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In Section S1, we provide the tables reporting the results from our simulation studies in Section

6 and our data analysis in Section 7 of the main manuscript. In Section S2, we provide proofs

for Theorems 3.1 and 4.1 of the main manuscript. In Section S3, we provide technical details

for the Monte Carlo EM and variational EM algorithms described in Section 5 of the main

manuscript.
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S1 Results for Simulations and Data Analysis

Table 1: Simulation results for Experiments 1 and 2 for the NBP, HS-HC, HS-REML,

SSL-B(1, p), SSL-B(1, 1), MCP, SCAD, and ENet models, averaged across 100 replica-

tions when n = 60, p = 100.

Experiment 1: sparse model (10 active predictors)

Method MSE FDR FNR MP

NBP 0.019 0.214 0.011 0.039

HS-HC 0.020 0.128 0.014 0.029

HS-REML 0.021 0.023 0.023 0.023

SSL-B(1, p) 0.020 0.066 0.019 0.026

SSL-B(1, 1) 0.025 0.151 0.017 0.036

MCP 0.020 0.238 0.014 0.046

SCAD 0.028 0 0.1 0.1

ENet 0.037 0.730 0.006 0.284

Experiment 2: fairly sparse model (20 active predictors)

Method MSE FDR FNR MP

NBP 0.077 0.202 0.050 0.083

HS-HC 0.110 0.235 0.084 0.11

HS-REML 0.286 0.130 0.115 0.119

SSL-B(1, p) 0.090 0.175 0.053 0.078

SSL-B(1, 1) 0.090 0.222 0.048 0.086

MCP 0.238 0.321 0.091 0.142

SCAD 0.226 0.791 0.199 0.252

ENet 0.096 0.610 0.031 0.310
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Table 2: Simulation results for Experiments 3 and 4 for the NBP, HS-HC, HS-REML,

SSL-B(1, p), SSL-B(1, 1), MCP, SCAD, and ENet models, averaged across 100 replica-

tions when n = 60, p = 100.

Experiment 3: fairly dense model (40 active predictors)

Method MSE FDR FNR MP

NBP 0.448 0.251 0.240 0.246

HS-HC 0.535 0.243 0.256 0.254

HS-REML 1.10 0.233 0.338 0.325

SSL-B(1, p) 0.728 0.300 0.270 0.279

SSL-B(1, 1) 0.665 0.308 0.260 0.276

MCP 1.31 0.298 0.343 0.344

SCAD 1.21 0.604 0.401 0.440

ENet 0.453 0.423 0.198 0.320

Experiment 4: dense model (60 active predictors)

Method MSE FDR FNR MP

NBP 0.760 0.173 0.467 0.344

HS-HC 1.10 0.184 0.495 0.395

HS-REML 1.76 0.149 0.552 0.489

SSL-B(1, p) 1.53 0.223 0.506 0.409

SSL-B(1, 1) 1.40 0.226 0.495 0.395

MCP 1.31 0.298 0.343 0.359

SCAD 2.18 0.430 0.603 0.589

ENet 0.892 0.260 0.426 0.336
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Table 3: Simulation results for Experiments 5 and 6 for NBP, HS-HC, HS-REML, SSL-

B(1, p), SSL-B(1, 1), MCP, SCAD, and ENet models, averaged across 100 replications.

Experiment 5: n = 100, p = 500, 8 active predictors set equal to 5.

Method MSE FDR FNR MP

NBP 0.0007 0 0 0

HS-HC 0.0005 0 0 0

HS-REML 0.0005 0 0 0

SSL-B(1, p) 0.0005 0.037 0 0.0007

SSL-B(1, 1) 0.0008 0.089 0 0.0017

MCP 0.078 0.124 0.0012 0.011

SCAD 0.081 0.984 0.016 0.031

ENet 0.067 0.859 0 0.104

Experiment 6: n = 200, p = 400, 200 active predictors set equal to 0.6

Method MSE FDR FNR MP

NBP 0.031 0.273 0.400 0.351

HS-HC 0.041 0.261 0.423 0.384

HS-REML 0.049 0.204 0.469 0.444

SSL-B(1, p) 0.095 0.311 0.462 0.437

SSL-B(1, 1) 0.093 0.334 0.458 0.433

MCP 0.058 0.213 0.479 0.462

SCAD 0.051 0.488 0.499 0.498

ENet 0.038 0.346 0.362 0.355
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Table 4: Results for data analysis of the Bardet-Biedl syndrome (BBS) data set.

