Mm =

Mm−1 ∪ Um, for m = 2, . . . , s, where the variables in Mm−1 are assigned logits

of local type within Mm. It follows that, apart from F1 which equals P1, Fm

contains all sets of the form I = K ∪ L, with K ∈ P(Um) and L ∈ P(Mm−1) ∪
{∅}. This formulation is such that all interaction parameters that define the

conditional distributions of Um given Mm−1 are linear functions of interaction

parameters as indicated by (5). For instance, the hypothesis that the variables

in Um are independent from, say, those in Mi given the variables in Mm−1\Mi,

may be formulated by constraining to 0 all ηI;Mm
(xI) such that I ∩Mi is non-

empty. More sophisticated constraints on the conditional distribution of Um given

Mm−1 (as, for instance, those implying that certain elements in Um are positively

associated with certain variables in previous blocks), may be expressed directly

as the constraint that the corresponding conditional interactions given by (5) are

non-negative. It is easily verified that the above sequence of marginals defines a

parameterization which is complete, hierarchical and ordered decomposable.

A different approach for allocating interactions in a block-recursive context is

as follows. Start with the same sequence of marginals as above and, after Mm−1,

insert the subsequence of marginals Mml = Kml ∪Mm−1 where the sequence of

subsets Kml, for all Kml ∈ P(Um), is non-decreasing so that the resulting parame-

terization is hierarchical. This approach, which combines the recursive structure

with Glonek and McCullagh’s multivariate logistic transform, may be desirable

if we are interested in modelling constraints on various marginal distributions

within Um conditionally on Mm−1. Notice that, for any L ∈ P(Mm−1) ∪ {∅},
L ∪ Kml is in Fml. Hence, if all variables in Mm−1 have logits of local type

within Mml, (5) can be used again to transform any constraint on the interac-

tions in Kml, given any possible configuration of the variables in Mm−1, into a

constraint on our interaction parameters. For instance, to state that Bj , j ∈ Um,

is independent of the variables in Mi given those in Mm−1\Mi, all interaction

parameters for sets of the form {j} ∪ L such that L ∩Mi is not empty must be
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0. The assumption that Bi and Bj, i, j ∈ Um, are marginally independent, given
variables in Mm−1, requires that all interaction parameters for sets of the form
{i} ∪ {j} ∪ L, where L is either a subset of Mm−1 or the empty set, be 0. Note
that in both examples, all the interactions to be constrained are defined within

the same marginal.

3. Properties of Marginal Link Functions

We now examine the class of parameterizations defined by (6) and show that
it is invertible and has second order derivatives, so that, because of the simi-
larity with generalized linear models, it may be called a marginal link function.

We also provide conditions for the elements of the link function to be variation
independent. Both issues are meant to extend BR’s results to generalized inter-
action parameters. The most difficult step consists in showing that (6) defines a
diffeomorphic transformation between Π and Ω.

As in BR, we exploit the fact that the probability density defined by the
vector π is multinomial and thus belongs to the exponential family. Note that

(see for example Bartolucci and Forcina (2002)) the relation between the vector
of joint probabilities π and the corresponding vector of canonical parameters,
denoted by λ, is determined by a t × (t − 1) matrix G which, apart from being
of full rank and such that its column space does not contain the vector 1, may
be arbitrary:

log(π) = Gλ − 1 log[1′ exp(Gλ)]. (7)

Basically, this is a log-linear model with a scaling factor so that probabilities sum
to 1. The inverse transformation may be written as λ = K log(π), where the
matrix K, given in the appendix, denotes the left inverse of G that is orthogonal

to 1. Also let µ = G′π denote the vector of mean value parameters and recall
that, since the multinomial is a regular and steep exponential family, the mapping
from λ to µ is a diffeomorphism (Barndorff-Nielsen (1978, p.121)).

