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Abstract: We propose a novel class of conjugate priors for the family of generalized

linear models. Properties of the priors are investigated in detail and elicitation

issues are examined. We establish theorems characterizing the propriety and exis-

tence of moments of the priors under various settings, examine asymptotic proper-

ties of the priors, and investigate the relationship to normal priors. Our approach

is based on the notion of specifying a prior prediction y0 for the response vector

of the current study, and a scalar precision parameter a0 which quantifies one’s

prior belief in y0. Then (y0, a0), along with the covariate matrix X of the current

study, are used to specify the conjugate prior for the regression coefficients β in a

generalized linear model. We examine properties of the prior for a0 fixed and for

a0 random, and study elicitation strategies for (y0, a0) in detail. We also study

generalized linear models with an unknown dispersion parameter. An example is

given to demonstrate the properties of the prior and the resulting posterior.

Key words and phrases: Conjugate prior, generalized linear models, Gibbs sampling,

historical data, logistic regression, poisson regression, predictive elicitation.

1. Introduction

Conjugate priors play an important role in Bayesian inference, since it is de-
sirable to have posterior distributions with the same functional form and similar
properties as the prior. Conjugate priors often have desirable features important
in interpretation, data analysis, and computations. They are straightforward
to construct for many models in the i.i.d. setting. In fact well known classes
of conjugate priors are available in exponential family models, likelihood-prior
combinations include the normal-normal, binomial-beta, Poisson-gamma, and
gamma-gamma models. Diaconis and Ylvisaker (1979), and Morris (1982, 1983)
examine general classes of conjugate priors for exponential family models. How-
ever, in regression settings, the development of conjugate priors for regression
coefficients is much more complicated and the construction is not at all clear.
For the class of generalized linear models (GLM’s), we are not aware of any
papers that develop conjugate priors for the regression coefficient vector β.

We propose a class of conjugate priors for the family of generalized linear
models (GLM’s). Our construction is predictive in nature and focuses on observ-
able quantities, it is based on specifying a prior prediction y0 for the response
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vector, and a scalar precision parameter a0 which quantifies one’s prior belief in
y0. Then (y0, a0), along with the covariate matrix X of the current study, are
used to specify a conjugate prior for the regression coefficients β in the GLM. The
motivation is that the investigator often has prior information on the observables
from similar previous studies or from case-specific information on the subjects in
the current study. This information is often quantifiable in the form of a vector
of prior predictions for the response vector of the current study. In addition,
it is easier to think of observable quantities when eliciting priors, rather than
specifying priors for regression parameters directly, since parameters are always
unobserved. Our approach is especially appealing for variable selection problems
since there are many parameters arising from different models and with different
physical meaning, therefore making direct prior elicitation quite difficult. A re-
cent article which addresses informative prior specifications for generalized linear
models is Bedrick, Christensen, and Johnson (1996). Our approach focusses on
a direct prior elicitation for the regression coefficients, as opposed to their Con-
ditional Means Priors (CMP) and Data Augmentation Priors (DAP) which are
based on evaluation of the prior at p locations in the predictor space, where p is
the dimension of the regression coefficient vector.

The rest of this article is organized as follows. In Section 2, we discuss the
GLM and propose a general class of conjugate priors for the GLM and investigate
its properties. In Section 3, we discuss elicitation issues in detail and provide some
practical guidelines for eliciting the hyperparameters of the conjugate prior. In
Sections 4 and 5, we investigate some extensions of the proposed prior and, in
particular, examine the case in which a0 is random, as well as the case of unknown
dispersion parameters in GLM’s. In Section 6, we present an illustrative example.

2. The Prior

Suppose y1, . . . , yn are independent observations, where yi has a density in
the exponential family

p(yi|θi, τ) = exp
{
a−1

i (τ)(yiθi − b(θi)) + c(yi, τ)
}
, i = 1, . . . , n, (2.1)

indexed by the canonical parameter θi and the scale parameter τ . The functions
b and c determine a particular family in the class, such as the binomial, normal,
Poisson, etc. The functions ai(τ) are commonly of the form ai(τ) = τ−1w−1

i ,
where the wi’s are known weights. For ease of exposition, we take wi = 1
throughout. Now suppose the θi’s satisfy

θi = θ(ηi), i = 1, . . . , n, (2.2)

η = Xβ, (2.3)
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where ηi are the components of η, X is an n × p full rank matrix of covariates,
β = (β0, . . . , βp−1)′ is a p × 1 vector of regression coefficients, and θ is a mono-
tone differentiable function. Models given by (2.1)−(2.3) are called generalized
linear models (GLM’s). The function θ is sometimes referred to as the θ-link to
distinguish it from the conventional link g(µi) which relates ηi to the mean µi

of yi|θi. We refer to g(µi) as the µ-link. When θi = ηi, the link is said to be a
canonical link.

