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This document supplements the paper entitled “Trade-off between validity and efficiency of merging p-

values under arbitrary dependence”. Section S1 contains simulation studies and a real data example. The

numerical results show the advantages of the Simes, the averaging and the Cauchy combination methods

against dependence uncertainty of p-values. Section S2 presents additional remarks. Section S3 includes

the proofs of all the theorems and propositions in the paper. Section S4 contains additional tables for the

price for validity.

S1 Simulations and a real data example

S1.1 Simulation studies

We conduct K one-sided z-tests of the null hypothesis: µi = 0 against the alter-

native hypothesis µi > 0, i = 1, . . . , K, using the test statistic Xi and the p-value pi

from the ith test, i = 1, . . . , K. The tests are formulated as the following:

pi = Φ(Xi), Xi = ρZ +
√

1− ρ2Zi − µi, i = 1, . . . , K.



2 Yuyu Chen, Peng Liu, Ken Seng Tan and Ruodu Wang

where Φ is the standard normal distribution function, Z,Z1, . . . , ZK are iid standard

normal random variables, µi ≥ 0, i = 1, . . . , K, and ρ is a parameter in [0, 1]. Note

that for ρ = 0, the p-variables are independent, and ρ = 1 corresponds to the case

where p-variables are comonotonic.

Let K ∈ {50, 200} and set the significance level ε = 0.01. To see how different

dependence structures and signals affect the size and the power for various methods

using both VAD and VSD thresholds, the rejection probabilities (RPs) are computed

over ρ ∈ [0, 1] under the following four cases:

(i) (no signal) 100% of µi’s are 0;

(ii) (needle in a haystack) 98% of µi’s are 0 and 2% of µi’s are 4;

(iii) (sparse signal) 90% of µi’s are 0 and 10% of µi’s are 3;

(iv) (dense signal) 100% of µi’s are 2.

The RP corresponds to the size under case (i), and it corresponds to the power

under (ii), (iii) and (iv). The RP is computed as the ratio between the number of

the combined values which are less than the critical threshold and the number of

simulations for some ρ ∈ [0, 1], that is,

RP =

∑N
i=1 1{Fi<g(ε)}

N
,

where N is the number of simulations and is equal to 15000 in our study, Fi is the

realized value of the combining function for the i-th simulation, i = 1, . . . , N , and

g(ε) is the corresponding critical value. For ρ ∈ [0, 1], graphs of RPs for different
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combining methods are drawn using VAD thresholds and VSD thresholds. Some

observations from Figures 1-4 are made below, and those on the averaging methods

using Mr,K are consistent with the observations in Vovk and Wang (2020a).

1. All VAD methods give sizes less than ε = 0.01 as expected. Using VAD thresh-

olds, the Bonferroni, the harmonic averaging, the Cauchy combination and the

Simes methods have good powers.

2. The Simes method using thresholds bF or cF reports the right size for all values of

ρ. Sarkar (1998) showed the validity of the Simes method in the so-called MTP2

class including multivariate normal distributions with nonnegative correlations

(the setting of our simulation).

3. Using thresholds bF or cF , the harmonic averaging and Cauchy combination

methods perform similarly with sizes possibly larger than 0.01 (see Theorems 2

and 3).

4. The geometric averaging method using bF and the Bonferroni and negative-

quartic methods using cF do not yield correct sizes under model misspecification,

and the sizes increase rapidly as the misspecification gets bigger.

5. Using bF or cF , the harmonic averaging, the Cauchy combination and the Simes

methods have good performances on capturing the signals.
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Figure 1: Case (i): size (top: K = 50, bottom: K = 200)
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Figure 2: Case (ii): needle in a haystack (top: K = 50, bottom: K = 200)
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Figure 3: Case (iii): sparse signal (top: K = 50, bottom: K = 200)
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Figure 4: Case (iv): dense signal (top: K = 50, bottom: K = 200)
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S1.2 Real data analysis

We apply several merging methods to a genomewide study to compare their

performances. We use the dataset of p-values of Storey and Tibshirani (2003) which

contains 3170 p-values computed based on the data from Hedenfalk et al. (2001)

for testing whether genes are differentially expressed between BRCA1- and BRCA2-

mutation-positive tumors. As mentioned in Section 2, g−1 ◦ F (P1, . . . , PK) is a p-

variable if the threshold g is strictly increasing, and it is the quantity we choose to

compare combined p-values for different methods.