Method Number of Genes Selected MSPE

NBP 31 0.466

HS-HC 6 0.797

HS-REML 4 0.616

SSL-B(1, p) 3 0.594

SSL-B(1, 1) 3 0.504

MCP 5 0.582

SCAD 5 0.603

ENet 26 0.462

S2 Proofs of Main Theorems

Before proving Theorem 3.1, we restate the main results on posterior con-

sistency from Song and Liang (2017). Proposition S2.1 is a restatement of

Theorems A.1 and A.2 in Song and Liang (2017).

Proposition S2.1. Consider the linear regression model (3.1) and suppose

that conditions (A1)-(A5) hold. Suppose that the prior for π(β, σ2) is of

the form,

π(β|σ2) =

p∏
i=1

[g(βi/σ)/σ] , σ2 ∼ IG(c, d). (S2.1)

Suppose rn = M
√
sn log pn/n, where M > 0 is sufficiently large. If the
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density g(·) in (S2.1) satisfies

1−
∫ kn

−kn
g(x)dx ≤ p−(1+u)n ,

− log

(
inf

x∈[−En,En]
g(x)

)
= O(log pn),

(S2.2)

where u > 0 is a constant and kn �
√
sn log pn/n/pn, then the following

results hold:

Prβ0

(
Π (β : ||β − β0||2 ≥ c1σ0rn|yn) ≥ e−c2nr

2
n

)
≤ e−c3nr

2
n ,

Prβ0

(
Π
(
β : ||β − β0||1 ≥ c1σ0

√
snrn|yn

)
≥ e−c2nr

2
n

)
≤ e−c3nr

2
n ,

Prβ0

(
Π (β : ||Xnβ −Xnβ0||2 ≥ c0σ0

√
nrn|yn) < 1− e−c2nr2n

)
≤ e−c3nr

2
n ,

Prβ0

(
Π (β : at least q̃n entries of |β/σ| are larger than kn|yn) > e−c2nr

2
n

)
≤ e−c3nr

2
n ,

for some constants c0, c1, c2, c3 > 0, and q̃n � sn.

Before proving Theorem 3.1, we also prove the following two lemmas.

Lemma S2.1. Suppose that an → 0 as n→∞ and b ∈ (1,∞) as n→∞.

Then

Γ(an + b)

Γ(an)Γ(b)
� an. (S2.3)

Proof of Lemma S2.1. Rewrite (S2.3) as

Γ(an + b)

Γ(an)Γ(b)
=

anΓ(an + b+ 1)

(an + b)Γ(an + 1)Γ(b)

=
an

an + b

(
1∫ 1

0
uan(1− u)b−1du

)
. (S2.4)
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We have the following inequalities:∫ 1

0

uan(1− u)b−1du ≤
∫ 1

0

(1− u)b−1du = b−1, (S2.5)

and ∫ 1

0

uan(1− u)b−1du ≥
∫ 1

1/2

uan(1− u)b−1du

≥ 2−an
∫ 1

1/2

(1− u)b−1du

= 2−an2−bb−1. (S2.6)

Thus, from (S2.4)-(S2.6), we have

anb

an + b
≤ Γ(an + b)

Γ(an)Γ(b)
≤ an2an+bb

an + b
. (S2.7)

Since an → 0 as n→∞, we have b/(an + b) ∼ 1 and 2an+bb/(an + b) ∼ 2b,

and thus, from (S2.7), we have Γ(an + b)/Γ(an)Γ(b) � an as n→∞.

Lemma S2.2. Let b > 1. Then for any a > 0, β′(a, b) is stochastically

dominated by β′(a, 1).