We specify a conjugate prior for the regression coefficients β in a GLM by
first adapting the results of Diaconis and Ylvisaker (1979). Toward this goal, let
the canonical parameters in the GLM be independently distributed a priori, and
let θ = (θ1, . . . , θn)′ and y = (y1, . . . , yn)′. Following the construction of Diaconis
and Ylvisaker (1979), we get the joint prior

π(θ|τ, y0, a0) ∝
n∏

i=1

exp{a0τ(y0iθi − b(θi))} = exp{a0τ(y′0θ − J ′b(θ))}, (2.4)

where a0 > 0 is a scalar prior parameter, y0 = (y01, . . . , y0n)′ is an n×1 vector of
prior parameters, J is an n× 1 vector of ones, and b(θ) = (b(θ1), . . . , b(θn))′ is an
n× 1 vector of the b(θi)’s. We mention here that (2.4) assumes that the θi’s are
independent a priori. This construction is consistent with the notion that, given
θi, the y0i’s are independent. That is, the sampling distribution of the y0i’s is
identical to the response variables of the current experiment. This is a reasonable
assumption to make if y0 in fact represents a prior guess for y. Moreover, we
note that the θi’s are independent a priori before the covariates enter into the
model. Once covariates are introduced, as in (2.6) below, none of the parameters
in the prior are independent a priori. Thus (2.4) is not a restrictive assumption.

Disregarding for the moment any relationship of θ to the regression coeffi-
cients β, we describe the choice of the parameters of this prior for θ. As shown in
Diaconis and Ylvisaker (1979), y0 = E(ḃ(θ)), where ḃ(θ) is the gradient vector of
b(θ) and the expectation is taken with respect to the prior distribution in (2.4).
Since for GLM’s E(y|θ) = ḃ(θ), we have

E(y) = Eθ[E(y|θ)] = E(ḃ(θ)) = y0. (2.5)

Thus (2.5) shows that y0 is the marginal mean of y and could be interpreted
as a prior prediction (or guess) for E(y). The parameter a0 can be viewed as
a prior sample size. In the present context, it would represent n0

n , where n0

is a sample size judged equivalent to the information in the prior. Using the
parameters y0 and a0, we proceed to specify a prior for β. The prior on θ in (2.4)
induces a prior on β since β is functionally related to θ via X. However, this
induced prior is not tractable, and is not conjugate in general. Here, we propose
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a conjugate prior for β by directly substituting θ as a function of β into (2.4).
As shown below, this results in a proper conjugate prior for β given τ . We thus
write the prior as

π(β|a0, y0, τ) ∝ exp{a0τ [y′0θ(η)−J ′b(θ(η))]} ≡ exp{a0τ [y′0θ(Xβ)−J ′b(θ(Xβ))]}.
(2.6)

We denote the prior in (2.6) by (β|a0, y0, τ) ∼ D(y0, a0), where (y0, a0) are the
specified hyperparameters. We see that (2.6) depends on the covariate matrix X,
which is the same covariate matrix that appears in the likelihood function of β.
Since we view the covariates as fixed a priori, our prior is not data dependent. In
fact, the dependence of our prior on X gives y0 a more appealing interpretation.
The dependence of our prior on the covariate matrix X is also a nice feature in
the sense that the idea easily extends to other types of models, such as random
effects models and nonlinear models. From (2.6), we see that the ith component
of y0 is linked to the covariate vector xi for the ith subject. This link, along with
(2.5), implies that y0i is precisely a prior prediction for the marginal mean E(yi)
of yi. Thus, in eliciting y0, the user must focus on a prediction (or guess) for
E(y), which narrows the possibilities. Moreover, the specification of all y0i equal
has an appealing interpretation: the prior modes of the regression coefficients
corresponding to the covariates in the regression model are the same, but the
prior modes of the intercept in the regression model vary. This is intuitive since
in this case, the prior prediction on y0i does not depend on the ith subject’s
case specific covariate information. The parameter a0 in (2.6) can be viewed as
a precision parameter that quantifies the strength of our prior belief in y0. One
of the main roles of a0 is that it controls the heaviness of the tails of the prior
for β. The smaller the a0, the heavier the tails. When a0 = 0, (2.6) reduces to
a uniform improper prior for β; as a0 gets large, (2.6) becomes more informative
in β and, as a0 → ∞, the prior reduces to a point mass at its mode. We discuss
elicitation of (a0, y0) in more detail in Section 3.

We note here that (2.6) is related to, but quite different, from the DAP pri-
ors of Bedrick, Christensen, and Johnson (1996). First, in constructing (2.6), we
preserve the dimension of y0 to be the same as that of y. Thus, y0 precisely repre-
sents a prior guess for E(y). In addition, we use the same covariate matrix X as
the current experiment to construct (2.6). Finally, we specify a weight parameter
a0 that acts as an effective prior sample size for the prior. Hence, (2.6) requires a
specification of (y0,X, a0). This is quite different from the framework of Bedrick
et al. (1996), where they specify p “prior observations” (ỹi, x̃i, w̃i, i = 1, . . . , p)
to construct their prior, where ỹi represent potentially observable response vari-
ables taken at some covariate vector x̃i, which may or may not be related to
the covariates X of the current experiment. In addition, the DAP priors do not
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lead to conjugate priors for the class of GLM’s in general. Finally, the w̃i’s are
the prior weights for (ỹi, x̃i). Thus, (ỹi, x̃i, w̃i, i = 1, . . . , p) have a completely
different interpretation than (y0,X, a0) and play a fundamentally different role
in the prior construction. Thus, the DAP priors and the elicitation strategies for
them are quite different than those of (2.6).

As an example of (2.6), we consider the normal linear regression model with
canonical link and error precision τ = 1, i.e., y|X,β ∼ Nn(Xβ, I). For this model
b(θi) = θ2

i /2, so that

π(β|a0, y0) ∝ exp{a0[y′0Xβ − J ′b(Xβ)]} ∝ exp
{
−a0

2
(β − µ0)′(X ′X)(β − µ0)

}
,

(2.7)
where µ0 = (X ′X)−1X ′y0. Thus (β|a0, y0) ∼ Np(µ0, a

−1
0 (X ′X)−1). In this

example, we see the precise roles of y0 and a0. In (2.7), y0 corresponds to the
“response vector” in a linear regression of y0 on X, and µ0 is the least squares
estimate of β from this regression. From (2.7), we see that a0 is a precision
parameter that quantifies the degree of prior belief in µ0, and hence y0.

