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Abstract: Two rank tests for independence of bivariate random variables against

an alternative model with weighted contamination are proposed. The model may

emphasize the association of X and Y on items with high ranks in one variable

(say X) and generalizes an alternative in Hájek and Šidák (1967). The model may

be applied to both complete paired data and paired data which is truncated in one

variable. We derive the locally most powerful rank (LMPR) test under the alter-

native setting. The proposed tests turn out to be asymptotic LMPR tests under

Logistic and Extreme Value families. Under the null hypothesis of independence,

both rank statistics have limiting normal distributions. An application to a data

set from a special education program in Taiwan and a simulation study are pre-

sented. We also apply the Shapiro-Francia test to find the minimum sample sizes

for approximate normality of exact distributions of the proposed test statistics.
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1. Introduction

Let {(Xi, Yi), 1 ≤ i ≤ n} be an independently and identically distributed
(i.i.d.) sample from a bivariate population (X,Y ). We introduce two rank statis-
tics for testing independence of X and Y against an alternative with weighted
contamination as follows:

Xi = X∗
i + w(X∗

i )∆Zi and Yi = Y ∗
i + ∆Zi, 1 ≤ i ≤ n, (1)

where X∗
i , Y ∗

i and Zi are mutually independent random variables (r.v.’s); ∆ a
constant and w(x) monotone in x. Under (1) it is clear that if ∆ = 0, X and Y

are independent, and the larger ∆ is, the more dependent are X and Y . Thus
the constant ∆ may be regarded as a dependence or mixing coefficient. For more
details, see Section 2.1.

Measures of linear association were discussed and studied around 1900 (Gal-
ton (1877), Pearson (1896), Spearman (1904) and Kendall (1938)). In the last
two decades, measures of weighted correlation have been extensively discussed
in Salama and Quade (1982), Iman and Conover (1987), and others. For details,
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see the thorough review paper by Quade and Salama (1992). Motivated by ap-
plications in sensitivity analysis, Iman and Conover (1987) proposed a measure,
the Pearson correlation coefficient computed on Savage scores (Savage (1956)).
This measure reflects well the importance of agreement on the top ranks.

The alternative in (1) may stress the association of X and Y on items with
top ranks in one variable (say X) and generalizes the alternative to indepen-
dence in Hájek and Šidák (1967) by introducing a weight function w(·). The
proposed alternative model allows our rank tests to be applied to both complete
and truncated data.

Examples of the proposed model in (1) are frequently encountered in real
life. Besides complete data sets, the new model may be adopted in the following
situations. For saving costs and/or time, one may exclude many subjects or
items with bottom ranks on one feature in a screening procedure, and then
focus on examining those which passed the screening. For example, a recruiting
committee may screen the applicants by their resumes first and interview only a
few candidates. In this case, one r.v. involved (say X) could be the applicants’
qualifications shown in the resume and the other r.v. (say Y ) is the applicants’
qualifications evaluated from an interview. Another example occurs in education
of the gifted. In an identification procedure of the gifted in natural sciences,
suppose that students will take both Mathematics and Physics aptitude tests.
A common belief is that the test scores are positively correlated. Therefore, to
save costs, one may test the students on one subject, say Mathematics, first and
then further test the top-ranked (say the top 10%) in Physics. Here Xi is the ith
student’s Mathematics aptitude score and Yi the Physics aptitude score. Note
that all values of Xi’s are observed but we observe only the values of Y whose
corresponding values of X are top-ranked.

In the above cases, the procedures are fair provided the random variables
are positively correlated or dependent. Thus testing the independence of X and
Y against the alternative in (1) is an important issue. The rank tests are good
tools for this testing problem and this is confirmed by our results and a simulation
study.

In Section 2, we first derive a general form of the locally most powerful rank
(LMPR) test under (1). We then show that the two proposed tests are asymptotic
LMPR tests under Logistic and Extreme Value families. Further, their limiting
distributions under the null hypothesis are derived. In Section 3, an application
to a data set from a special education program in Taiwan is presented. Section
4 includes a power comparison of the new tests to those studied in Iman and
Conover (1987) and Shieh (1998). Powers of the tests are summarized in Tables
1-4. The minimum sample sizes for approximate normality of exact distributions
of both tests are also studied. We conclude with some remarks in Section 5.
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Some critical values of the tests can be obtained from the corresponding author
upon request.

2. New Rank Tests

Recall that (Xi, Yi), 1 ≤ i ≤ n, are i.i.d. bivariate r.v.’s. Let (i, Ri), i =
1, . . . , n, be paired rankings, where Ri is the rank of Y whose corresponding X has
rank i among {Xj}. We assume that there are no ties among the variables being
ranked. Iman and Conover (1987) propose the top-down correlation coefficient

rT = (
n∑

i=1

SiSRi − n)/(n − S1), (2)

where the Si are Savage scores defined as

Si =
n∑

j=i

1/j. (3)

The correlation coefficient rT reflects the association of top ranks well, and is the
LMPR test statistic under the alternative to independence on page 75 of Hájek
and Šidák (1967) when both X and Y have extreme value distributions. How-
ever, rT is well defined only when the samples are fully observed. As mentioned
earlier, in many cases the data involved are truncated. In addition, a weighting
structure is needed when one wants to emphasize certain part(s) of the ranks,
say those in the middle. To include various types of weights and to address
the weighting structure issue in the alternative, we propose the following rank
statistics: weighted Spearman’s Rho (Ts) and weighted top-down statistic (Tt).