Proof of Lemma S2.2. Let f(x|a, b) denote the probability density function

(pdf) for the beta prime density, β′(a, b). We have

f(x|a, 1)

f(x|a, b)
∝ xa−1(1 + x)−a−1

xa−1(1 + x)−a−b
= (1 + x)b−1,

which is increasing in x due to our assumption that b > 1. Hence, by the

monotone likelihood ratio property, β′(a, b) is stochastically dominated by

β′(a, 1) for any b > 1.



RAY BAI AND MALAY GHOSH

Proof of Theorem 3.1. By Proposition S2.1, it is sufficient to verify that the

NBP prior for each coefficient π(βi), i = 1, . . . , pn, satisfies the two condi-

tions (S2.2). We first verify the first condition. Let g(·) be the marginal

pdf of π(β) for a single coefficient β. The pdf g(x) under the NBP prior is

g(x) =
Γ(an + b)

(2π)1/2Γ(an)Γ(b)

∫ ∞
0

exp

(
− x2

2ω2

)
(ω2)an−3/2(1 + ω2)−an−bdω2.

(S2.8)

By the symmetry of g(x) and Fubini’s Theorem, we have from (S2.8) that

1−
∫ kn

−kn
g(x)dx = 2

∫ ∞
kn

g(x)dx

=
2Γ(an + b)

(2π)1/2Γ(an)Γ(b)

∫ ∞
kn

∫ ∞
0

exp

(
− x2

2ω2

)
(ω2)an−3/2(1 + ω2)−an−bdω2dx

=
Γ(an + b)

Γ(an)Γ(b)

∫ ∞
0

(ω2)an−1(1 + ω2)−an−b
[
2

∫ ∞
kn

(2πω2)−1/2 exp

(
− x2

2ω2

)
dx

]
dω2

(S2.9)

Letting X ∼ N (0, ω2), we see the inner integral in (S2.9) is Pr(|X| ≥ kn).

We use the tail bound, Pr(|X| ≥ kn) ≤ 2e−k
2
n/2ω

2
, to further bound (S2.9)

from above as
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2

∫ ∞
kn

g(x)dx ≤ 2Γ(an + b)

Γ(an)Γ(b)

∫ ∞
0

(ω2)an−1(1 + ω2)−an−be−k
2
n/2ω

2

dω2

≤ 2an

∫ ∞
0

(ω2)an−1(1 + ω2)−an−1e−k
2
n/2ω

2

dω2

= 2an

∫ ∞
0

(1 + u)−an−1e−u(k
2
n/2)du

≤ 2an

∫ ∞
0

e−u(k
2
n/2)du

=
4an
k2n

. p−(1+u)n , (S2.10)

where we used the fact that b ∈ (1,∞) and Lemma S2.2 in the second in-

equality, a transformation of variables u = 1/ω2 in the first equality, and the

fact that an . k2np
−(1+u)
n for the final inequality of the above display. Thus,

combining (S2.9)-(S2.10) shows that the first condition in (S2.2) holds.

We now show that the second condition of (S2.2) also holds under our

assumptions on (an, b) and our assumption on the rate of growth on En in

(A5). With a change of variables, z = x2/2ω2, in (S2.8), we can rewrite the

marginal pdf of the NBP prior, g(x), as

g(x) =
Γ(an + b)

21−bπ1/2Γ(an)Γ(b)
(x2)an−1/2

∫ ∞
0

e−zzb−1/2(x2 + 2z)−an−bdz.

(S2.11)

By the symmetry of g(x), the infimum of g(x) on the interval [−En, En]
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occurs at either −En or En. From (S2.3) in Lemma S2.1, (S2.11), and the

assumptions that En is nondecreasing and b ∈ (1,∞), we have

inf
x∈[−En,En]

g(x) & an(E2
n)an−1/2

∫ ∞
0

e−zzb−1/2(E2
n + 2z)−an−bdz

= an(E2
n)an−1/2

∫ ∞
0

e−z
(

z

E2
n + 2z

)b−1/2(
1

E2
n + 2z

)an+1/2

dz

≥ an(E2
n)an−1/2

∫ 2

1

e−z
(

z

E2
n + 2z

)b−1/2(
1

E2
n + 2z

)an+1/2

dz

& an(E2
n)an−1/2(E2

n + 2)−b+1/2(E2
n + 4)−an−1/2

� an(E2
n)−b−1/2. (S2.12)

By assumption, an . k2np
−(1+u)
n for some u > 0, and log(En) = O(log pn).