For each method, we calculate the combined p-value, and remove the smallest

p-value from the dataset. Repeat this procedure until the resulting combined p-

value loses significance. Using the Bonferroni combining function, this leads to the

Bonferroni-Holm (BH) procedure (Holm (1979)); thus we mimic the BH procedure for

other methods in a naive manner. The rough interpretation is to report the number

of significant discoveries (this procedure generally does not control the family-wise

error rate (FWER); to control FWER one needs to use a generalized BH procedure

as in Vovk and Wang (2020a) or Goeman et al. (2019). This procedure can be seen as

a lower confidence bound from a closed testing perspective). For a visual comparison

of detection power, the combined p-values against the numbers of removed p-values

are plotted in Figure 5, where we use both the VAD and the VI thresholds (comono-

tonicity is obviously unrealistic here). In the third panel of Figure 5, we present the
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number of omitted p-values in log-scale for better visualization.
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Figure 5: Combined p-value after removing n smallest p-values

All VAD methods lose significance at ε = 0.05 after omitting the first or the sec-

ond smallest p-value (the smallest p-value is 0 and the second smallest is 1.26×10−5).

Using thresholds bF for independence, the Bonferroni and the negative quartic meth-

ods behave similarly to their VAD versions (as their price for validity is close to 1).

In contrast, the Simes, the Cauchy combination and the harmonic averaging methods

lose significance at ε = 0.05 after removing around 20, 70 and 110 p-values respec-

tively. The geometric averaging method (Fisher’s) exceeds 0.05 only after removing

around 400 p-values. However, this method relies heavily on the independence as-

sumption, which is impossible to verify from just one set of p-values.
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S2 Additional remarks

Remark 1 (Section 4). The property of IC-balance should be seen as a necessary but

not sufficient condition for a merging method to be insensitive to dependence between

independence and comonotonicity. As shown by Sarkar (1998), the Simes method is

valid for positive regression dependence, which is a large spectrum of dependence

structures connecting independence and comonotonicity (larger than (4.1)); on the

other hand, the Cauchy combination method using VI threshold is valid under a

bivariate Gaussian assumption asymptotically but not precisely (Liu and Xie (2020));

see Theorem 2 below and the simulation studies in Section S1 of the supplementary

material. Instead of arguing for the practical usefulness of IC-balance, we emphasize

it as a necessary condition for insensitivity to dependence. The main aim of Theorem

1 is, via this necessary condition, to pin down the unique role of the Simes and

the Cauchy combination methods among their respective generalized classes, thus

justifying their advantages with respect to dependence.

Remark 2 (Section 5). We note that the equivalence

P (MC,K(U1, . . . , UK) < ε) ∼ P (M−1,K(U1, . . . , UK) < ε)

in (5.1) does not always hold under arbitrary dependence structures. Since the

Cauchy distribution is symmetric, it is possible that P(C−1(U1)+· · ·+C−1(UK) = 0) =

1 for some U1, . . . , UK ∈ U , implying P(MC,K(U1, . . . , UK) < 1/2) = 0. Indeed, Theo-
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rem 4.2 of Puccetti et al. (2019) implies that there exist K standard Cauchy random

variables whose sum is a constant c, for each c ∈ [−K log(K−1)/π,K log(K−1)/π].

On the other hand, P(M−1,K(U1, . . . , UK) < ε) > 0 for all ε > 0 and all U1, . . . , UK ∈

U . Thus, P (MC,K(U1, . . . , UK) < ε) ∼ P (M−1,K(U1, . . . , UK) < ε) does not hold.

Remark 3 (Section 5). The equivalence in Theorem 2 (ii) relies on the p-variables

being uniform on [0, 1]. For p-variables that are stochastically larger than uniform,

the behaviour of the Cauchy combination method and that of the harmonic averaging

method may diverge; nevertheless, by Theorem 2 (i), for a realized vector of p-values

with at least one very small component, the two methods would produce similar

values.

S3 Proofs of theorems and propositions

S3.1 Proof of Proposition 1

By definition, we have

aF (ε) = inf{qε(F (U1, . . . , UK)) | U1, . . . , UK ∈ U}, ε ∈ (0, 1).

We shall show

aF (ε) = inf{q1(F (V1, . . . , VK)) | V1, . . . , VK ∈ Uε}, ε ∈ (0, 1), (S3.1)

where Uε denotes the collection of all uniform random variables distributed on [0, ε].

Denote by S = F (U1, . . . , UK) and G−1
S (t) = qt(S), t ∈ (0, 1]. We can find US ∈ U
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such that G−1
S (US) = S a.s. (e.g., Lemma A.32 of Föllmer and Schied (2016)). Let

fi(t) = P (Ui ≤ t|US < ε) , t ∈ [0, 1]. Then fi(Ui) conditionally on US < ε is a

uniform random variable on [0, 1] and V ε
i := εfi(Ui) conditionally on US < ε is a

uniform random variable on [0, ε]. We construct the following two random variables:

S1 = S1{US<ε} + d1{US≥ε}, S2 = F (V ε
1 , . . . , V

ε
n )1{US<ε} + d1{US≥ε}, (S3.2)

where d > F (ε, . . . , ε). Noting the fact that εfi(t) = P(Ui ≤ t, US < ε) ≤ t, t ∈ [0, 1]

and F is increasing, we have S1 ≥ S2. Hence qε(S1) ≥ qε(S2). Moreover, direct

calculation shows qε(S) = qε(S1). Thus qε(S) ≥ qε(S2). Let V̂1, . . . , V̂n be uniform

random variables on [0, ε] such that (V̂1, . . . , V̂n) has the joint distribution identical

to the conditional distribution of (V ε
1 , . . . , V

ε
n ) on US < ε. Hence, for x < d,

P(S2 ≤ x) = P(F (V ε
1 , . . . , V

ε
n ) ≤ x, US < ε)

= εP(F (V ε
1 , . . . , V

ε
n ) ≤ x|US < ε)

= εP(F (V̂1, . . . , V̂n) ≤ x).