Although (2.6) does not have a closed form in general for most GLM’s, it
lends itself to several theoretical and computational properties given below. The
first result deals with the existence of the moment generating function (MGF) of
(2.6).

Theorem 2.1. Let a0 > 0 and take y0 ∈ Y, where Y is the interior of the convex
hull of the support for the density in (2.1). Assume that exp{τ(y0iθi − b(θi))} is
bounded. Then, (i) under a canonical link, i.e., θ = η, the moment generating
function (MGF) of β exists; (ii) under a non-canonical link, a sufficient condition
for the MGF of β to exist is that the one dimensional integral∫

Θi

∣∣∣∣ ddri θ−1(ri)
∣∣∣∣ exp(s0|θ−1(ri)|) exp {a0τ(y0iri − b(ri))} dri <∞ (2.8)

for some s0 > 0. Here Θi denotes the parameter space of the (univariate) canon-
ical parameter ri.

A proof of Theorem 2.1 is given in the Appendix.
The next theorem states the conjugacy of (2.6).

Theorem 2.2. If (β|a0, y0, τ) ∼ D(y0, a0), then D is a conjugate prior for
(β|a0, y0, τ), with the posterior given by

(β|y, y0, a0, τ) ∼ D
(
a0y0 + y
a0 + 1

, a0 + 1
)
. (2.9)

The proof follows from a straightforward multiplication of the likelihood in
(2.1) and the prior in (2.6), then recognition of the resulting posterior.
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The prior defined by (2.6) may also be viewed as a posterior density of
(β|a0, y0, τ) with y0 as the data, based on an initial uniform prior for β|τ . It can
be shown that as n→ ∞, (2.6) converges to a p dimensional multivariate normal
distribution. This is formally stated in the following theorem.

Theorem 2.3. Consider the prior in (2.6). Then, as n→ ∞,
π(β|τ, a0, y0)→ Np(β̂, a−1

0 τ−1T̂−1), (2.10)

T = X ′∆̂2V̂ X, (2.11)

β̂ is the mode (MLE) of β|τ using y0 as the data, ∆̂ and V̂ are n × n diagonal
matrices with ith diagonal elements δi ≡ δi(x′iβ) = dθi/dηi and vi ≡ vi(x′iβ) =
d2b(θi)/dθ2

i evaluated at β̂, and x
′
i is the ith row of X.

The proof of this theorem is omitted here for the sake of brevity.
We mention here that (2.6) is related to, but quite different from the power

priors proposed in Ibrahim and Chen (2000). First, the latter are not conjugate
in the sense of (2.9). Second, the power priors in Ibrahim and Chen (2000)
assume the existence of historical data for the construction of the prior, take y0

to be the response vector corresponding to the raw historical data, and take the
covariate matrix to be the covariate matrix corresponding to the historical data.

3. Elicitation of y0 and a0

Taking (2.6) as the prior for the regression coefficients, we now consider elic-
itation schemes for (y0, a0). According to (2.1), y0 must be in the interior of the
convex hull of the sampling density of y|θ, with a0 > 0. One possible strategy for
eliciting y0 is to use expert opinion or case-specific information on each subject.
Another strategy is to elicit y0 from forecasts or predictions obtained from a
theoretical prediction model. In this case, we could obtain a point prediction of
the form

y0 = h(X0), (3.1)

where X0 is a matrix of covariates based on a previous similar study and h(.)
is a specified function. Specifically, the investigator may have substantive prior
information in the form of training data, historical data, or summary statistics
for eliciting y0. For example, in the context of logistic regression, y0 is a vector
of probabilities and we can take y0i to be of the form y0i = exp(x′i0β̃)/(1 +
exp(x′i0β̃)), i = 1, . . . , n, x′i0 is the ith row of X0 and β̃ is an estimate of β from
the training data, historical data, or summary statistics. If the above methods are
not available, they can alternatively specify “vague” choices for y0. For example,
in the context of logistic regression, if we take y0 = (0.5, . . . , 0.5)′ the prior mode
of β is 0. Asymptotically, this choice of y0 results in a Np(0, a−1

0 T−1) for β, where
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T is defined by (2.11) with X replaced by X0. Thus if a0 is taken to be small,
this choice of y0 results in a noninformative prior for β. Similar choices can be
employed for other GLM’s.

The methods described above provide a direct elicitation of y0. We can also
specify y0 indirectly through a prior specification for the mode of β. To fix ideas,
let µ0 be a specified p × 1 vector, the desired prior mode of β for (2.6). We
emphasize here that µ0 does not depend on X. Now we ask the question: What
is the corresponding y0 that yields this µ0 from (2.6)? The answer is given in the
following theorem.

Theorem 3.1. Let µ0 be any prespecified p× 1 vector. Let
y0 = ḃ(θ) = ḃ(θ(Xµ0)). (3.2)

Then, the prior given by (2.6) yields a prior mode of β equal to µ0.