Since the design matrix may be arbitrary, there is no loss of generality in
assuming that it has the following specific form, which allows substantial sim-
plification. Let GI denote the block of columns of G that correspond to the

log-linear interaction I, and let

GI =

q
⊗

j=1

GI,j, GI,j =

{

T j if j ∈ I
1bj

otherwise
,

where T j is obtained from a bj × bj lower triangular matrix of ones by remov-
ing the first column. We show in the appendix that the canonical parameters

corresponding to this design matrix coincide with the log-linear interactions of
local type within the full joint distribution, and that the elements of µ are the
probabilities µI(xI) = p(Bj > xj , ∀j ∈ I).
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3.1. Partially dichotomized tables

We now introduce an auxiliary tool by means of which interaction param-

eters involving variables treated with logits of non-local type may be seen as

interaction parameters of local type when these variables are dichotomized ac-

cording to the type of logit. This tool, combined with the recursive notion of

mixed parameterization of the exponential family, will be used to prove that (6)

defines a marginal link function.

Within a given marginal Mm, let Dm = {j ∈ Mm : Bj not of local type}.
For a vector of cut points dDm

with elements dj , ∀j ∈ Dm, define pdt(m,dDm
)

to be the collapsed table of dimension | Mm | and categories B(dj , 0), B(dj, 1)

if j ∈ Dm, and 1, . . . , bj otherwise. It is understood here that within this table,

probabilities are conditioned on Bj ≥ dj when Bj has logits of continuation type.

Example 3.1. Let B1, B2, B3 have three categories each, M1 = {1, 2} with

logits l and g, M2 = {1, 3} with logits l and c, and M3 = {1, 2, 3} with logits l,

g and c. Within M1, d{2} is one-dimensional and can take value 1 or 2; each of

these values corresponds to a 3 × 2 table where B2 is dichotomized. The same

holds for d{3} within M2, except that when d{3} = 2, the table is conditioned

to B3 > 1. Within M3 there are four 3 × 2 × 2 tables corresponding to the

following values of d{2,3}: (1 1), (1 2), (2 1), (2 2); the second and forth

are conditioned on B3 > 1.

Since Dm is uniquely identified by the marginal Mm, in the following we

write d instead of dDm
; however, when we need to refer to a subset of the ele-

ments of d, the set of variables involved will be given explicitly. For a given

pdt(m,d), let Nm(d) = {j ∈ Dm : dj > 1}, Cm(d) = {j ∈ Dm : dj >

1, Bj of continuation type}, and Am(d) = {I ∈ Fm : Nm(d) ⊆ I}. Note that

Am(d) is an ascending class of subsets of Fm while its complement Fm\Am(d)

is a descending class. Moreover, Pm\Am(d) = Rm ∪ (Fm\Am(d)) (where Rm =

Pm\Fm), being the union of two descending and disjoint classes, is again a de-

scending class of subsets of Pm.

Example 3.2. Let B1, B2 and B3 have three categories each, M1 = {1, 3},
M2 = {2, 3}, and suppose that within M3 = {1, 2, 3}, only B1 has logits of

local type; then R3 = {{1}, {3}, {1, 3}, {2}, {2, 3}} and when d{2,3} = (1 1),

A3(d{2,3}) = F3 because N3(d{2,3}) = ∅. Instead, when d{2,3} = (1 2),

N3(d{2,3}) = {3}, A3(d{2,3}) = {{1, 2, 3}} and F3\A3(d{2,3}) = {{1, 2}}. For a

different example with all variables of non-local type, let M1 = {1, 3} and M2 =

{1, 2, 3} so R2 = {{1}, {3}, {1, 3}}. When d{1,2,3} = (1 1 1), A2(d{1,2,3}) =

F2 = {{2}, {1, 2}, {2, 3}, {1, 2, 3}} because N2(d{1,2,3}) = ∅; when d{1,2,3} =

(2 2 1), N2(d{1,2,3}) = {1, 2}, hence A2(d{1,2,3}) = {{1, 2}, {1, 2, 3}} and

F2\A2(d{1,2,3}) = {{2}, {2, 3}}.
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When the same type of design matrix used to define the canonical parameters

in the full joint distribution is applied to pdt(m,d), the corresponding mean value

parameters are the conditional probabilities

p
(

Bj > dj , ∀j ∈ Dm ∩ I, Bj > xj , ∀j ∈ I\Dm | Bj > dj − 1, ∀j ∈ Cm(d)
)

;

they are denoted by νI(dDm∩I ,xI\Dm
;dCm(d)) and, by recalling the similar defi-

nition of the mean value parameters for the full joint distribution, it easily follows

that we may write

νI(dDm∩I ,xI\Dm
;dCm(d)) =

µI∪Cm(d)(dDm∩I ,dCm(d)\I − 1,xI\Dm
)

µCm(d)(dCm(d) − 1)
, (8)

where the denominator is constant within pdt(m,d), and equal to 1 if Cm(d) is

empty.