This implies qε(S2) = q1(F (V̂1, . . . , V̂n)). Thus we have

aF (ε) ≥ inf{q1(F (V1, . . . , VK)) | V1, . . . , VK ∈ Uε}.

We next show “≤” in (S3.1). Take V1, . . . , Vn ∈ Uε and U ∈ U such that U is indepen-

dent of V1, . . . , Vn. Let Ûi = Vi1{U<ε}+U1{U≥ε}, i = 1, 2, . . . , n. It is clear that Ûi ∈

U , i = 1, 2, . . . , n and F (Û1, . . . , Ûn) = F (V1, . . . , Vn)1{U<ε} + F (U, . . . , U)1{U≥ε}.
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Noting that F is increasing, we have q1(F (V1, . . . , Vn)) = qε(F (Û1, . . . , Ûn)). This

implies

aF (ε) ≤ inf{q1(F (V1, . . . , VK)) | V1, . . . , VK ∈ Uε}.

Therefore, (S3.1) holds. By (S3.1) and the homogeneity of F we have that for ε ∈

(0, 1),

aF (ε) = inf{q1(F (V1, . . . , VK)) | V1, . . . , VK ∈ Uε}

= inf{q1(F (εU1, . . . , εUK)) | U1, . . . , UK ∈ U}

= ε inf{q1(F (U1, . . . , UK)) | U1, . . . , UK ∈ U}.

This completes the proof.

S3.2 Proof of Proposition 2

It is well known that the Bonferroni correction yields aF (ε) = ε/K. Also, since

the average of identical objects is itself, cF (ε) = ε for any averaging method, including

the Bonferroni method. For iid standard uniform random variables V1, . . . , VK , we

have P(min{V1, . . . , VK} ≤ x) = 1− (1− x)K . Therefore, bF (ε) = 1− (1− ε)1/K for

ε ∈ (0, 1).
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S3.3 Proof of Proposition 3

(a) Suppose r < 0. We first fix K and find the asymptotic of br as ε ↓ 0 satisfying

P

(
K∑
i=1

P r
i ≥ K (br(ε))

r

)
= ε.

Observe that the random variables P r
i , i = 1, . . . , K, follow a common Pareto

distribution with cdf P(P r
i ≤ x) = 1− x1/r, x ∈ (1,∞), i = 1, . . . , K. Note that

the tail probability of the sum of iid Pareto random variables is asymptotically the

same as that of the maximum of the iid Pareto random variables (e.g., Embrechts

et al. (2013), Corollary 1.3.2). Hence

lim
ε↓0

P
(∑K

i=1 P
r
i ≥ K (br(ε))

r
)

P (max{P r
1 , . . . , P

r
K} > K (br(ε))

r)
= lim

ε↓0

ε

1−
(

1−K 1
r br(ε)

)K = 1.

This implies

br(ε) ∼
1− (1− ε) 1

K

K
1
r

∼ K−1−1/rε, as ε ↓ 0.

The case K → ∞ follows directly from the generalized central limit theorem

(e.g., Theorem 1.8.1 of Samorodnitsky (2017)).

(b) If r = 0, in a similar way, we first have,

P

(
2

K∑
i=1

log
1

Pi
≥ 2K log

1

br(ε)

)
= ε.

The random variable log 1
Pi

, i = 1, . . . , K, follows exponential distribution with

parameter 1. Thus 2
∑K

i=1 log 1
Pi

follows a chi-square distribution with parameter
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2K. We denote qα(χ2
ν) the α-quantile of the chi-square distribution with ν degrees

of freedom. Hence

br(ε) = exp

(
− 1

2K
q1−ε

(
χ2

2K

))
.

(c) If r > 0, using the result of Wang (2005), we have for 0 ≤ x ≤ K−r,

P (Mr,K(U1, . . . , UK) ≤ x) = P

(
K∑
i=1

U r
i ≤ Kxr

)

= λ

{
(x1, . . . , xK) :

K∑
i=1

xri ≤ Kxr, x1, . . . , xK ≥ 0

}

=
(Γ(1 + 1/p))K

Γ(1 +K/p)
KK/rxK ,

where λ is the Lebesgue measure. This implies that if ε ≤ (Γ(1+1/p))K

Γ(1+K/p)
,

br(ε) =
(Γ(1 +K/p))1/Kε1/K

K1/rΓ(1 + 1/p)
. (S3.3)

The asymptotic behaviour of br(ε) for fixed ε ∈ (0, 1) as K →∞ can be obtained

by the Central Limit Theorem. Note that the random variables P r
i , i = 1, . . . , K,

follow a common Beta distribution with mean and variance given by, respectively,

µ = (r + 1)−1, and σ2 = r2(1 + 2r)−1(1 + r)−2.