With objectively or subjectively chosen weights wi that depend solely on i,
a weighted Spearman’s Rho is defined by

Ts =
n∑

i=1

wi(i − (n + 1)/2)(Ri − (n + 1)/2) (4)

and a weighted top-down statistic is

Tt =
n∑

i=1

wi(Sn−i+1 − 1)(Sn−Ri+1 − 1).

For instance, we can take wi = I[i≤m], where m = [(n + 1)p] and 0 < p ≤ 1 is
roughly the percentage of the observed items (subjects). In general, we choose p

to have small loss in significance level (P -value) and to save computation. This
is illustrated further in the gifted students example of Section 4.

With equal weights wi ≡ 1/(n−S1), Tt reduces to rT . Note that rT empha-
sizes agreement of the top ranks by substituting Savage scores for ranks into the
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Pearson correlation coefficient, while Tt puts additional weights on top-ranked
ones.

Remark 1. With equal weights 12/[n(n2 − 1)], Ts reduces to the Spearman’s
Rho. Thus for convenience, one should not assume that the weights sum up to
one. Instead of (4), we can write Ts as

∑
i{wi[i− (n+1)/2]− cn}[Ri − (n+1)/2],

where cn =
∑

i wi[i − (n + 1)/2]/(
∑

i wi), which is a centered version. Likewise,
a centered version of Tt can be defined.

Remark 2. The dependence of wi on i, and hence on {Xi}, implies that the
truncation depends on the ranks of {Xi}. Thus in practice we let X be the
variable that can be, or is, easily truncated.

We note that the weights in Ts and Tt can be adjusted easily to test for
both top-down and bottom-up correlation alternatives. Recall that the top-down
correlation emphasizes the agreement in the top ranks, whereas the bottom-up
correlation stresses the agreement in the bottom ranks.

2.1. LMPR tests

In the following, we first derive a general form of the LMPR test under the
weighted contamination alternative in (1). Further, we show that Ts and Tt are
the asymptotic LMPR tests with respect to Logistic and Extreme Value families,
respectively. Recall (1). Usually, the weight function w(x) is increasing in x,
and in many cases it is also differentiable. However these are not essential in our
limit theorems. The alternative hypothesis of a weighted contamination can be
detected by either Ts or Tt. The weighted rank tests are especially useful when
the marginal distributions of the variables being ranked are skewed to the right.

Let X∗ and Y ∗ have densities f(x) and g(y), respectively, while the dis-
tribution of Zi is arbitrary. For ease of statement, in the sequel we assume
that w(x) is increasing and differentiable. Thus for given x and ∆z, the equa-
tion x = x∗ + w(x∗)∆z has a unique solution for x∗, denoted x∗ = s(x,∆z).
Then the i.i.d. sample (Xi, Yi), i = 1, . . . , n, has a density given by q∆ =∏n

i=1 h∆(xi, yi),−∞ < ∆ < ∞, where

h∆(x, y) =
∫ ∞

−∞
f(x∗)g(y − ∆z)

1 + w′(s(x,∆z))∆z
dM(z),

and M(z) is a distribution of Z with mean µz and finite variance σ2
z .

Let X(i) and Y(i) be the ith order statistics of {Xi} and {Yi}, respectively.
Further, let an(i, w, f) = E{−[(wf)′/f ](X(i))} and bn(i, g) = E{−[g′/g](Y(i))}
denote the score functions corresponding to the density f and weight function
w, and to density g, respectively. The following theorem states the general form
of the LMPR test.
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Theorem 1. Assume that
∫ ∞
−∞ |(wf)′(x)|dx < ∞,

∫ ∞
−∞ |g′(x)|dx < ∞, and that

(wf)′(x) and g′(x) are continuous almost everywhere. Then the test with critical
region

∑n
i=1 an(i, w, f)bn(Ri, g) ≥ k is the LMPR test for H0 : ∆ = 0 against

H1 : ∆ > 0.

The proof is given in Appendix 1.

Remark 3. When w(x) is not continuously differentiable (or even continuous)
but w(x)f(x) is of bounded variation, if we define the score function an(i, w, f)
as

an(i, w, f) =
n!

(i − 1)!(n − i)!

∫
F i−1(x)(1 − F (x))n−id(w(x)f(x)), (5)

then Theorem 1 remains valid.
For w(x) = I[0,p](F (x)) = I(−∞,ξp](x), where ξp = F−1(p), we have from (5)

that

an(i, w, f)

=
n!

(i − 1)!(n − i)!