Therefore, it follows from (S2.12) that

− log

(
inf

x∈[−En,En]
g(x)

)
. − log(k2np

−(1+u)
n ) + (b+ 1/2) log pn

. − log(p−(3+u)n ) + (b+ 1/2) log pn

. log pn, (S2.13)

where we used the fact that kn �
√
sn log pn/n/pn and Assumption (A4)

that sn = o(n/ log pn), and so kn . p−1n . Thus, the second condition in

(S2.2) also holds.

We have shown that as long as an . k2np
−(1+u)
n , u > 0, b ∈ (1,∞),

and log(En) = O(log pn) in Assumption (A5), the two conditions (S2.2) in

Proposition S2.1 are satisfied. Hence, Theorem 3.1 has been proven.
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Proof of Theorem 4.1. At the kth iteration of the EM algorithm, the (a, b)

that solves (4.4) is

ψ(a) = 1
p

p∑
i=1

Ui(λ
2
i ), a ≥ 0,

ψ(b) = −1
p

p∑
i=1

, Vi(ξ
2
i ), b ≥ 0,

(S2.14)

where Ui(λ
2
i ) is an estimate of Ea(k−1) [log(λ2i )|y] and Vi(ξ

2
i ) is an estimate

of Eb(k−1) [log(ξ2i )|y] taken from either the Gibbs sampler or the MFVB

coordinate ascent algorithm. Since the λi’s and ξi’s, i = 1, . . . , p, are strictly

greater than zero and are drawn from GIG and IG densities in the Gibbs

sampling algorithm or the MFVB algorithm (and thus, expectations of

log(λ2i ) and log(ξ2i ), i = 1, . . . , p, are well-defined and finite), Ui and Vi,

i = 1, . . . , p, exist and are finite.

The digamma function ψ(x) is continuous and monotonically increasing

for all x ∈ (0,∞), with a range of (−∞,∞) on the domain of positive reals.

Therefore, for any y ∈ R, there exists a unique x ∈ (0,∞) so that ψ(x) = y.

Since we impose the constraint that a ≥ 0, there must be a unique â(k) > 0

that solves the first equation in (S2.14). Similarly, there exists a unique

b̂(k) > 0 that solves the second equation in (S2.14).
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S3 Details for the Monte Carlo EM and Variational

EM Algorithms for the Self-Adaptive NBP Model

S3.1 Monte Carlo EM Algorithm

After initializing (β, λ1, . . . , λp, ξ1, . . . , ξp, σ
2), we iteratively cycle through

sampling from the full conditional densities in (5.1). To speed up compu-

tation, the λi’s and ξi’s, i = 1, . . . , p, are block-updated in parallel, and we

utilize the fast sampling algorithm of Bhattacharya et al. (2016) to sample

from the full conditional for β in O(n2p) time.

As described in Section 5.1, we incorporate the EM algorithm for ob-

taining the MML estimates of (a, b) by solving for (a, b) in (4.4) every M =

100 iterations of the Gibbs sampler. To assess convergence, we compute

the square of the Euclidean distance between (â(k−1), b̂(k−1)) and (â(k), b̂(k))

at the kth iteration of the EM Monte Carlo algorithm, and if it falls below

a small δ > 0, then we set our MML estimates as (â, b̂) = (â(k), b̂(k)) and

draw a final sample from the Gibbs sampler.