The Central Limit Theorem gives (
∑K

i=1 P
r
i −Kµ)/

√
Kσ

d→ N(0, 1). Hence

br(ε) ∼
(

σ√
K

Φ−1(ε) + µ

) 1
r

, as K →∞,

where Φ−1 is the inverse of the standard normal distribution function.
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S3.4 Proof of Proposition 4

By symmetry of the standard Cauchy distribution,

aF (ε) = C

(
inf

{
qε

(
1

K

K∑
i=1

C−1(Ui)

)
| U1, . . . , UK ∈ U

})

= C

(
−1

K
sup

{
q1−ε

(
K∑
i=1

C−1(Ui)

)
| U1, . . . , UK ∈ U

})
.

Moreover, C−1(Ui), i = 1, . . . , K, follow the standard Cauchy distribution with de-

creasing density on [C−1(1− ε),∞] for ε ∈ (0, 1/2). The proposition follows directly

from applying Corollary 3.7 of Wang et al. (2013).

S3.5 Proof of Theorem 1

(i) IC-balance of Mφ,K for all K ∈ {2, 3, . . . } is equivalent to 1
K

∑K
i=1 φ(Vi)

d
= φ(U)

for all K ∈ {2, 3, . . . }, which is further equivalent to the fact that φ(U) follows

a strictly 1-stable distribution. We know that strictly 1-stable distributions are

Cauchy distributions (see, e.g., Theorem 14.15 of Sato (1999)). This proves the

statement of part (i).

(ii) For the Simes function Sα,K = SK , αi = i for i ∈ {1, . . . , K} and bF (x) =

cF (x) = x for x ∈ [0, 1]. Therefore, Sα,K is IC-balanced.

Below we show the opposite direction of the statement. For n ∈ {2, . . . , K}, let

V(1), . . . , V(n) be the order statistics for n independent standard uniform random

variables V1, . . . , Vn. Let (X1, . . . , Xn−1) = (V(1)/V(n), . . . , V(n−1)/V(n)) which is
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identically distributed as the order statistics for n − 1 independent standard

uniform random variables, independent of V(n). Hence, for x ∈ (0, 1/αn),

P (Sα,n(V1, . . . , Vn) > x)

= P
(
V(1) > xα1, . . . , V(n−1) > xαn−1, V(n) > xαn

)
= P

(
X1 > xα1/V(n), . . . , Xn−1 > xαn−1/V(n), V(n) > xα1

)
=

∫ 1

xαn

P (X1 > xα1/p, . . . , Xn−1 > xαn−1/p)np
n−1 dp

=

∫ 1

xαn

P (Sα,n−1(V1, . . . , Vn−1) > x/p)npn−1 dp, (S3.4)

where for simplicity we use Sα,n−1 for S(α1,...,αn−1),n−1. Note that

P (Sα,1(V1) > x) = 1− α1x, x ∈ (0, 1/α1). (S3.5)

Plugging (S3.5) in (S3.4), we obtain that P (Sα,2(V1, V2) > x) is a polynomial

function of x of degree less than or equal to 2. Recursively, using (S3.4) we are

able to show that the function P (Sα,n(V1, . . . , Vn) > x) for x ∈ (0, 1/αn) is a

polynomial of x of degree less than or equal to n for n = 2, . . . , K. Hence, there

exist K constants β0, . . . , βK−1 such that

P (Sα,K−1(V1, . . . , VK−1) > x) =
K−1∑
i=0

βix
i, x ∈ (0, 1/αK−1).

Moreover, noting that Sα,K is IC-balanced, we have

∫ 1

xαK

P (Sα,K−1(V1, . . . , VK−1) > x/p)KpK−1 dp = P (Sα,K(U, . . . , U) > x) = 1−xαK ,
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for x ∈ (0, 1/αK). Therefore, we have∫ 1

xαK

(
K−1∑
i=0

βix
ip−i

)
KpK−1 dp = 1− xαK ,

which implies that for x ∈ (0, 1/αK),

K−1∑
i=0

Kβi
K − i

xi −

(
K−1∑
i=0

Kβi
K − i

αK−iK

)
xK = 1− xαK .

Solving the above equation, we get β0 = 1, β1 = −K−1
K
αK and β2 = · · · =

βK−1 = 0. Consequently,

P (Sα,K−1(V1, . . . , VK−1) > x) = 1− K − 1

K
αKx, x ∈ (0, 1/αK−1).