[∫ ξp

−∞
F i−1(x)(1 − F (x))n−if ′(x)dx − pi−1(1 − p)n−if(ξp)

]

= E[I[U(i) ≤ p] · ϕ(U(i), f)] − n!
(i − 1)!(n − i)!

pi−1(1 − p)n−if(ξp),

where U(i) is the ith ordered sample from U [0, 1] and ϕ(u, f) = (f ′/f)(F−1(u)).
Then in the LMPR test statistic the factor an(i, w, f) can be approximated by

an(i, w, f) ≈ I[i/(n+1)≤p]ϕ(i/(n + 1), f).

The reason is the following: for |np − i| ≥ c
√

n with a large constant c,
E[I[U(i)≤p]ϕ(U(i), f)] ≈ I[i/(n+1)≤p]ϕ(i/(n + 1), f), and there are only [2c

√
n] neg-

ligible terms satisfying |np − i| < c
√

n.

Corollary 1. If F and G are from the Logistic family, then the test Ts with
wi = I[i≤m], m = [(n + 1)p] and critical region Ts ≥ k, where k is a constant, is
the asymptotic LMPR test for H0 : ∆ = 0 versus H1 : ∆ > 0 at (1).

Proof. By (13) in page 67 of Hájek and Šidák (1967), bn(i, f) ∼= ϕ(i/(n + 1), f)
is the approximate scores corresponding to f , and when f is logistic, ϕ(i, f) =
2i − 1. Thus ϕ(i/(n + 1), f) ∼= 2i/(n + 1) − 1 ∝ i − (n + 1)/2 and by (5),
an(i, w, f) ∼= I[i/(n+1)≤p]ϕ(i/(n + 1), f). It follows that the asymptotic LMPR
test statistic is proportional to

∑n
i=1 wi[i − (n + 1)/2][Ri − (n + 1)/2].

Similarly, for the Extreme Value family with p.d.f. f(x) = exp{x− e−x}, we
have ϕ(i, f) = −ln(1−i)−1. Taking ϕ(i/n, f) as approximate scores correspond-
ing to f and by ln(i/n) ∼= −Si+1, we obtain ϕ(i/n, f) ∼= −ln((n − i)/n) − 1 ∼=
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Sn−i+1 − 1. Again by (5), we have an(i, w, f) ∼= I[1/(n+1)≤p](Sn−i+1 − 1). This
and the fact that bn(Ri, g) ∼= Sn−Ri+1 − 1 imply Corollary 2.

Corollary 2. If F (x) and G(x) are from the Extreme Value family, then the
test Tt with wi = I[i≤m], m = [(n + 1)p] and critical region Tt ≥ k, where k is a
constant, is the asymptotic LMPR test for H0 : ∆ = 0 versus H1 : ∆ > 0 at (1).

2.2. Null limit distributions

In this section, the asymptotic distributions of Ts and Tt are derived under
H0, the hypothesis of independence. Let I(f) denote Fisher information, I(f) =∫ ∞
−∞ [f ′(x)/f(x)]2f(x) dx.

Theorem 2. Assume that H0 holds, I(f)<∞ and I(g)<∞. Then
√

T s/{n(n2−
1)p[3(1 − p)3 + p2]/12}1/2 →DN(0, 1).

The proof is given in Appendix 2. When p = 1, Ts reduces to the usual
Spearman’s Rho rs and Var(

√
T s) equals [n(n2 − 1)]/12.

Theorem 3. Assume H0 holds, I(f) < ∞ and I(g) < ∞. Then Tw/(ncp)1/2

→DN(0, 1), where cp = p − (1 − p)(2 − p)ln2(1 − p).

The proof is given in Appendix 3. When p = 1, after some normalization Tt

reduces to rT as in Iman and Conover (1987), and cp = 1 implies that Var(Tt) =
n(1 + o(1)) which agrees with the fact that Var(rT ) = n − S1.

3. Simulation Results

In this section, the results of a power comparison and the minimum n re-
quired for approximate normality of exact distributions of the new tests are
presented.

3.1. Power comparison

We first compare the powers of the new tests with those of the top-down
statistic rT in (2) (Iman and Conover (1987)) and the weighted Kendall’s Tau in
Shieh (1998) for finite sample sizes. A weighted Kendall’s Tau is defined as

τw =
1∑

i�=j wiwj

∑
i�=j

wiwjsgn(i − j)sgn(Ri − Rj),

where wi = I[i≤m] and m = [(n + 1)p].
The alternative used is at (1). Four choices of p were studied, namely p = 0.1,

0.2, 0.3 and 0.5. Let ρ denote the correlation between Xi and Yi. The relationship
of ρ versus ∆ is: ρ = p∆2σ2

z/[(σ2
x + p∆2σ2

z)(σ2
y + ∆2σ2

z)]1/2. The choices of ρ
include ρ = 0.0 (which gives the null hypothesis), ρ = 0.1(0.1 or 0.2)ρmax, where
ρmax is

√
p rounded to the first decimal place.
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Table 1. Powers of weighted Spearman’s Rho, Kendall’s Tau and top-down
statistic with p = 0.1.