We now introduce suitable collections of mean value parameters and inter-

action parameters that play an important role below. Let Vm(d) denote the full

collection of νI , I ∈ Pm, within pdt(m,d); this can be partitioned into

↑Vm(d) = {νI(dDm∩I ,xI\Dm
;dCm(d)), ∀ I ∈ Am(d)}

↓Vm(d) = {νI(dDm∩I ,xI\Dm
;dCm(d)), ∀ I ∈ Pm\Am(d)},

where the notation is a reminder that Am(d) is an ascending class and its com-

plement with respect to Pm is descending. The following two sets of parameters

may be uniquely associated with a given pdt(m,d):

↑Em(d) = {ηI;Mm
(xI) : I ∈ Fm, dDm\I = 1, xDm∩I = dDm∩I},

↑Um(d) = {µI(xI) : I ∈ Fm, dDm\I = 1, xDm∩I = dDm∩I}.

The previous sets provide a partition of the parameters ηI;M(xI) and µI(xI) by

assigning each of them to a pdt(m,d) such that all the elements of Dm\I have

cut point equal to 1, so that Nm(d) ⊆ Dm ∩ I, implying I ∈ Am(d).

Example 3.3. Going back to Example 3.1, within M1, when d{2} = 1, ↑E1(d{2})

contains the two logits of B1 (any cut point), the logit of B2 and the log-odds

ratios B1, B2 at cut point 1 for B2. In the first part of Example 3.2, within M3,

when d{2,3} = (1 1), ↑E3(d{2,3}) has elements η{1,2},{1,2,3}(1 1), η{1,2},{1,2,3}(2 1),

η{1,2,3},{1,2,3}(1 1 1) and η{1,2,3},{1,2,3}(2 1 1). Instead, when d{2,3} = (1 2),
↑E3(d{2,3}) has only two elements: η{1,2,3},{1,2,3}(1 1 2) and η{1,2,3},{1,2,3}(2 1 2)

because A3(d{2,3}) contains only the set {1, 2, 3}.
In the following assume that the pdt’s are ordered first with respect to

m = 1, . . . , s and, for the same m, in lexicographic order of cut points; for-

mally pdt(h, c) ≺ pdt(m,d) if h < m or h = m and there exists an integer r such
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that cr < dr, cj ≤ dj , ∀j < r. Lastly, define

Um(d) =
⋃

pdt(h,c)≺pdt(m,d)

↑Uh(c), Em(d) =
⋃

pdt(h,c)≺pdt(m,d)

↑Eh(c),

⋆Um(d) = {µJ (xJ ) : J = I ∪ Cm(d), I ∈ Pm\Am(d), xDm∩I = dDm∩I ,

xCm(d)\I = dCm(d)\I − 1, xDm\[I∪Cm(d)] = 1}.

Lemma 1. For any pdt(m,d) ≻ pdt(1,1), ⋆Um(d) ⊂ Um(d), and the transfor-

mation from the elements of Um(d) to the elements of [Um(d)\⋆Um(d)]∪ ↓Vm(d)

is a diffeomorphism.

Proof of Lemma 1. As regards the first statement, for any given µJ (xJ )

∈ ⋆Um(d) let pdt(h, c) be the pdt such that µJ (xJ ) ∈ ↑Uh(c). Since J =

I ∪ Cm(d) ∈ Pm, we must have h ≤ m. When h = m, by definition cj ≤ dj with

cj < dj for some j unless dj = 1 for all j ∈ Dm\I; but this is impossible because

I 6∈ Am(d). Thus pdt(h, c) ≺ pdt(m,d).