Recursively, using (S3.4) we have

P (Sα,n(V1, . . . , Vn) > x) = 1− n

K
αKx, x ∈ (0, 1/αn) (S3.6)

for n = 1, . . . , K, which gives, using (S3.5),

αK = Kα1. (S3.7)

Inserting (S3.6) into (S3.4), we obtain, for x ∈ (0, 1/αn) and n = 2, . . . , K,

1− n

K
αKx =

∫ 1

xαn

(
1− n− 1

K
αKxp

−1

)
npn−1 dp

= 1− n

K
αKx+

( n
K
αKα

n−1
n − αnn

)
xn.

Consequently,

αn =
n

K
αK , n = 2, . . . , K,
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which together with (S3.7) implies αn = nα1, k = 1, . . . , K. This gives the

desired statement.

In the following example, we shall employ several theorems from Sato (1999). To

make our paper more self-contained, we display the useful part of these theorems as

below.

Theorem 8.1 in Sato (1999): µ is an infinitely divisible distribution in R if and

only if there exist d ≥ 0, γ ∈ R and a measure ν on R satisfying ν({0}) = 0 and∫
R(|x|2 ∧ 1)ν( dx) <∞, such that the characteristic function of µ is

µ̂(z) = exp

(
−1

2
dz2 + iγz +

∫
R
(eizx − 1− izx1[−1,1](x))ν( dx)

)
, z ∈ R, (S3.8)

where 1[−1,1](·) is the indicator function and i2 = −1.

Theorem 27.16 in Sato (1999): Suppose µ satisfies (S3.8). If d = 0 and ν is

discrete with total measure infinite, then µ is a continuous distribution.

Example 1 (IC-balanced generalized mean for a finite K). We show that IC-balance

of Mφ,K for a finite K does not imply Mφ,K that φ is the Cauchy quantile function

(up to an affine transform). For this purpose, we construct a continuous distribution

µ such that

1

K

K∑
i=1

Xi
d
= X, (S3.9)

where X and Xi, i = 1, . . . , K are iid random variables with distribution µ, but µ is
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not a Cauchy distribution. Define

µ̂(z) = exp

(∫
R

(
eizx − 1− 1[−1,1](x)

)
ν( dx)

)
, z ∈ R,

where ν is a symmetric measure on R \ {0} satisfying

ν({Kn}) = ν({−Kn}) = K−n, n ∈ Z, and ν

(
R \

(
{0} ∪

⋃
n∈Z

{Kn,−Kn}

))
= 0.

It follows from Theorem 8.1 of Sato (1999) that µ̂ is the characterization function of

some infinitely divisible distribution µ. Also noting that ν(R\{0}) =∞, by Theorem

27.16 of Sato (1999) we know that µ is a continuous distribution. By Theorem 14.7

of Sato (1999), (µ̂(z))b = µ̂(bz), z ∈ R, b > 0 holds if and only if

Tbν(B) = bν(B), and

∫
1<|x|≤b

xν( dx) = 0,

where Tbν(B) = ν(b−1B) for all Borel setsB ⊂ R. By symmetry of ν,
∫

1<|x|≤b xν( dx) =

0 holds for any b > 0. However, Tbν(B) = bν(B) holds only for b ∈ {Kn, n ∈ Z}.

Consequently, (µ̂(z))b = µ̂(bz), z ∈ R if and only if b ∈ {Kn, n ∈ Z}. This implies

that µ is not a Cauchy distribution (strictly 1-stable distribution) but (S3.9) holds.

S3.6 Proof of Theorem 2

(i) Recall that

C−1(x) = tan
(
−π

2
+ πx

)
, x ∈ (0, 1);

C(y) =
1

π
arctan(y) +

1

2
, y ∈ R.
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Note that C−1(x) ∼ −1/(πx) as x ↓ 0 and C(y) ∼ −1/(πy) as y → −∞. For any

δ1, δ2 ∈ (0, 1/K), there exists 0 < ε < 1 and m < 0 such that for all x ∈ (0, ε)

and y ∈ (−∞,m),

−(1 + δ1)

πx
≤ C−1(x) ≤ −(1− δ1)

πx
; (S3.10)

−(1− δ2)

πy
≤ C(y) ≤ −(1 + δ2)

πy
. (S3.11)

For 0 < c < 1, there exists 0 < ε′ < ε such that

sup
x∈[ε,c]

∣∣∣∣tan
(
−π

2
+ πx

)
+

1

πx

∣∣∣∣ ≤ δ1

πε′
. (S3.12)

Take (p1, . . . , pK) such that p(1) < ε′ and p(K) ≤ c < 1. Let l = max{i =

1, . . . , K : p(i) < ε}. As a consequence of (S3.10), we have

−
l∑

i=1

(1 + δ1)

πp(i)

≤
l∑

i=1

tan
(
−π

2
+ πp(i)

)
≤ −

l∑
i=1

(1− δ1)

πp(i)

.

For j > l, (S3.12) implies∣∣∣∣tan
(
−π

2
+ πp(j)

)
+

1

πp(j)

∣∣∣∣ ≤ δ1

πε′
≤ δ1

πp(1)

.