N(0, 1) Logistic(0,−1) Extreme value dist.a

n + 1 m ρ rw τw Tw rT rw τw Tw rT rw τw Tw rT

10 1 .1 .055 — .063 .057 .061 — .069 .065 .052 — .056 .063

.2 .085 — .110 .075 .082 — .106 .076 .079 — .100 .079

.3 .100 — .143 .083 .103 — .145 .079 .100 — .146 .081

20 2 .1 .070 .079 .112 .104 .080 .076 .128 .097 .053 .073 .066 .092

.2 .147 .089 .304 .108 .136 .086 .286 .115 .144 .085 .277 .117

.3 .260 .098 .492 .131 .219 .096 .489 .121 .264 .095 .501 .128

30 3 .1 .087 .144 .123 .109 .084 .142 .135 .104 .072 .133 .076 .099

.2 .220 .205 .401 .154 .236 .204 .384 .144 .209 .193 .344 .142

.3 .435 .271 .653 .158 .454 .269 .662 .170 .449 .264 .650 .177

50 5 .1 .135 .378 .167 .142 .123 .373 .202 .134 .080 .329 .080 .126

.2 .426 .699 .595 .221 .387 .676 .569 .199 .333 .618 .493 .198

.3 .745 .955 .867 .256 .724 .946 .849 .254 .759 .933 .845 .266

100 10 .1 .233 .857 .284 .227 .227 .754 .323 .203 .117 .670 .093 .182

.2 .756 .989 .869 .340 .675 .980 .836 .346 .587 .961 .750 .338

.3 .982 1.000 .993 .424 .980 1.000 .991 .430 .989 .999 .986 .454

200 20 .1 .422 .987 .466 .383 .349 .966 .508 .345 .183 .931 .137 .295

.2 .969 1.000 .990 .583 .936 1.000 .983 .543 .872 .999 .947 .537

.3 1.000 1.000 1.000 .704 1.000 1.000 1.000 .702 1.000 1.000 1.000 .730

400 40 .1 .664 1.000 .731 .574 .592 1.000 .744 .525 .253 .999 .194 .452

.2 1.000 1.000 1.000 .860 .999 1.000 1.000 .825 .989 1.000 .997 .813

.3 1.000 1.000 1.000 .954 1.000 1.000 1.000 .943 1.000 1.000 1.000 .956

a p.d.f. f(x) ∼ exp{x− exp{x}}.

The powers of Ts, τw and Tt under the alternative, with Xi, Yi and Zi ∼
N(0, 1), Xi, Yi and Zi ∼ Logistic(0,−1), and Xi, Yi and Zi ∼ the Extreme Value
distribution with p.d.f. f(x) ∼ exp{x − ex}, are summarized in Tables 1-4,
respectively. In each simulation, the number of replications used was 5,000
which yields a standard error of about .0071. The sample sizes studied are
9, 19, 29, 49, 99, 199 and 399. The 95% confidence interval for a power is
(power−1.96×0.0071,power +1.96×0.0071). We note that for fixed n and ρ, as
p increases the power of rT increases, although rT does not depend on p. (Since a
larger value of p leads to a larger “top-down” correlation of X and Y , it leads to
a significantly larger rT value.) For instance, for n + 1 = 10, ρ = 0.3, the power
of rT in Table 2 (p = 0.2) is significantly larger than that in Table 1 (p = 0.1).
The test statistics are discrete and we have randomized so that empirical powers
of the tests with ρ = 0 under H1 are equal to 0.05. For instance, for tests with
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n + 1 = 10 and p = 0.1, the largest and second largest values of Tt equal to 16
and 12 with empirical probabilities (say) p1 and p2 respectively, and we added
the empirical power of Tt = 12 with weight (0.05 − p1)/p2 to that of Tt = 16 to
obtain 0.05.

Table 2. Powers of weighted Spearman’s Rho, Kendall’s Tau and top-down
statistic with p = 0.2.

N(0, 1) Logistic(0,−1) Extreme value dist.