For the main part of the lemma, note that, when I 6∈ Am(d), (8) defines

a transformation between the elements of ⋆Um(d) and those of ↓Vm(d). The

fact that the elements of ↓Vm(d) are strictly less than one and distinct implies

that µCm(d)(dCm(d) − 1), which appears in the denominator of (8), cannot be

an element of ⋆Um(d), and that the elements of ⋆Um(d) are distinct. Thus the

transformation is one-to-one.

The next lemma provides a mixed parameterization (Barndorff-Nielsen (1978,

p.121)) for any pdt.

Lemma 2. For any pdt(m,d), the components of ↑Em(d) are variation in-

dependent from those of ↓Vm(d), and the transformation from the elements of
↓Vm(d) ∪↑ Em(d) to those of Vm(d) is a diffeomorphism.

Proof of Lemma 2. We first show that the elements of ↑Em(d) are the interac-

tions of local type defined on pdt(m,d) for all I ∈ Am(d). Note that, while in the

definition of ηI;Mm
(xI) we have Bj = 1,∀j ∈ Mm\I, in the corresponding inter-

action parameters defined on the pdt, Bj ∈ B(xj, 0) 6= 1 whenever j ∈ Nm(d)\I;

however this set is empty since I ∈ Am(d) implies Nm(d) ⊆ I. The fact that

all probabilities within the pdt are divided by µCm(d)(dCm(d) −1) is irrelevant be-

cause the log of this probability appears an even number of times with opposite

signs in the definition of the interaction and thus will cancel out.

The above shows that the elements of ↑Em(d) are log-linear contrasts of local

type of the probabilities within the pdt, and thus are also equal to our defini-

tion of canonical parameters when applied to such a table. The result follows

from the well-known property of the mixed parameterization of the exponential
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family, where a canonical parameter is used when I ∈ Am(d), and a mean value

parameter otherwise.

Lemma 3. For any pdt(m,d) ≻ pdt(1,1), the transformation from the elements

of Um(d) ∪↑ Vm(d) to the elements of Um(d) ∪↑ Um(d) is a diffeomorphism.

Proof of Lemma 3. The elements of ↑Vm(d) are the mean value parameters ν’s

for which I ∈ Am(d). This implies that Cm(d)\I is empty because Nm(d) ⊆ I so

that (8) may be written as νI(dDm∩I ,xI\Dm
)=µI(dDm∩I ,xI\Dm

)/µCm(d)(dCm(d)

−1). Thus, for all I ∈ Am(d) there is a one-to-one correspondence between the

ν’s and the µ’s for any given value of the denominator µCm(d)(dCm(d) − 1) which

belongs to Um(d).

3.2. Smoothness of the link function

We show below that η is a diffeomorphism of µ and thus of λ. We proceed

by induction, by assuming that pdt’s are processed according to the total order

defined above; this procedure resembles very closely the one used in BR.

Theorem 1. For any complete and hierarchical parameterization defined as

in (6), the mapping between Ω and the space of log-linear parameters λ is a

diffeomorphism.

Proof of Theorem 1. When m = 1 and d = 1, both E1(1) and U1(1) are empty.

Because P1 = A1(1), ↑E1(1) contains all log-linear parameters for pdt(1,1). The

basic properties of the exponential family imply that the mapping between the

elements of ↑E1(1) and those of ↑U1(1) =↑ V1(1) is a diffeomorphism. Let pdt(a, b)

denote the first pdt which follows pdt(1,1). By definition, ↑E1(1) = Ea(b) and
↑U1(1) = Ua(b); thus, the mapping between the elements of Ea(b) and those of

Ua(b) is a diffeomorphism. Now let pdt(s,z) denote the last pdt and suppose

that, for a pdt(m,d) ≺ pdt(s,z), we have proved that the mapping between

the elements of Em(d) and those of Um(d) is a diffeomorphism. If we write this

relationship more briefly as Em(d) ↔ Um(d), we have

Er(e) = [Em(d) ∪↑ Em(d)] ↔ [Um(d) ∪↑ Em(d)] (by assumption)

↔ [Um(d)\⋆Um(d)] ∪↓ Vm(d) ∪↑ Em(d) (by Lemma 1)

↔ [Um(d)\⋆Um(d)] ∪ Vm(d) (by Lemma 2)

↔ [Um(d) ∪↑ Um(d)] = Ur(e) (by Lemmas 1 and 3).