The proof of Theorem 3.1 follows directly from the fact that when y0 takes
the form (3.2), β = µ0 is a solution of

∂ lnπ(β|a0, y0, τ)
∂β

= a0τ

(
y0 ◦ ∂θ

∂η
− ḃ(θ) ◦ ∂θ

∂η

)′
X = 0, (3.3)

where ◦ denotes the direct product. Theorem 3.1 also implies that, as n → ∞,
the choice of y0 given in (3.2) yields the same prior mean as a normal prior for
β.

Remark 3.1 When π(β|a0, y0, τ) is log-concave, y0 = ḃ(θ(Xµ)) yields a unique
prior mode of β = µ0, i.e., the solution of (3.3) is unique. We note that the
log-concavity is true for many members in the GLM family, such as the GLM’s
with canonical links (Diaconis and Ylvisaker (1979)), and for many GLM’s with
noncanonical links (see Wedderburn (1976)).

Remark 3.2 In the context of binary regression, (3.2) reduces to y0 = F (Xµ0) =
(F (x′1µ0), F (x′2µ0), . . . , F (x′nµ0))′, where F is the cumulative distribution func-
tion used for the link in the binary regression. In particular, for binary regres-
sion models with a symmetric link, which includes the probit, logit, and t-link
as special cases, a prior mode of µ0 = 0 yields y0 = (0.5, . . . , 0.5)′. However,
for the complementary log-log link, when µ0 = 0, (3.2) simply takes the form
y0 = (1−exp(−1), . . . , 1−exp(−1))′. For Poisson regression with a canonical link,
a prior mode of µ0 = 0 yields y0 = (1, 1, . . . , 1)′. For the exponential regression
model with a log-link, a prior mode of µ0 = 0 yields y0 = (1, 1, . . . , 1)′.

Remark 3.3 For binary regression models with symmetric links, the unique y0

that satisfies (3.2) with µ0 = 0 yields a symmetric prior for (2.6) about its mode,
which is 0. However, when y0 satisfies (3.2) with µ0 �= 0, the resulting prior
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for (2.6) is no longer symmetric in general except for special structures of the
covariate matrix X.

The hyperparameter y0 only affects the location of β in (2.6), and plays no
role in the dispersion. Thus, the location of β is primarily regulated by y0. In
addition y0 also plays a large role in the symmetry of the prior distribution (2.6)
(see Remark 3.3). On the other hand, a0 primarily controls the dispersion in
the prior distribution. From (2.6), we see that the prior mean of β will indeed
depend on a0, but the the prior mode of β never depends on a0. In certain cases,
(2.6) can be quite skewed, as demonstrated in Section 6. However, as n → ∞,
(2.6) does become more symmetric due to (2.10), and in this case the prior mean
converges to the prior mode and the prior is symmetric about its mode. Also,
as a0 → ∞, (2.6) becomes more symmetric about its prior mode. Thus, making
a0 large results in a more symmetric prior regardless of the value of n. This
indicates some overlap in the roles of (y0, a0) in (2.6).

The elicitation of a0 is less straightforward than that of y0. If y0 is based
on training data, historical data, or summary statistics based on a sample size
of n0, then a possible choice for a0 is a0 = n0/n. In general, if training data,
historical data, or summary statistics are not available for specifying (y0, a0), we
recommend the following guidelines for specifying (y0, a0) in practice.
(1) For an initial choice of y0, we use the value ỹ0 that yields a prior mode of β

equal to 0, found by solving (3.2) using µ0 = 0. Then we do several sensitivity
analyses about ỹ0. We call ỹ0 the guide value for y0.

(2) A value of a0 = 1 is a reasonable starting value, since it gives equal weight to
the likelihood and the prior. Using a0 = 1 as our guide value, we do sensitivity
analyses about this guide using other values such as a0 = 0, 0.1, 10, 100, 1000.

4. Random a0

Since a single value of a0 may be difficult to specify a priori, we can express
our uncertainty about a0 by specifying a gamma prior for it. This leads to the
joint prior

π(β, a0|y0, τ) ∝ exp{a0[τ(y′0θ(η)− J ′b(θ(η))) + J ′c(y0, τ)]} aα0−1
0 exp(−λ0a0),

(4.1)
where c(y0, τ) is a n × 1 vector of the c(y0i, τ)’s, and (α0, λ0) are specified prior
parameters. One attractive feature of (4.1) is that it creates heavier tails for the
marginal prior of β than the prior (2.6), which assumes a0 is a fixed value. We
now give a theorem characterizing the propriety of (4.1).

Theorem 4.1. Take y0 ∈ Y, where Y is the interior of the convex hull of the
support for the density in (2.1). Assume that exp{τ(y0iθi − b(θi)) + c(y0i, τ)} is
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bounded, α0 > p + k, and λ0 > max{0, sup
β∈Rp

[τ(y′0θ(η)− J ′b(θ(η))) + J ′c(y0, τ)]}.
Then ∫ ∞

Θi

∣∣∣∣ ddri θ−1(ri)
∣∣∣∣ exp(s0|θ−1(ri)|) exp{τ(y0iri − b(ri))}dri <∞ (4.2)

for some s0 > 0, where Θi denotes the parameter space of the (univariate) canon-
ical parameter ri, and∫

Rp

∫ ∞

0
||β||kπ(β, a0|y0, τ)da0dβ <∞, (4.3)

where ||β|| = (β′β)1/2.

The proof is given in the Appendix. We note that, in general, the MGF of
β does not exist when a0 is random. This can be clearly seen from the normal
linear regression model with canonical link and τ = 1, since in this case, the
marginal prior of β is a t distribution.