n + 1 m ρ rw τw Tw rT rw τw Tw rT rw τw Tw rT

10 2 .1 .060 .067 .064 .079 .064 .069 .074 .080 .050 .067 .055 .072

.2 .112 .077 .164 .099 .134 .079 .183 .113 .085 .077 .129 .107

.3 .174 .086 .292 .130 .173 .086 .286 .123 .159 .084 .275 .122

.4 .265 .092 .445 .162 .258 .094 .419 .150 .263 .094 .444 .155

20 4 .1 .102 .169 .084 .109 .095 .157 .097 .103 .074 .136 .055 .094

.2 .218 .291 .252 .166 .212 .269 .266 .161 .150 .243 .165 .153

.3 .411 .441 .499 .228 .387 .423 .486 .218 .344 .375 .437 .216

.4 .615 .678 .719 .258 .605 .653 .709 .245 .631 .613 .731 .255

30 6 .1 .124 .262 .093 .136 .120 .267 .112 .143 .090 .226 .067 .126

.2 .295 .498 .347 .209 .281 .491 .351 .206 .209 .427 .218 .191

.3 .564 .729 .653 .277 .522 .720 .621 .275 .484 .658 .569 .273

.4 .836 .941 .895 .348 .813 .926 .874 .346 .831 .900 .879 .363

50 10 .1 .150 .472 .116 .180 .162 .431 .166 .169 .101 .367 .074 .151

.2 .429 .824 .490 .312 .436 .827 .511 .303 .297 .763 .304 .279

.3 .790 .971 .853 .429 .730 .950 .822 .389 .671 .913 .756 .380

.4 .974 1.000 .988 .536 .959 .998 .982 .508 .973 .996 .980 .528

100 20 .1 .256 .764 .188 .300 .263 .717 .256 .274 .148 .625 .096 .228

.2 .695 .989 .746 .517 .680 .979 .747 .476 .475 .948 .451 .439

.3 .969 1.000 .985 .678 .960 .999 .983 .638 .929 .998 .956 .630

.4 1.000 1.000 1.000 .822 .999 1.000 .999 .809 1.000 1.000 1.000 .828

200 40 .1 .383 .973 .287 .443 .420 .954 .393 .432 .224 .920 .126 .372

.2 .942 .999 .955 .794 .926 1.000 .954 .754 .747 .999 .715 .689

.3 1.000 1.000 1.000 .921 .999 1.000 1.000 .910 .997 1.000 .999 .901

.4 1.000 1.000 1.000 .978 1.000 1.000 1.000 .978 1.000 1.000 1.000 .984

400 80 .1 .665 .999 .499 .710 .670 .999 .621 .658 .360 .994 .193 .564

.2 .997 1.000 .999 .964 .997 1.000 .998 .946 .952 1.000 .933 .916

.3 1.000 1.000 1.000 .997 1.000 1.000 1.000 .996 1.000 1.000 1.000 .995

.4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

From Tables 1-4, we find that for values of samples sizes and p studied, all
three rank tests, Ts, τw and Tt, are much more powerful than rT . When m ≤ 4,
Tt has slightly more power than Ts and τw, whereas for m ≥ 5, Ts and τw perform
better than Tt in most cases. Although τw is not the LMPR test with respect
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to either the Logistic or the Extreme Value distribution, it does perform rather
well. It would be interesting to investigate under what distribution τw or τ̂w (the
projection of τw onto the linear rank statistics) is the LMPR test.

Table 3. Powers of weighted Spearman’s Rho, Kendall’s Tau and top-down
statistic with p = 0.3

N(0, 1) Logistic(0,−1) Extreme value dist.

n + 1 m ρ rw τw Tw rT rw τw Tw rT rw τw Tw rT

10 3 .1 .087 .086 .074 .087 .088 .084 .083 .083 .072 .081 .064 .077

.3 .271 .152 .282 .158 .264 .145 .290 .149 .233 .138 .246 .144

.5 .545 .235 .591 .223 .522 .230 .601 .233 .548 .224 .617 .242

20 6 .1 .122 .180 .093 .123 .126 .193 .118 .114 .096 .173 .069 .102

.3 .463 .548 .483 .270 .450 .514 .489 .251 .382 .457 .399 .238

.5 .880 .939 .908 .423 .883 .918 .898 .418 .902 .894 .902 .438

30 9 .1 .146 .271 .105 .146 .169 .271 .137 .157 .116 .236 .076 .140

.3 .613 .794 .639 .344 .594 .754 .627 .348 .497 .682 .508 .331

.5 .978 .997 .986 .562 .964 .994 .972 .555 .976 .988 .974 .580

50 15 .1 .210 .449 .143 .208 .212 .409 .182 .201 .146 .351 .091 .172

.3 .808 .970 .821 .539 .800 .946 .827 .522 .697 .912 .697 .499

.5 .999 1.000 .999 .800 .998 1.000 .999 .757 .999 1.000 .999 .784

100 30 .1 .288 .722 .189 .306 .336 .689 .260 .312 .211 .596 .119 .262

.3 .974 1.000 .976 .781 .967 .999 .976 .764 .915 .995 .913 .732

.5 1.000 1.000 1.000 .972 1.000 1.000 1.000 .969 1.000 1.000 1.000 .977

200 60 .1 .478 .950 .313 .494 .532 .949 .415 .463 .338 .869 .180 .410

.3 .999 1.000 .999 .961 .999 1.000 1.000 .954 .995 1.000 .990 .944

.5 1.000 1.000 1.000 .999 1.000 1.000 1.000 .999 1.000 1.000 1.000 .999

400 120 .1 .738 .998 .496 .716 .790 .998 .637 .695 .532 .991 .285 .590

.3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .999 1.000 1.000 1.000 .999