Lastly, when m = s and d = z, the inductive argument given above implies that

the mapping between the elements of [Es(z)∪↑Es(z)] and those of [Us(z)∪↑Us(z)]

is a diffeomorphism. Since the two sets contain, respectively, all the elements of η

and all the elements of µ for the full joint distribution of B1, . . . , Bq, the mapping

between η and µ, and therefore also that between η and λ, is a diffeomorphism.
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The following corollary of Theorem 1 will be useful in the next section.

Corollary 1. For any complete and hierarchical parameterization defined as in

(6), the mapping between Ω and the space of log-linear parameters λ has contin-

uous second derivatives at every η ∈ Ω.

Proof of Corollary 1 Note that Π is open and that, from Theorem 1, it follows

that Ω is open too. Since η = C log(Mπ) has continuous second derivatives, the

corollary follows from Theorem 1 and from the Inverse Function Theorem (see,

for example, Fleming (1977)).

3.3. Compatibility and variation independence

Within a given parameterization, the value of the joint probability vector π

that corresponds to an assigned value of η may be reconstructed by a Newton type

algorithm like the ones described by Glonek (1996) or by Colombi and Forcina

(2001). However, in case of failure to converge, such algorithms cannot provide

any information as to whether this is caused by numerical instability or whether

η 6∈ Ω and, when this is the case, which components of η are causing the problem.

Instead, a reconstruction algorithm which follows the proof of Theorem 1 would

stop at a given pdt(m,d) because the mean values collected in the set Um(d) ∪↑

Um(d) do not correspond to a vector of probabilities π ∈ Π. We discuss the issue

below in greater detail and propose an extension of the results obtained by BR to

the case of generalized interactions; unfortunately, within this context, variation

independence of the elements of η may arise only in very special circumstances.

We first state two intermediate results.

Lemma 4. The class of the maximal elements of Rm, m = 2, . . . , s, is decom-

posable if and only if the sequence M1, . . . ,Ms is ordered decomposable.

Proof of Lemma 4. Let Jm = {j : Mj is maximal within M1, . . . ,Mm−1};
the class of maximal elements of Rm is given by {Mj ∩ Mm, j ∈ Jm} and is

decomposable if and only if {Mj , j ∈ Jm} is decomposable. Since this has to

hold for all m > 1, the statement of the lemma follows.

Lemma 5. If the class of the maximal elements of Rm is decomposable, a

sufficient condition for the corresponding class of Pm\Am(d) to be decomposable

is that Nm(d) has at most two elements and is not contained in
⋃m−1

1 Mj .

Proof of Lemma 5. If Nm(d) = {j}, the maximal elements of Rm are contained

in Mm\{j}, the unique maximal element of Pm\Am(d). If Nm(d) = {j1, j2},
the maximal elements of Rm are contained either in Mm\{j1} or Mm\{j2},
the only two maximal elements of Pm\Am(d); the class of these two subsets is

decomposable.
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Example 3.4. Let B1, B2 and B3 have three categories, M1 = {1, 2}, M2 =

{1, 2, 3}, and suppose that B1 only has logits of local type within both marginals.

Within M2, R2 = {{1}, {2}, {1, 2}} and, with d{2,3} = (2 2), F2\A2(d{2,3}) =

{{3}, {1, 3}}. Consequently, the class of the maximal elements of P2\A2(d{2,3}),

{{1, 2}, {1, 3}}, is decomposable.

Theorem 2. A vector of generalized interaction parameters may be incompatible

if, for a given Mm,

(i) m > 1 and the class of maximal elements of Rm is not decomposable;

(ii) there are two vectors of cut points, d and e, such that dj = ej for j 6= h,

eh = dh + 1 and Bh has logits of global type;

(iii)m > 1 and there exists a vector of cut points d such that the class of maximal

elements of Pm\Am(d) is not decomposable.