Therefore,

K∑
i=1

tan
(
−π

2
+ πpi

)
≤ −

l∑
i=1

(1− δ1)

πp(i)

−
K∑

i=l+1

1

πp(i)

+
(K − l)δ1

πp(1)

≤ −
K∑
i=1

(1−Kδ1)

πp(i)

= −
K∑
i=1

(1−Kδ1)

πpi
.



20 Yuyu Chen, Peng Liu, Ken Seng Tan and Ruodu Wang

Similarly, we can show

K∑
i=1

tan
(
−π

2
+ πpi

)
≥

K∑
i=1

−(1 +Kδ1)

πpi
.

Using (S3.11), for any (p1, . . . , pK) satisfying p(1) < min(ε′, Kδ1−1
Kπm

) and p(K) ≤

c < 1,

1− δ2

1 +Kδ1

M−1,K(p1, . . . , pK) ≤MC,K(p1, . . . , pK) ≤ 1 + δ2

1−Kδ1

M−1,K(p1, . . . , pK).

We establish the claim by letting δ1, δ2 ↓ 0, and the above inequalities hold as

long as p(1) is sufficiently small.

(ii) The statement

P (MC,K(U1, . . . , UK) < ε) ∼ ε as ε ↓ 0

follows directly from Theorem 1 of Liu and Xie (2020) by noting that standard

Cauchy distribution is symmetric at 0. Below we show P (M−1,K(U1, . . . , UK) < ε) ∼

ε as ε ↓ 0, based on similar techniques as in Theorem 1 of Liu and Xie (2020).

Observe that

P (M−1,K(U1, . . . , UK) < ε) = P

(
1

K

K∑
i=1

U−1
i > 1/ε

)
.

Condition (G) means that for any 1 ≤ i < j ≤ K, (Φ−1(Ui),Φ
−1(Uj)) is a

bivariate normal random variable with cov(Φ−1(Ui),Φ
−1(Uj)) = σij, where Φ

is the standard normal distribution function and Φ−1 is its inverse. Clearly,

σij = 1 implies that Ui = Uj a.s. In this case we can combine them in one
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and the corresponding coefficient becomes 2/K. Thus, it suffices to prove the

stronger statement

P

(
K∑
i=1

wiU
−1
i > 1/ε

)
∼ ε, as ε ↓ 0, (S3.13)

where wi > 0, i = 1, . . . , K,
∑K

i=1wi = 1 and σij < 1, i, j = 1, . . . , K. We

choose some positive constant δε depending on ε, such that δε → 0 and δε/ε→

∞ as ε ↓ 0. Denote by S =
∑K

i=1 wiU
−1
i , and define the following events: for

i ∈ {1, . . . , K},

Ai,ε =

{
U−1
i >

1 + δε
wiε

}
, Bi,ε =

{
U−1
i ≤

1 + δε
wiε

, S > 1/ε

}
.

Let Aε =
⋃K
i=1Ai,ε and Bε =

⋂K
i=1Bi,ε and thus we have

P (S > 1/ε) = P(Aε) + P(Bε).

First we show P(Bε) = o(ε). Note that S > 1/ε implies that there exists

i ∈ {1, . . . , K} such that U−1
i > 1

wiKε
. Hence,

P (Bε) ≤
K∑
i=1

P
(

1

wiKε
< U−1

i ≤
1 + δε
wiε

, S > 1/ε

)

≤
K∑
i=1

P
(

1

wiKε
< U−1

i ≤
1− δε
wiε

, S > 1/ε

)
+

K∑
i=1

P
(

1− δε
wiε

< U−1
i ≤

1 + δε
wiε

)

≤
K∑
i=1

P
(

1

wiKε
< U−1

i ≤
1− δε
wiε

, S > 1/ε

)
+

K∑
i=1

wiε

(
1

1− δε
− 1

1 + δε

)
=: I1 + I2.
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Noting that δε ↓ 0 as ε ↓ 0, we have I2 = o(ε). We next focus on I1. Observe

I1 ≤
K∑
i=1

P

(
1

wiKε
< U−1

i ≤
1− δε
wiε

,

K∑
j 6=i

wjU
−1
j > δε/ε

)

≤
K∑
i=1

K∑
j 6=i

P
(

1

wiKε
< U−1

i ≤
1− δε
wiε

, U−1
j >

δε
wjKε

)
.

It remains to show for 1 ≤ i 6= j ≤ K,

Ii,j := P
(

1

wiKε
< U−1

i ≤
1− δε
wiε

, U−1
j >

δε
wjKε

)
= o(ε).