5. Random τ

In this section, we consider GLM’s with an unknown dispersion parameter.
For the moment let a0 be fixed and let π(τ) denote an initial prior for τ . Then,
the joint prior for (β, τ) has the form

π(β, τ |y0, a0) ∝ exp{a0[τ(y′0θ(η)− J ′b(θ(η))) + J ′c(y0, τ)]} π(τ). (5.1)

Similar to Theorem 2.2, it can be shown that π(β, τ |y0, a0) is a conjugate prior.
Now assume that exp {a0 [τ (y0iθ(ηi)− b(θ(ηi))) + c(y0i, τ)]} is bounded by

Mi(τ |a0) = supηi
{exp(a0[τ(y0iθ(ηi)− b(θ(ηi))) + c(y0i, τ)])}. Following the nota-

tion used in the proof of Theorem 2.1, we partition a row permutation of X into(
X1

X2

)
, where X1 is a p × p full rank matrix and X2 is an (n − p) × p matrix.

For ease of notation, we assume that the first p rows of X form the submatrix
X1. Then, we are led to the following theorem.

Theorem 5.1. Take y0 to be in the convex hull of the support of the density in
(2.1). Assume that for any initial prior π(τ), proper or improper,

∫ ∞

0

n∏
j=p+1

Mj(τ |a0)
{ p∏

i=1

∫
Θi

∣∣∣∣ ddri θ−1(ri)
∣∣∣∣ exp (a0 [τ(y0iri−b(ri))+c(y0i, τ)]) dri

}
dτ

<∞, (5.2)

where Θi is defined in (2.8). Then the prior (5.1) is proper.
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The proof follows directly from (5.2) and the proof of Theorem 2.1. The
details are omitted. Similar sufficient conditions are also considered in Sun, Tsu-
takawa and He (2001). We also note that for the normal linear model, condition
(5.2) can be relaxed.

When both a0 and τ are random, a joint prior of (β, τ, a0) becomes cum-
bersome. For illustrative purposes, we consider only the normal linear regression
model and propose the following joint prior:

π(β, τ, a0|y0)∝exp[−a0τ(y0−Xβ)′(y0−Xβ)/2]τ ζ0−1exp(−δ0τ)aα0−1
0 exp(−λ0a0),

(5.3)
where ζ0, δ0, α0, and λ0 are prespecified hyperparameters. The following theorem
characterizes the propriety of the joint prior (5.3).

Theorem 5.2. Assume that ζ0 > p/2, δ0 > 0, α0 > ζ0, λ0 > 0, and λ0 +
(n/2) ln δ0 > 0. Then, for any y0 ∈ Rn, the joint prior (5.3) is proper.

The proof is given in the Appendix.

6. Illustrative Example

Suppose yi|θi are independent Bernoulli observations with probability of suc-
cess pi = ex

′
iβ/(1 + ex

′
iβ), where x′i is a 1× p vector, i = 1, . . . , n. The conjugate

prior in (2.6) takes the form

π(β|a0, y0) ∝ exp
{ n∑

i=1

a0

(
y0i x

′
iβ − log(1 + ex′

iβ)
)}
, (6.1)

where y0i is the ith component of y0. We consider data from Finney (1947),
obtained to study the effect of the rate and volume of air inspired on a transient
vaso-constriction in the skin of the digits. The response variable measured is
binary with 1 and 0 indicating occurrence or nonoccurrence of vaso-constriction,
respectively. The dataset can also be found in Pregibon (1981). There are
n = 39 observations in the dataset. The two covariates are x1 = log(volume) and
x2 = log(rate) with β1 and β2 denoting the respective regression coefficients. For
these data, we consider a logistic regression model along with the prior in (6.1).
An intercept β0 is also included in the model, and thus β = (β0, β1, β2).

The maximum likelihood estimates and the standard deviations are −2.875
and 1.319 for β0, 5.179 and 1.862 for β1, and 4.562 and 1.835 for β2, respectively.
For ease of exposition, the notation y0 = 0.1 means that y0 = (0.1, . . . , 0.1)′,
and so forth. Also, SD denotes standard deviation. The prior modes of β are
(−2.197, 0, 0)′ for y0 = 0.1, (0, 0, 0)′ for y0 = 0.5, and (2.197, 0, 0)′ for y0 = 0.9.
Thus, the prior mode of β changes dramatically as y0 is changed. When y0 = 0.1,
the prior mode is the same in magnitude but opposite in sign to the case y = 0.9.
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Table 1 show various summaries of the prior distribution (6.1) and posterior
estimates of β under several choices of (y0, a0). For a given a0, we see that
the prior means and standard deviations of β are quite different as y0 is varied.
For example, for (y0, a0) = (0.1, 1), (0.5, 1), (0.9, 1), the prior mean (standard
deviation) of β1 are 0.067 (1.262), 0.0049 (0.683), -0.019 (1.208), respectively.
Here, we see that the prior estimates change dramatically as y0 is varied. A
similar phenomenon occurs with the other regression coefficients. Moreover, the
prior using (y0, a0) = (0.1, 1), (0.9, 1) is highly skewed about its mode as can be
seen from the 95% highest prior density intervals. For example, for (y0, a0) =
(0.1, 1), (0.9, 1), the 95% highest prior density intervals for β0 are (-4.328, -1.251)
and (1.254, 4.274), respectively. A similar phenomenon occurs with the other
regression coefficients. For a given y0, as a0 is increased, the prior becomes more
symmetric about its mode, the prior means shrink to the prior modes, and the
prior standard deviations decrease. For example, for (y0, a0) = (0.1, 1), (0.1, 10),
and (0.1, 100), the prior means (standard deviations) of β1 are 0.067 (1.262),
0.003 (0.346), and -0.00002 (0.108). A similar phenomenon occurs with the other
regression coefficients and other values of y0. Moreover, the prior becomes more
symmetric as a0 increases, as can be seen from the 95% highest prior density
intervals. For (y0, a0) = (0.1, 1), (0.1, 10), and (0.1, 100), the 95% highest prior
density intervals for β0 are (-4.328, -1.251), (-2.649, -1.846), and (-2.322, -2.076).
We mention that using y0 = 0.5 results in symmetry of the prior about its mode,
and this can be seen from Table 1. From the 95% highest prior density intervals,
we can see that for y0 = 0.5 and for all values of a0, the prior is symmetric about
its mode, which is 0. Moreover, for y0 = 0.5 the prior means are very close to the
prior mode for all values of a0. This is in contrast to the prior mean behavior for
y0 = 0.1 and 0.9. Thus, we see from Table 1 that y0 = 0.5 exhibits several nice
properties of the prior (6.1), and thus is a suitable guide value for conducting
sensitivity analyses. We also note that a0 = 0 yields posterior estimates of β
that are very close to the maximum likelihood estimates.