.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

3.2. Minimum n for approximate normality of Ts and Tt

Both Ts and Tt are discrete statistics. When n is small we do not know
their exact distributions. Thus it would be useful to study the minimum n that
ensures good normal approximations of the exact distributions of Ts and Tt. The
Shapiro-Francia W ′ test (Shapiro and Francia (1972)) is employed for testing
departure from normality. The test assumes the form:

W ′ =
(
∑N

i=1 biy(i))2∑N
i=1(yi − ȳ)2

,

where b′ = (b1, . . . , bN ) = m′/(m′m)1/2 and m is the vector of expected values
of standard normal order statistics. We employ W ′ to obtain the minimum
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value of n required for good normal approximations of the exact distributions
of the weighted rank statistics. With N = 100 (100 points of Ts and Tt), and
p = 0.1, 0.2, 0.3 and 0.5, we find that n = 19, 9, 6 and 6 are required for Ts, and
121, 18, 9 and 6 are required for Tt.

Table 4. Powers of weighted Spearman’s Rho, Kendall’s Tau and top-down
statistic with p = 0.5.

N(0, 1) Logistic(0,−1) Extreme value dist.

n + 1 m ρ rw τw Tw rT rw τw Tw rT rw τw Tw rT

10 5 .1 .123 .109 .133 .092 .169 .103 .149 .091 .155 .098 .133 .084

.3 .366 .255 .371 .196 .390 .240 .397 .194 .370 .212 .369 .188

.5 .661 .478 .680 .333 .649 .467 .681 .330 .632 .418 .649 .331

.7 .948 .970 .954 .551 .963 .967 .955 .538 .964 .959 .950 .545

20 10 .1 .183 .156 .145 .116 .188 .195 .173 .117 .156 .175 .139 .103

.3 .576 .519 .537 .309 .589 .552 .566 .292 .517 .481 .484 .277

.5 .912 .898 .899 .547 .911 .879 .896 .536 .893 .831 .866 .539

.7 1.000 1.000 .999 .784 .999 1.000 1.000 .785 .999 1.000 .998 .816

30 15 .1 .207 .246 .168 .148 .244 .227 .209 .138 .200 .199 .152 .128

.3 .739 .783 .689 .427 .728 .727 .693 .422 .654 .652 .605 .399

.5 .983 .986 .974 .717 .974 .978 .968 .692 .962 .957 .945 .694

.7 1.000 1.000 1.000 .930 1.000 1.000 1.000 .939 1.000 1.000 1.000 .957

50 25 .1 .286 .347 .227 .183 .318 .356 .253 .187 .250 .307 .188 .159

.3 .897 .934 .838 .592 .891 .923 .847 .572 .820 .868 .744 .541

.5 .999 1.000 .999 .891 .997 .999 .997 .864 .995 .997 .988 .860

.7 1.000 1.000 1.000 .993 1.000 1.000 1.000 .994 1.000 1.000 1.000 .998

100 50 .1 .475 .600 .317 .284 .500 .589 .350 .284 .390 .507 .247 .244

.3 .993 .999 .974 .850 .993 .999 .982 .831 .975 .995 .933 .805

.5 1.000 1.000 1.000 .993 1.000 1.000 1.000 .989 1.000 1.000 1.000 .980

.7 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

200 100 .1 .676 .842 .465 .450 .745 .864 .561 .443 .601 .789 .393 .377

.3 1.000 1.000 .998 .983 1.000 1.000 .999 .981 .999 1.000 .995 .970

.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

.7 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

400 200 .1 .905 .985 .692 .685 .938 .985 .796 .684 .839 .961 .605 .585

.3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .999

.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

.7 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

4. Application

In the following, we apply the rank tests to a data set from the identification
of junior high gifted students (Kuo (1995)). The data shown in Figure 1 are from
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111 7th grade students at Ho-Ping and Min-Sen Junior High Schools in Taipei,
Taiwan in 1992.
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Figure 1. Mathematics scores versus Physics scores.

The paired ranks of Mathematics and Physics aptitude test scores are plotted
against each other. According to Kuo (1995), the identification of the gifted is
based on the results of multiple instruments, and what instruments to use is an
important issue. Are Mathematics and Physics aptitude test scores correlated
in the top ranks? Significant values of Ts and Tt imply that an aptitude test on
one subject (say Mathematics) can be used as a screening instrument at the first
stage, and then only those top-ranked in Mathematics take the Physics aptitude
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test at the next stage. The gifted may be chosen from those top-ranked in both
(or a combination of) Mathematics and Physics tests, when non-significant values
of Ts and Tt imply that both tests are needed for all students.