Condition (G) implies that there exist Zi,j and δi,j such that

Φ−1(Uj) = σijΦ
−1(Ui) + δijZij, (S3.14)

where Zij is a standard normal random variable that is independent of Ui and

σ2
ij + δ2

ij = 1. If σij = −1, we have Ui = 1 − Uj. This implies that Ii,j = 0 for

ε > 0 sufficiently small. Next, assume |σij| < 1, and write γij = Φ−1 (wiKε) if

−1 < σij ≤ 0 and γij = Φ−1
(
wiε

1−δε

)
if 0 < σij < 1. We have

Ii,j = P
(

1

wiKε
< U−1

i ≤
1− δε
wiε

, σijΦ
−1(Ui) + δijZij < Φ−1

(
wjKε

δε

))
≤ P

(
1

wiKε
< U−1

i ≤
1− δε
wiε

, δijZij < Φ−1

(
wjKε

δε

)
− σijγij

)
= P

(
1

wiKε
< U−1

i ≤
1− δε
wiε

)
P
(
δijZij < Φ−1

(
wjKε

δε

)
− σijγij

)
.

Note that Φ−1(ε) ∼ −
√
−2 ln ε, as ε ↓ 0, which is a slowly varying function.

Taking δε = −1/ log ε, we have

Φ−1

(
wiε

1− δε

)
∼ Φ−1 (wiKε) ∼ Φ−1

(
wjKε

δε

)
as ε ↓ 0.
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This implies

Φ−1

(
wjKε

δε

)
− σijγij → −∞, as ε ↓ 0.

Hence Ii,j = o(ε). Consequently, I1 = o(ε) and further P(Bε) = o(ε). Next, we

show P(Aε) ∼ ε. By the Bonferroni inequality, we have,

K∑
i=1

P(Ai,ε)−
∑

1≤i<j≤K

P(Ai,ε ∩ Aj,ε) ≤ P(Aε) ≤
K∑
i=1

P(Ai,ε).

Direct calculation gives

K∑
i=1

P(Ai,ε) =
K∑
k=1

wiε

1 + δε
∼ ε.

For any 1 ≤ i < j ≤ K, since the Gaussian copula is tail independent (e.g., Ex-

ample 7.38 of McNeil et al. (2015)), we have, writing w = max{wi, wj},

P(Ai,ε ∩ Aj,ε) = P
(
U−1
i >

1 + δε
wiε

, U−1
j >

1 + δε
wjε

)
≤ P

(
Ui <

wε

1 + δε
, Uj <

wε

1 + δε

)
= o(1)P

(
U1 <

wε

1 + δε

)
= o(1)ε.

Hence P(Ai,ε ∩ Aj,ε) = o(ε). This implies P(Aε) ∼ ε, and we establish (S3.13).

(iii) By Lemma A.1 of Vovk and Wang (2020a), we have

aH(ε) = ε

(
sup

{
q+

0

(
1

K

K∑
i=1

P−1
i

)
| P1, . . . , PK ∈ U

})−1

, ε ∈ (0, 1),

where q+
0 (X) = sup{x ∈ R | P(X ≤ x) = 0}. Note that for any δ > 0, there

exists 0 < εδ < 1 such that for all x ∈ (0, εδ)

−(1 + δ)

x
< tan

(
−π

2
+ x
)
< −(1− δ)

x
.
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For δ > 0, letting 0 < ε < εδ/π and using Theorem 4.6 in Bernard et al. (2014),

we have

inf

{
qε

(
1

K

K∑
i=1

C−1(Pi)

)
| P1, . . . , PK ∈ U

}

= inf

{
qε

(
1

K

K∑
i=1

tan

(
π

(
Pi −

1

2

)))
| P1, . . . , PK ∈ U

}

= inf

{
q1

(
1

K

K∑
i=1

tan

(
π

(
εPi −

1

2

)))
| P1, . . . , PK ∈ U

}

≤ inf

{
q1

(
1

K

K∑
i=1

−1− δ
επPi

)
| P1, . . . , PK ∈ U

}

= −1− δ
επ

sup

{
q+

0

(
1

K

K∑
i=1

P−1
i

)
| P1, . . . , PK ∈ U

}
= − 1− δ

aH(ε)π
.

Similarly, we obtain, for 0 < ε < εδ/π,

inf

{
qε

(
1

K

K∑
i=1

C−1(Pi)

)}
≥ − 1 + δ

aH(ε)π
.

Consequently,

inf

{
qε

(
1

K

K∑
i=1

C−1(Pi)

)}
∼ − 1

aH(ε)π
as ε ↓ 0.

Plugging the above result in the formula for aC in (3.6), and using C(y) ∼

−1/(πy) as y → −∞, we have, as ε ↓ 0,

aC(ε) = C

(
inf

{
qε

(
1

K

K∑
i=1

C−1(Pi)

)})

∼ − 1

π

(
inf

{
qε

(
1

K

K∑
i=1

C−1(Pi)

)})−1

∼ aH(ε).

This completes the proof.
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(iv) By (i), it suffices to show that for r 6= −1

M−1,K(p1, . . . , pK)

Mr,K(p1, . . . , pK)
9 1, as max

i∈{1,...,K}
pi ↓ 0.