In general, in Table 1, we see that the posterior standard deviations are
smaller than the corresponding prior standard deviations and the 95% highest
posterior density (HPD) intervals are narrower than the corresponding 95% high-
est prior density intervals for all combinations of (y0, a0). For a given a0, we see
that the posterior modes, means and standard deviations of β are quite differ-
ent as y0 is varied. For a given y0, and as a0 is increased, the posterior mean
of β converges to the posterior mode of β, and the convergence is fastest when
y0 = 0.5. In addition, as a0 increases, the prior dominates the likelihood as can
be seen from the posterior estimates of β. Furthermore, for a given y0, and as
a0 increases, the posterior standard deviations decrease and the 95% HPD inter-
vals become narrower and more symmetric about the posterior mode, with the
highest degree of symmetry occurring for y0 = 0.5.
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Table 1. Summary statistics from the prior and posterior distributions for finney data.

Prior Posterior
y0 a0 Parameter Mean SD 95% HPD Mean SD 95% HPD
0.1 1 β0 -2.700 0.888 (-4.328, -1.251) -1.997 0.551 (-3.105, -0.974)

β1 0.067 1.262 (-2.471, 2.468) 1.850 0.649 ( 0.600, 3.142)
β2 0.357 0.986 (-1.263, 2.237) 1.688 0.694 ( 0.434, 3.098)

10 β0 -2.245 0.205 (-2.649, -1.846) -2.071 0.194 (-2.456, -1.698)
β1 0.003 0.346 (-0.673, 0.687) 0.459 0.285 (-0.105, 1.013)
β2 0.039 0.232 (-0.398, 0.503) 0.344 0.233 (-0.095, 0.807)

100 β0 -2.2019 0.063 (-2.322, -2.076) -2.178 0.062 (-2.300, -2.058)
β1 -0.0002 0.108 (-0.210, 0.210) 0.061 0.106 (-0.147, 0.266)
β2 0.0039 0.070 (-0.134, 0.141) 0.040 0.070 (-0.096, 0.178)

0.5 1 β0 0.0014 0.406 (-0.804, 0.796) -0.502 0.325 (-1.147, 0.123)
β1 0.0049 0.683 (-1.317, 1.368) 1.342 0.537 ( 0.313, 2.415)
β2 -0.0025 0.482 (-0.979, 0.940) 0.897 0.413 ( 0.119, 1.729)

10 β0 0.0002 0.121 (-0.235, 0.236) -0.071 0.114 (-0.301, 0.149)
β1 0.0003 0.207 (-0.415, 0.398) 0.213 0.198 (-0.165, 0.611)
β2 0.0003 0.135 (-0.269, 0.264) 0.127 0.130 (-0.132, 0.379)

100 β0 -0.0004 0.038 (-0.074, 0.074) -0.007 0.038 (-0.079, 0.067)
β1 0.0006 0.065 (-0.129, 0.124) 0.023 0.065 (-0.104, 0.148)
β2 0.0006 0.042 (-0.083, 0.083) 0.013 0.042 (-0.070, 0.096)

0.9 1 β0 2.668 0.787 ( 1.254, 4.274) 0.496 0.299 (-0.086, 1.086)
β1 -0.019 1.208 (-2.416, 2.370) 1.703 0.637 ( 0.494, 2.980)
β2 -0.324 0.898 (-2.167, 1.286) 0.885 0.365 ( 0.194, 1.623)

10 β0 2.243 0.204 ( 1.852, 2.649) 1.753 0.156 ( 1.444, 2.057)
β1 -0.004 0.346 (-0.694, 0.665) 0.465 0.299 (-0.125, 1.048)
β2 -0.038 0.230 (-0.496, 0.404) 0.227 0.172 (-0.118, 0.554)

100 β0 2.2015 0.062 ( 2.081, 2.325) 2.139 0.061 ( 2.020, 2.257)
β1 0.0003 0.108 (-0.211, 0.215) 0.061 0.107 (-0.146, 0.272)
β2 -0.0038 0.070 (-0.145, 0.133) 0.032 0.068 (-0.103, 0.163)

Table 2 summarizes posterior estimates of β using a random a0 with y0 =
0.5. We consider three sets of hyperparameters for a0. These are (i) (α0, λ0) =
(0.1, 0.1), (ii) (α0, λ0) = (10, 10), and (iii) (α0, λ0) = (100, 100). Here, (i) implies
a noninformative prior for a0, (ii) implies a moderately informative prior for
a0, and (iii) implies an informative prior for a0. From Table 2, we see that
with (α0, λ0) = (0.1, 0.1), the posterior estimates of β are close to the estimates
corresponding to a0 = 0. As the prior for a0 becomes more informative, the
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posterior mean of a0 increases, and as a result, the posterior estimates of β
change a lot. For example, when (α0, λ0) = (100, 100), we see that the posterior
estimates of β are close to those of Table 1 corresponding to (y0, a0) = (0.5, 1).