Proof of Theorem 2. Case (i) follows from Theorem 4 in BR; it may also

be derived from Lemma 1 by noting that, if the maximal elements of Rm form

a non-decomposable class, the vector of ν’s recovered from previous marginals

may not be compatible. Case (ii) arises because with logits of global type, the

constraints on the survival function µI(dI∩Dm
,xI\Dm

) > µI(eI∩Dm
,xI\Dm

) may

be violated. Case (iii) follows from Lemma 5: if the class of maximal elements

of Pm\Am(d) is not decomposable, as in case (i), incompatible ν ′s are possible.

Theorem 2 indicates that when logits of global type are used, the elements

of η will never be variation independent. However we have

Corollary 2. If the parameterization is ordered decomposable and within each

marginal there are at most two variables with logits of continuation type that do

not appear in previous marginals, and none with logits of global type, the elements

of η are variation independent.

Proof of Corollary 2. The result follows immediately from Theorem 2 and

Lemma 4.

4. Likelihood Inference on Linear Equality and Inequality Constraints

We now provide an algorithm for maximum likelihood estimation and derive

the asymptotic distribution of the likelihood ratio for testing linear equality and

inequality constraints on η under multinomial sampling. Before going into the

technical details, we motivate the class of models defined by such constraints

with two examples. The novelty of the approach consists in combining familiar

hypotheses, imposing the constraint that certain linear combinations of interac-

tion parameters are equal to 0, with hypotheses stating that additional linear

contrasts are non-negative. Constraints defined by linear inequalities may be
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useful for stating that a given marginal (or conditional) distribution is stochas-
tically larger than another, that two variables are positively dependent, or that
the strength of the dependence increases with a third variable. The class of
marginal models that can be defined by imposing a set of equality and inequality
constraints on a link function, defined as in Glonek (1996), has been studied by
Colombi and Forcina (2001). We briefly examine below a few additional models
that are allowed within this extended formulation.

4.1. Examples of constrained models

Example 4.1. Suppose that B1, B2 and B3 represent the education of fa-
ther, mother and son, respectively, and that B4 is the social class of the son.
With M1 = {1}, M2 = {2} and M3 = {1, 2}, we might consider several con-
straints, for example positive quadrant dependence (PQD), that B1 is stochasti-
cally larger than B2, or that the marginal logits are related by a constant shift
(see Bartolucci, Forcina and Dardanoni (2001)). In M4 = {1, 2, 3}, we might
investigate whether the conditional logits of global type for B3 are increasing
coordinate-wise in B1 and B2, or whether the two effects are additive. Lastly, in
M5 = {1, 2, 3, 4}, we might examine whether B4 is independent of B1, B2, given
B3.

Example 4.2. Suppose that smoking habit (B1), obesity (B2), dyspnea (B3)
and heart murmur (B4) are ordinal categorical variables. First of all, we might
formulate PQD within M1 = {1, 2} and M2 = {1, 3}. Then, we might consider
the marginal M3 = {1, 2, 4} and, using global logits for B4 and local logits for
B1 and B2, formulate the hypothesis that the effects of B1 and B2 on B4 are
additive. The remaining interactions, defined within M4 = {1, 2, 3, 4}, might be
used to formulate the hypothesis of conditional independence between B2 and
B3, given the other two variables. If we were interested in modelling the effect
of B1 on B2, we should insert the marginal {1} before {1, 2} with logits of local
type for B1 within {1, 2}; then the requirement that all the local-global log-odds
ratios between B1 and B2 are non-negative implies an isotonic regression of B2

on B1. By inserting the marginal {1, 2, 3} before {1, 2, 3, 4}, we can formulate, for
example, the hypothesis of conditional independence between B2 and B3 given
B1, if this has logits of local type within {1, 2, 3}. All the remaining interaction
parameters defined within {1, 2, 3, 4} involve sets of variables that contain {3, 4},
thus they may be used to model the conditional distribution of B3, B4 given
B1, B2, if the latter have logits of local type.