Take p1 = p2 and pi = xip with xi > 0 and p > 0 for i = 2, . . . , K. By

homogeneity of Mr, for r ≤ −1,

M−1,K(p1, . . . , pK)

Mr,K(p1, . . . , pK)
=
M−1,K(p, x2, . . . , xK)

Mr,K(p, x2, . . . , xK)
.

Hence

lim
p↓0

M−1,K(p1, . . . , pK)

Mr,K(p1, . . . , pK)
= K1/r+1 6= 1, r < −1.

This proves the claim of (iv) for r < −1. The case for r > −1 can be argued

similarly.

S3.7 Proof of Theorem 3

Take arbitrary p1, . . . , pK ∈ (0, 1], and let j ∈ {1, . . . , K} be such that mink∈{1,...,K} p(k)/k =

p(j)/j. Noting that

K∑
i=1

1

pi
=

K∑
i=1

1

p(i)

, and
p(j)

j
≤
p(i)

i
, i = 1, . . . , K,

we have

SK(p1, . . . , pK)

M−1,K(p1, . . . , pK)
=

1

j
p(j)

(
K∑
i=1

1

pi

)
=

K∑
i=1

1

j
p(j)

1

p(i)

≤
K∑
i=1

1

i
p(i)

1

p(i)

=
K∑
i=1

1

i
= `K .

Moreover,

SK(p1, . . . , pK)

M−1,K(p1, . . . , pK)
=

1

j
p(j)

(
K∑
i=1

1

p(i)

)
≥ 1

j
p(j)

(
j∑
i=1

1

p(j)

+
K∑

i=j+1

1

p(i)

)
≥ 1.
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Therefore, M−1,K ≤ SK ≤ `KM−1,K . The two special cases of equalities are straight-

forward to check.

S3.8 Proof of Proposition 5

(i) Recall that aF (x) = aFx for x ∈ (0, 1). By (i) of Proposition 3, we have

bF (δ) ∼ δ as δ ↓ 0. Hence limδ↓0 bF (δ)/aF (δ) = 1/aF . By Proposition 6 of Vovk

and Wang (2020a), we have aF ∼ 1/logK, as K →∞. Consequently,

lim
δ↓0

bF (δ)

aF (δ)
∼ logK, as K →∞.

Moreover, for the harmonic averaging method, cF (ε) = ε. This implies cF (ε)/aF (ε) =

1/aF . We establish the claim by the fact aF ∼ 1/ logK, as K →∞.

(ii) By Theorem 2, we have aC(δ) ∼ aH(δ) and bC(δ) ∼ bH(δ) as δ ↓ 0, which

together with (i) leads to

lim
δ↓0

bC(δ)

aC(δ)
∼ logK, as K →∞.

The rest of the statement follows by noting that cC(δ) = bC(δ).

(iii) For the Simes method, recall that aF (x) = x/`K and bF (x) = cF (x) = x. The

claim follows directly from the fact that `K =
∑K

k=1
1
k
∼ logK, as K →∞.

S4 Additional tables

In Tables 1 and 2 we report numerical results of prices for validity for ε = 0.05
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Table 1: bF (ε)/aF (ε) and cF (ε)/aF (ε) for ε = 0.05 and K ∈ {50, 100, 200, 400}

K = 50 K = 100 K = 200 K = 400

bF /aF cF /aF bF /aF cF /aF bF /aF cF /aF bF /aF cF /aF

Bonferroni 1.025 50.000 1.026 100.000 1.026 200.000 1.026 400.000

Negative-quartic 1.367 25.071 1.367 42.164 1.368 70.911 1.368 119.257

Simes 4.499 4.499 5.187 5.187 5.878 5.878 6.570 6.570

Cauchy 6.623 6.623 7.463 7.463 8.274 8.274 9.055 9.055

Harmonic 6.793 6.625 7.650 7.459 8.485 8.273 9.306 9.072

Geometric 15.679 2.718 16.874 2.718 17.755 2.718 18.395 2.718

and 0.0001, respectively.
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Table 2: bF (ε)/aF (ε) and cF (ε)/aF (ε) for ε = 0.0001 and K ∈ {50, 100, 200, 400}

K = 50 K = 100 K = 200 K = 400

bF /aF cF /aF bF /aF cF /aF bF /aF cF /aF bF /aF cF /aF

Bonferroni 1.000 50.000 1.000 100.000 1.000 200.000 1.000 400.000

Negative-quartic 1.333 25.071 1.333 42.164 1.333 70.911 1.333 119.257

Simes 4.499 4.499 5.187 5.187 5.878 5.878 6.570 6.570

Cauchy 6.625 6.625 7.465 7.465 8.274 8.274 9.055 9.055

Harmonic 6.625 6.625 7.459 7.459 8.272 8.272 9.071 9.071

Geometric 5416.222 2.718 6601.414 2.718 7523.231 2.718 8214.151 2.718
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Embrechts, P., Klüppelberg, C. and Mikosch, T. (2013). Modelling Extremal Events

for Insurance and Finance. Springer Science & Business Media.
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