We recommend setting δ = 10−6. If the square of the `2 distance has

not fallen below δ after 100 iterations (so 10,000 total iterations of the

Gibbs sampler have been sampled at this point), then we terminate the

EM algorithm and use the estimate from the 100th iteration as (â, b̂). In
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our experience, even if the square of the `2 distance between (â(k−1), b̂(k−1))

and (â(k), b̂(k)) does not quite fall underneath the small δ > 0 after k = 100

updates, the successive iterates are still very close to one another at this

point. Thus, all these later estimates of (a, b) would have a similar effect on

posterior inference. Algorithm 1 at the end of Section S2 gives the complete

steps for implementing the EM/Gibbs algorithm for our model.

S3.2 Variational EM Algorithm

Let λ = (λ21, . . . , λ
2
p) and ξ = (ξ21 , . . . , ξ

2
p) from (5.1). The mean field

variational Bayes (MFVB) approach stems from the following lower bound:

log π(y) ≥
∫
(β,λ,ξ,σ2)

q(β,λ, ξ, σ2) log

(
π(y,β,λ, ξ, σ2,γ)

q(β,λ, ξ, σ2)

)
d(β,λ, ξ, σ2)

≡ L[q(·)], (S3.1)

where L[q(·)] is known as the evidence lower bound (ELBO). We constrain

q(β,λ, ξ, σ2) = q∗1(β)q∗2(λ)q∗3(ξ)q∗4(σ2) and the qi’s, i = 1, . . . , 4, to be fam-

ilies that ensure that (S3.1) is tractable. This is also known as mean field

variational Bayes (MFVB). The parameters in q∗1, q∗2, q∗3, and q∗4 are found by

maximizing (S3.1), which is equivalent to minimizing the Kullback-Leibler

(KL) distance between π(β,λ, ξ, σ2|y) and q(β,λ, ξ, σ2). π(β|y) can be

approximated by q∗1(β) and posterior inference can be carried out through

q∗1(β). For a detailed review of variational inference, see Blei et al. (2017).
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Based on the conditional densities in (5.1), we use the approximation,

q(β,λ, ξ, σ2|y) ≈ q∗1(β)q∗2(λ), q∗3(ξ)q∗4(σ2),

where

q∗1(β) ∼ Np (β∗,Σ∗) ,

q∗2(λ) ∼
p∏
i=1

GIG (k∗i , l
∗,m∗) ,

q∗3(ξ) ∼
p∏
i=1

IG (u∗, v∗i ) ,

q∗4(σ2) ∼ IG(c∗, d∗),

and

β∗ =
(
X>X +D∗

)−1
X>y, Σ∗ = Eq∗4 (σ2)

(
X>X +D∗

)−1
,

D∗ = diag
(
Eq∗2 (λ−21 )Eq∗3 (ξ−21 ), . . . ,Eq∗2 (λ−2p )Eq∗3 (ξ−2p )

)
,

ki = Eq∗1 (β2
i )Eq∗4 (σ−2)Eq∗3 (ξ−2i ), i = 1, . . . , p, l∗ = 2, m∗ = a− 1

2
,

u∗ = b+ 1
2
, v∗i = 1

2
Eq∗1 (β2

i )Eq∗4 (σ−2)Eq∗2 (λ−2i ) + 1, i = 1, . . . , p,

c∗ = n+p+2c
2

, d∗ =
Eq∗1

(||y−Xβ||22)+Eq(β>D∗β)+2d

2
.

(S3.2)

From (5.3) and (S3.2), we can easily construct our coordinate ascent up-

dates. The expectations, Eq∗2 (λ−2i ), Eq∗3 (ξ−2i ), Eq∗4 (σ2), and Eq∗4 (σ−2) can be

computed using properties of the GIG and IG densities. We also have

Eq∗1 (β2
i ) = (β∗i )

2 + Σ∗ii,

Eq∗1 (||y −Xβ||22) = ||y −Xβ∗||22 + tr(X>XΣ∗),

Eq(β>D∗β) =

p∑
i=1

(β∗i )
2Eq∗2 (λ−2i )Eq∗3 (ξ−2i ) + tr(D∗Σ∗).
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At each iteration, we compute the evidence lower bound (ELBO),

L = Eq log f(y,β,λ, ξ, σ2)− Eq log q(β,λ, ξ, σ2), (S3.3)

where f is the joint density over y and all parameters. In particular, (S3.3)

can be derived as

L = Eq log f(y|β, σ2) + Eq log(β|λ, ξ, σ2) + Eq log π(ξ) + Eq log π(ξ)