4.2. Formulation of constrained models

The class of constrained models studied in this section may be defined as

Heu = {η : Eη = 0, Uη ≥ 0},
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where E is a full rank matrix with a rows; we also assume that (E′ U ′)′ has

full rank b. Note that we are mainly interested in models that restrict the de-

pendence structure of B1, . . . , Bq, and possibly in comparing different univari-

ate marginal distributions having the same number of categories. In fact, we

might be interested in testing for a stochastic ordering between two marginal

distributions, or that one distribution is obtained by a constant shift on the

logits of another marginal distribution. We will also consider the hypothesis

Hee = {η : Eη = 0, Uη = 0} formulated by turning all the inequality con-

straints on η into equality constraints.

Remark 3. Since η would not be compatible unless global logits within the

same marginal distribution are strictly decreasing, in order to ensure that Hee

is not empty, constraints that clash with this requirement cannot be allowed.

This is not a limitation, however, because only hypotheses which are clearly

incompatible are not allowed, for instance, two adjacent global logits being equal.

On the other hand, contrasts aimed at comparing corresponding global logits of

different marginals with the same number of categories are not affected.

4.3. Maximum likelihood estimation

In this section we describe an algorithm for computing maximum likelihood

estimates of η under a suitable set of constraints. At each step of the algorithm,

a quadratic approximation of the log-likelihood is maximized with respect to the

vector λ of log-linear parameters under a linearized version of the constraints.

This approach, which is related to that of Aitchison and Silvey (1958), avoids

incompatibility problems that typically arise when we maximize the likelihood

with respect to η directly, by means of the Newton-Raphson or the Fisher-scoring

algorithms.

Consider first the case of no covariates, and let y be the vector of the fre-

quencies observed in a sample of size n. Assuming multinomial sampling, the

log-likelihood may be written as

L(λ) = y′Gλ − n log[1′ exp(Gλ)] + constant,

so that the score vector and the average information matrix are equal to s(λ) =

G′(y − nπ) and F (λ) = G′ΩG, respectively, where Ω=diag(π)−ππ′. Let λ(h)

denote the estimate after h steps; at step h + 1 the algorithm at issue consists in

maximizing a quadratic approximation of L(λ), which has the same score vector

and the same information matrix of L(λ) at λ(h), under a linearized version of

the constraints derived through the following first order approximation of η:

η = η(h) +
∂η

∂λ′ (λ − λ(h)), where
∂η

∂λ′ = C diag(Mπ)−1MΩG.
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When there are r independent samples drawn from different strata, one for every

configuration of the explanatory variables, the score function is obtained simply

by stacking the vectors s(λi), where λi denotes the vector of log-linear parameters

for the i-th stratum. It can easily be shown that the expected information matrix

is block diagonal with blocks G′ΩiG, where Ωi denotes the variance kernel for

the i-th stratum.

4.4. Asymptotic properties of the mle

Let η̇ be the unconstrained mle of η, η̂ be the mle under Heu and η̄ be the

mle under Hee. Provided η0, the true value of η under Hee, is an interior point

of the parameter space, the three estimates η̇, η̂ and η̄ exist and converges to

η0 in probability. This is because our parameterization satisfies the two basic

assumptions given by Rao (1973, Sec. 5e.2): 1.1, known as strong identifiabil-

ity, and 2.1, continuity of the transformation from η to π. Both assumptions

follow easily from our Theorem 1. The same theorem implies that the average

information matrix, F (η), is of full rank and may be computed as

F (η) = B′F (λ)B, with B =
∂λ

∂η′
=

(

∂η

∂λ′

)−1

.

4.5. Asymptotic distribution of the likelihood ratio test

We derive the asymptotic distribution of the likelihood ratio (LR) for testing

Heu against the saturated model S, Λeu = 2[L(η̇)−L(η̂)], and the LR for testing

Hee against Heu, Λee − Λeu = 2[L(η̂) − L(η̄)]. Let η̃ be any of the maximum

likelihood estimator of η0 defined at the beginning of the previous section, and

let H denote the Hessian computed at η, where | η − η0 | < | η̃ − η0 |. Note

that from Corollary 1 it follows that the elements of H are continuous functions.