For p = 0.1, 0.2, 0.3 and 0.5, the values of Ts equal 15,997, 21,915, 21,220
and 22,518, respectively, and all of their P -values are less than 0.001. We can
estimate the P -values by PH0(Z ≥ ts/s.d.), where Z is a N(0, 1) r.v., ts is the
value of Ts and s.d. is the asymptotic standard deviation of Ts (which can be
obtained from Theorem 2). The estimated P -values are .0008, < .0002, .0004 and
< .0002. To have small loss in the P -value and to save computation, we choose
p = 0.2 for Ts. Similarly, for all four values of p, the values of Tt are 6.674, 9.375,
10.488 and 10.016, respectively. The estimated P -values are .012, .006, .005 and
.006 respectively. This suggests the choice of p = 0.2. Both Ts and Tt reject H0

at α = 0.05 in this example. We conclude that the Physics aptitude test can
be skipped by all students except those top-ranked in the Mathematics aptitude
test.

5. Conclusion

The proposed rank tests are good for testing independence against a weighted
contamination alternative. The general form of the LMPR test under the
weighted contaminated alternative is derived. We show that the tests are asymp-
totic LMPR tests with respect to the Logistic and the Extreme Value families,
respectively. The two statistics Ts and Tt generalize, respectively, Spearman’s
Rho and rT in Iman and Conover (1987). Despite the fact that τw is not the
LMPR test for either the Logistic or the Extreme Value family, it performs com-
parably to Ts and Tt in the simulation study. Thus Pitman and/or Bahadur
asymptotic relative efficiencies (Pitman (1949) and Bahadur (1960)) of Ts, τw

and Tt to rT are of interest, but are deferred to a future study. Weighted concor-
dance among b sets of rankings, b > 2, are often encountered in the real world, for
instance when three or more techniques need to be compared in sensitivity anal-
ysis. Besides the top-down concordance measure studied by Iman and Conover
(1987), other adequate measures require investigation. We leave these questions
open.
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Appendix

Proof of Theorem 1.

Recall that under H1, we have

Xi = X∗
i + w(X∗

i )∆Zi, Yi = Y ∗
i + ∆Zi, i = 1, . . . , n,

where X∗
i , Y ∗

i and Zi are mutually independent, the densities of X∗ and Y ∗

are known and denoted by f and g, respectively, and the distribution of Zi is
not specified. Here, we present a brief outline of the proof for the case x =
x∗ + w(x∗)∆z is monotone in x∗ and w is continuously differentiable. Let x∗ =
s(x,∆z) be a solution of x = x∗ + w(x∗)∆z. The Jacobian is

|J | =
∣∣∣∣∂(x∗, y∗, z)

∂(x, y, z)

∣∣∣∣ = (1 + ∆zw′(x∗))−1.

Thus the joint p.d.f. of X and Y and their marginal distributions are given as

h∆(x, y) =
∫

f(s(x,∆z))g(y − ∆z)[1 + ∆zw′(s(x,∆z))]−1dM(z),

f∆(x) =
∫ ∫

h∆(x, y)dydM(z)=
∫

f(s(x,∆z))[1 + ∆zw′(s(x,∆z))]−1dM(z),

g∆(y) =
∫

g(y − ∆z)dM(z).

By symmetrization, we have

1
∆2

[h∆(x, y) − f∆(x)g∆(y)]

=
1

2∆2

{∫ ∫ [
f(s(x,∆z))[1 + ∆zw′(s(x,∆z))]−1 − f(s(x,∆z′))

[1 + ∆z′w′(s(x,∆z′))]−1
]
[g(y − ∆z) − g(y − ∆z′)]dM(z)dM(z′)

}

=
1
2

{∫ ∫
(z − z′)2[1 + ∆zw′(s(x,∆ξ))]−1

[
f ′(s(x,∆ξ))w(s(x,∆ξ)) +

f(s(x,∆ξ))[1 + ∆zw′(s(x,∆ξ))]−1w′(s(x,∆ξ))
]
g′(y − ∆η)dM(z)dM(z′)

}
,

where both ξ and η fall in the interval (z′, z). Thus

lim
∆→0

1
∆2

[h∆(x, y) − f∆(x)g∆(y)] = σ2
z(wf)′(x)g′(y)

at each point (x, y) such that x and y are continuity points of (wf)′(·) and g′(·),
respectively. Similar to page 77 of Hájek and Šidák (1967), we have that

lim
∆ →0

1
∆2

[(n!)2Q∆(Rx = r,Ry = R) − 1]
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= lim
∆ →0

(n!)2
n∑

k=1

∫
· · ·

∫
Rx=r,Ry=R

[
(h∆(xk, yk) − f∆(xk)g∆(yk))/(∆2)

·
n∏

i=k+1

f∆(xi)g∆(xi)
k−1∏
j=1

h∆(xj , yj)
]
dx1 · · · dxndy1 · · · dyn

= σ2
z

n∑
k=1

[
n!

∫
· · ·

∫
Rx=r

(
[w(xk)f(xk)]′/f(xk)

) n∏
i=1

f(xi)dx1 · · · dxn

]

·
[
n!

∫
· · ·

∫
Ry=R

(
g′(yk)/g(yk)

) n∏
i=1

g(yi)dy1 · · · dyn

]

= σ2
z

n∑
k=1

an(rk, w, f)bn(Rk, g) (A.1.1)

DF= σ2
z

n∑
k=1

an(k,w, f)bn(Rk, g),

where DF= denotes equality in distribution. Further, the limit under the integral
sign can be justified by the Dominated Convergence Theorem.