Table 2. Summary statistics from the posterior distribution with random a0
for finney data.

(α0, λ0) E(a0|D) (SD(a0|D)) Parameter Mean SD 95% HPD Interval

(0.1, 0.1) 0.002 (0.005) β0 -3.723 1.594 (-6.851, -0.829)
β1 6.594 2.607 ( 1.978, 11.727)
β2 5.837 2.381 ( 1.599, 10.564)

(10, 10) 0.188 (0.067) β0 -1.611 0.814 (-3.245, -0.151)
β1 3.371 1.291 ( 1.070, 5.989)
β2 2.694 1.179 ( 0.665, 5.049)

(100, 100) 0.757 (0.078) β0 -0.623 0.379 (-1.382, 0.094)
β1 1.611 0.633 ( 0.404, 2.891)
β2 1.107 0.507 ( 0.189, 2.134)

Table 3 shows posterior estimates of β based on the asymptotic prior (2.10)
using (y0, a0) = (0.5, 1), (0.5, 100). We see from this table that the posterior esti-
mates of β are fairly close to the posterior estimates of Table 1, which use (6.1).
For example, for (y0, a0) = (0.5, 1), the posterior mean (standard deviation) of
β1 from Table 3 is 1.228 (0.487), compared to 1.342 (0.537) from Table 1. Thus,
we see that even with a fairly small sample size of n = 39, the asymptotic prior
in (2.10) provides a somewhat fair approximation to (6.1). As a0 is increases,
the posterior estimates of β from Tables 1 and 3 are much closer together since,
in this case, the prior dominates the likelihood and the priors (6.1) and (2.10)
become highly peaked at the mode. Finally, Figure 1 shows three dimensional
plots of the marginal prior for (β1, β2) using (y0, a0) = (0.5, 1), (0.5, 10), respec-
tively. We see from these plots that the prior is symmetric, and becomes more
concentrated about the mode as a0 is increased.

Table 3. Posterior summaries based on asymptotic prior for finney data.

a0 Parameter Mean SD 95% HPD Interval

1 β0 -0.416 0.281 (-0.978, 0.121)
β1 1.228 0.487 ( 0.292, 2.199)
β2 0.749 0.330 ( 0.104, 1.401)

100 β0 -0.008 0.037 (-0.078, 0.069)
β1 0.023 0.064 (-0.103, 0.149)
β2 0.013 0.042 (-0.068, 0.095)
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Figure 1. Joint prior distributions for (β1, β2) with a0 = 1 (left) and a0 = 10
(right) for Finney data.

Appendix : Proofs of Theorems

Proof of Theorem 2.1. Without loss of generality, take τ = 1. We make
use of a technique in Ibrahim and Laud (1991). It suffices to show, for t in a
neighborhood of 0, the finiteness of∫

Rp
exp(t′β) exp{a0[y′0θ(Xβ)− J ′b(θ(Xβ))]} dβ, (A.1)

where Rk denotes p-dimensional Euclidean space. Partition a row permutation

of X into

(
X1

X2

)
, where X1 is a p× p full rank matrix and X2 is an (n − p)× p

matrix. Correspondingly, partition y0, θ(.), and b(.). Now (A.1) takes the form∫
Rp
exp(t′β) exp{a0[y′10θ(X1β)− J ′1b1(θ(X1β))]}

× exp{a0[y′20θ(X2β)− J ′2b2(θ(X2β))]} dβ. (A.1)

Since the prior density of β is assumed bounded, there exists a constant K1 such
that exp{a0[y′20θ(X2β)− J ′2b2(θ(X2β))]} ≤ K1. Thus (A.1) is less than or equal
to

K1

∫
Rp
exp(t′β) exp{a0[y′10θ(X1β)− J ′1b1(θ(X1β))]}. (A.2)

Now make the transformations u = X1β and r = θ(u) = (θ(u1), . . . , θ(up))′ =
(r1, . . . , rp)′. After dropping unnecessary constants, (A.2) reduces to∫

Θ
|J2(r)| exp(s′θ−1(r)) exp{a0[y′10r − J ′1b1(r)]}dr, (A.3)

where Θ = Θ1 × · · · × Θp ⊂ Rp, and Θi is the parameter space of the one
dimensional canonical parameter ri. Further, s′ = t′X−1

1 , and the Jacobian of
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the second transformation is given by J2(r) =
∏p

i=1
d

dri
{θ−1(ri)}. If the link is

canonical, then θ−1(r) = r, and (A.3) reduces to
∫

Θ
exp

{
a0

[
(y′10 + a

−1
0 s′)r − J ′1b1(r)

]}
dr. (A.4)

Since the exponential family density in (2.1) is obtained as a product of n ex-
ponential densities on subsets of R1, the integrand in (A.4) is an exponential
family density with the observable in Rp and canonical parameter u ∈ Θ ⊂ Rp.
Denoting by Z the interior of the convex hull of the support set of the latter
exponential family density, we see that y0 ∈ Y implies y10 ∈ Z. (Both Y and
Z are, in fact, open rectangles). Now, since Z is open, there exists an open
neighborhood of 0 such that for every s in this neighborhood, y10 + a−1

0 s ∈ Z.
Application of Theorem 1 of Diaconis and Ylvisaker (1979, p.272) to (A.4) proves
part (i).