Lastly, s0 and F 0 denote the score function and the average information matrix

computed at the true value η0 respectively. Consider a second-order Taylor-series

expansion of the log-likelihood L(η̃) around η0, replace −H/n with F 0, add and

subtract a quadratic form in s0 and let θ =
√

n(η̃ − η0) and x = F−1
0 s0/

√
n, so

that we may write

L(η̃) = L(η0) + s′0(η̃ − η0)
′ −

√
n

2
(η̃ − η0)

′
(

− 1

n
H

)√
n(η̃ − η0)

= L(η0) +
1

2n
s′0F

−1
0 s0 −

1

2
(θ − x)′F 0(θ − x) + op(|θ|2).

Since the maximum likelihood estimator η̃ is consistent, Theorem 1 of Andrews

(1999) implies that the last term in the previous expansion can be replaced by an
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op(1) term. Thus when η0 belongs to Hee, Λeu and Λeu −Λee are asymptotically

equivalent to

Qeu = min
θ∈Heu

(θ − x)′F 0(θ − x), (9)

Qee = min
θ∈Hee

(θ − x)′F 0(θ − x) − Qeu (10)

respectively. According to the Central Limit Theorem, when n → ∞, x con-

verges in distribution to a normal random vector with density N(0,F−1
0 ), so

that the two quadratic forms in (9) and (10) converge to chi-bar-squared random

variables (Shapiro (1988)), a mixture of chi-squared distributions. In particular,

Qee and Qeu are distributed as the squared norm of the projection of a normal

random variable with density N(0,F−1
0 ) onto the convex cone defined by Heu

and onto its dual, respectively. Both distributions depend on the same set of

probability weights used in reverse order; these weights may be estimated by

Monte Carlo simulation in order to achieve a given precision in the estimated p-

values (see Dardanoni and Forcina (1998), Section 4.5, and Colombi and Forcina

(2001), Section 5 for details). It must be recalled that, when inequality con-

straints are present, the familiar asymptotic chi-squared distribution must be

replaced by the chi-bar-squared distribution, because the parametric space de-

fined by Heu is a convex cone and not an affine space.

For simplicity’s sake, we have considered the case of no covariates; the exten-

sion to independent multinomials, one for each configuration of the explanatory

variables, is straightforward and is not discussed in detail.

Appendix

Construction of the matrices C and M

The matrix C is block diagonal with blocks CI , ∀I ∈ P(Q), while M is

obtained by stacking the matrices MI,M. These components are defined as

follows:

CI =

q
⊗

j=1

CI,j, CI,j =

{

(−Ibj−1 Ibj−1) if j ∈ I
1 otherwise ,

MI,M =

q
⊗

j=1

MI,M,j, MI,M,j =



















(

A0,j(v)

A1,j(v)

)

if j ∈ I
u′

bj
if j ∈ M\I

1′
bj

if j ∈ Q\M,

where A0,j(v)′ is an identity matrix for v = l and c, and an upper triangular

matrix for v = g and r, without the last column, A1,j(v)′ is a bj × bj lower
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triangular matrix of ones for v = g and c, and an identity matrix of the same

size for v = l and r without the first column. The vector u′
bj

is a row vector

with the first element equal to one and the others bj − 1 equal to zero, while 1bj

is a vector of ones of length bj .

Left inverse of the matrix G

By exploiting the properties of the Kronecker product, it is easily verified

that K must have blocks

KI =

q
⊗

j=1

KI,j, where KI,j =

{

Dj if j ∈ I
ubj

otherwise
,

and where Dj is the (bj − 1) × bj matrix of differences between adjacent terms.

For example, with Q = {1, 2, 3}, K1 log(π) are the adjacent logits of {1} with

{2, 3} set at their initial levels. Note also that T j is the right inverse of Dj,

that is DjT j = I. Now let µ = G′π denote the vector of mean value parame-

ters corresponding to λ. Since T ′
jq is the survival function of a vector q of bj

probabilities, it follows that the element µI(xI) of µ is p(Bj > xj, ∀j ∈ I).
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