The following is a further justification of (A.1.1).

n!
∫
· · ·

∫
Rx=r

((wf)′/f)(xk)
n∏

i=1

f(xi)dx1 · · · dxn

= n!
∫
· · ·

∫ (
[(wf)′/f ](xk) I[R(xi)=ri,i�=k]I[R(xk)=rk]

) n∏
i=1

f(xi)dx1 · · · dxn

= E

(
[(wf)′/f ](x(rk))

n∑
j=1

I[R(xj)=rk ]

)
= E

(
[(wf)′/f ](x(k))

)
.

Proof of Theorem 2.

Var (Ts) = Var
( n∑

i=1

[wi(i − n + 1
2

)(Ri − n + 1
2

)]
)

H0= E

[ n∑
i=1

wi(i − n + 1
2

)(Ri − n + 1
2

)
]2

=
m∑

i=1

[
(i − n + 1

2
)2

]
Var (R1)

+
[ ∑
1≤i�=j≤m

(i − n + 1
2

)(j − n + 1
2

)
]

Cov (R1, R2) (A.2.1)

Now wi = I[i≤m] and m = [(n + 1)p]. Further, we have

E(R1) = (
n + 1

2
) , Var (R1) = (n2 − 1)/12 ,
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E(R1R2) = [(n + 1)(3n + 2)]/12 and Cov (R1, R2) = −n + 1
12

.

Plugging these into (A.2.1), after some algebra we have

Var (Ts) = [(n + 1)m(3n3 − 9mn2 + 10m2n − 3m3 − n)]/144.

Thus
Var (

√
nTs/[n(n2 − 1)/12]) →p[3(1 − p)3 + p2] as n →∞.

Assuming that I(f) < ∞, I(g) < ∞, and applying Theorem V.1.6a in Hájek and
Šidák (1967) to Ts, we obtain Theorem 2.

Proof of Theorem 3.

With cin = wi(Sn−i+1 − 1) and an(Ri) = Sn−Ri+1 − 1, we can write Tt =∑n
i=1 cinan(Ri). Since under H0, {i} and {Ri} are independent, we may treat

Tt =
∑n

i=1 cinan(Ri) as a linear rank statistic. Although cin here depends on
n and the ci in Theorem V.1.6 of Hájek and Šidák (1967) does not, one can
similarly prove that

Tt/σT → N(0, 1),

where σ2
T = Var (Tt).

Next, we proceed to compute the variance of Tt. Let c = n − m + 1. Under
H0,

Var (Tt) = E(T 2
t ) =

n∑
i=1

w2
i (Sn−i+1 − 1)2E[(SR1 − 1)2]

+
∑
i�=j

wiwj(Sn−i+1 − 1)(Sn−j+1 − 1)E[(SR1 − 1)(SR2 − 1)]

=
n∑

i=c

(Si − 1)2{E(SR1 − 1)2 − E[(SR1 − 1)(SR2 − 1)]}

+[
n∑

i=c

(Si − 1)]2 E[(SR1 − 1)(SR2 − 1)].

By straightforward calculation,

n∑
i=c

(Si − 1)2 =
( n∑

i=c

S2
i − 2

n∑
i=c

Si + (n − c + 1)
)

.

Note that

Si ∼ ln(n/i),
n∑

i=1

Si = n,
n∑

i=1

S2
i = 2n − S1, (A.3.1)
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E[(SR1 − 1)2] =
1
n

n∑
i=1

S2
i − 1 = 1 − S1/n,

and

E[(SR1−1)(SR2−1)]=
{

[
n∑

i=1

(Si−1)]2−
n∑

i=1

(Si−1)2
}

/(n(n−1))=−(n−S1)/(n2−n).

(A.3.2)
By Si ∼ ln(n/i), rectangular approximation and letting n tend to infinity, we
have

(1/n)
n∑

i=c

Si →−
∫ 1

1−p
ln y dy = p + (1 − p) ln(1 − p), (A.3.3)

and

(1/n)
n∑

i=c

S2
i →− (1 − p)(ln(1 − p))2 − 2

∫ 1

1−p
ln y dy. (A.3.4)

As n →∞, m/n →p. This together with (A.3.1), (A.3.3) and (A.3.4) yield

(1/n)
n∑

i=c

(Si−1)2
(

E[(SR1 −1)2]−E[(SR1 −1)(SR2 −1)]
)
→p−(1−p)ln2(1−p).

(A.3.5)
Further, by (A.3.3) and (A.3.4), we have

An ≡
[ n∑

i=c

(Si − 1)/n
]2

→(1 − p)2ln2(1 − p), (A.3.6)

as n →∞. Plugging (A.3.5), (A.3.2) and (A.3.6) into Var (Tt), we have Var (Tt)/
n → p − (1 − p)(2 − p)ln2(1 − p) as n →∞. Hence Theorem 3 follows.
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