For (ii), (A.3) can be written as a product of the p one dimensional integrals
∫

Θi

∣∣∣∣ ddri θ−1(ri)
∣∣∣∣ exp{a0[y10iri+a−1

0 siθ
−1(ri)−b1i(ri)]} dri, i = 1, . . . , p, (A.5)

where y10i is the ith component of y10, and b1i(ri) is the ith component of b1(r).
Thus (A.2) is finite if each integral in (A.5) is. This proves part (ii).

Proof of Theorem 4.1. Let L(β|y0, τ) = exp{τ [y′0θ(η)−J ′b(θ(η))]+J ′c(y0, τ)}.
Since λ0 > sup

β∈Rp
[τ(y′0θ(η) − J ′b(θ(η))) + J ′c(y0, τ)] = lnL(β|y0, τ), it is easy to

see that∫ ∞

0
[L(β|y0, τ)]a0aα0−1

0 exp(−λ0a0)da0 = K0[λ0 − lnL(β|y0, τ)]−α0 , (A.6)

where K0 is a constant independent of β. Using (A.6), for some t∗0 > 0, we have∫
Rp

∫ ∞

0
||β||kπ(β, a0|y0, τ)da0dβ

=K0

∫
Rp

||β||k[λ0 − lnL(β|y0, τ)]−α01{L(β|y0,τ)>exp(−t∗0||β||)}dβ

+K0

∫
Rp

||β||k[λ0 − lnL(β|y0, τ)]−α01{L(β|y0,τ)≤exp(−t∗0 ||β||)}dβ

≤K1

∫
Rp

||β||kL(β|y0, τ) exp(t∗0||β||)dβ +K0

∫
Rp

||β||k(λ0 + t∗0||β||)−α0dβ <∞,

where K1 > 0 is a constant. Theorem 2.1 ensures that the first integral is finite,
while the second integral is finite since α0 > p+ k. This proves (4.3).
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Proof of Theorem 5.2. Integrating out τ yields∫ ∞

0
π(β, τ, a0|y0)dτ

≤K1[δ0 + a0(y0 −Xβ)′(y0 −Xβ)/2]−(a0n/2+ζ0)aα0−1
0 exp(−λ0a0), (A.7)

where K1 > 0 is a constant. Since X is of full rank, there exists a pos-
itive constant K2 so that the right hand side of (A.7) is less than K2[δ0 +
a0||β||2/2]−(a0n/2+ζ0)aα0−1

0 exp(−λ0a0). For some s0 > 0 and K3 > 0, we have∫ ∞

0

∫
Rp

[
δ0 + a0||β||2/2

]−(a0n/2+ζ0)
aα0−1

0 exp(−λ0a0)dβda0

≤K3

∫
||β||≤s0

∫ ∞

0
δ
−a0n/2
0 aα0−1

0 exp(−λ0a0)da0dβ

+K3

∫
||β||>s0

||β||−2ζ0dβ

∫ ∞

0
a
−(a0n/2+ζ0)
0 aα0−1

0 exp(−λ0a0) <∞

if the assumptions given in Theorem 5.2 hold. This completes the proof.

References

Bedrick, E. J., Christensen, R. and Johnson, W. (1996). A new perspective on priors for
generalized linear models. J. Amer. Statist. Assoc. 91, 1450-1461.

Diaconis, P. and Ylvisaker, D. (1979). Conjugate priors for exponential families. Ann. Statist.
7, 269-281.

Finney, D. J. (1947). The estimation from individual records of the relationship between dose
and quantal response. Biometrika 34, 320-334.

Ibrahim, J. G. and Chen, M.-H (2000). Power prior distributions for regression models. Statist.
Sci. 15, 46-60.

Ibrahim, J. G. and Laud, P. W. (1991). On Bayesian analysis of generalized linear models using
Jeffreys’s prior. J. Amer. Statist. Assoc. 86, 981-986.

Morris, C. N. (1982). Natural exponential families with quadratic variance functions. Ann.
Statist. 10, 65-80.

Morris, C. N. (1983). Natural exponential families with quadratic variance functions: statistical
theory. Ann. Statist. 11, 515-529.

Pregibon, D. (1981). Logistic regression diagnostics. Ann. Statist. 9, 705-724.
Sun, D., Tsutakawa, R. K. and He, Z. (2001). Propriety of posteriors with improper priors in

hierarchical linear mixed models. Statist. Sinica 11, 77-95.

Department of Statistics, University of Connecticut, 215 Glenbrock Road, U-4120, Storrs, CT,
06269-4120, U.S.A.

E-mail: mhchen@stat.uconn.edu

Department of Biostatistics, University of North Carolina, MaGavran-Greenberg Hall,
CB#7420, Chapel Hill, NC 27559.

E-mail: ibrahim@bios.unc.edu

(Received July 2001; accepted October 2002)


	1. Introduction
	2. The Prior
	4. Random
	6. Illustrative Example
	Appendix : Proofs of Theorems