+Eq log π(σ2)− Eq log q∗1(β)− Eq log q∗2(λ)− Eq log q∗3(ξ)− Eq log q∗4(σ2)

= −n
2

log(2π) + p
2

+ p log 2 + p log Γ(u∗)− p log Γ(a)− p log Γ(b)

+c log d− c∗ log d∗ + log Γ(c∗)− log Γ(c) + 1
2

log |Σ∗|

−
p∑
i=1

log

[
(k∗i /l

∗)m
∗/2

Km∗(
√
k∗i l
∗)

]
− u∗

p∑
i=1

log v∗i +

p∑
i=1

(
k∗i
2
− 1

)
Eq∗2 (λ2i )

+

p∑
i=1

(v∗i − 1)Eq∗3 (ξ−2i ) +
l∗

2

p∑
i=1

Eq∗2 (λ−2i ),

(S3.4)

where Kν(·) denotes the modified Bessel function of the second kind.

In each step of our algorithm, we compute the ELBO (S3.3). Conver-

gence is assessed by computing the absolute difference, dif = |L(t)−L(t−1)|,

at each iteration, and terminating the algorithm if dif < δ, for some small

tolerance δ > 0. We run the MFVB algorithm until convergence or until a

maximum of 1000 iterations have been reached.

To incorporate the EM algorithm for computing hyperparameters (a, b)

into the MFVB scheme, we solve for (a, b) in (4.4) in every iteration of coor-

dinate ascent algorithm, using E
q
∗(t−1)
2 ,a(t−1) [log(λ2i )] and E

q
∗(t−1)
3 ,b(t−1) [log(ξ2i )]
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in place of the summands in (4.4) at the tth iteration:

E
q
∗(t−1)
2 ,a(t−1) [log(λ2i )] = log

(√
k
∗(t−1)
i√
l∗

)
+ ∂

∂m∗(t−1) log

[
Km∗(t−1)

(√
k
∗(t−1)
i l∗

)]
,

E
q
∗(t−1)
3 ,b(t−1) [log(ξ2i )] = log

(
v
∗(t−1)
i

)
− ψ

(
u∗(t−1)

)
,

(S3.5)

where Kν(·) denotes the modified Bessel function of the second kind, and

a(∗t−1), b
∗(t−1)
i , k

∗(t−1)
i , l∗, and m∗(t−1) are taken from the (t − 1)st itera-

tion and defined in (S3.2). Numerical differentiation is used to evaluate the

derivative in the first equation of (S3.5). Algorithm 2 at the end of Ap-

pendix S2 provides the complete steps for implementing the variational EM

algorithm for the self-adaptive NBP model. Note that Step 9 in Algorithm 2

involves computing the inverse of a p×p matrix, Φ∗(t) = (X>X+D∗(t))−1.

Since D∗(t) is a diagonal matrix, the computational cost can be substan-

tially reduced when p � n by invoking the Sherman-Morrison-Woodbury

formula, i.e.

Φ∗(t) ← (D∗(t))−1 − (D∗(t))−1X>(In +X(D∗(t))−1X>)−1X(D∗(t))−1,

which only involves inverting an n × n matrix, rather than p × p one. In

steps 12-14 of Algorithm 2, we can also update (k
∗(t)
i , v

∗(t)
i ), i = 1, . . . , p,

simultaneously in parallel to save on computing time.
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Algorithm 1 Monte Carlo EM algorithm for the self-adaptive NBP

1: Initialize:

2: a(0) = b(0) = 0.01, c = d = 10−5, max = 100, M = 100, J = 20000,

δ = 10−6, dif = 1, and k = 0.

3: Initialize β(0), σ2(0), λ
2(0)
i , ξ

2(0)
i , i = 1, . . . , p.

4: for t = 1 to J do

5: D(t) ← diag
(
λ
2(t−1)
1 ξ

2(t−1)
1 , . . . , λ

2(t−1)
p ξ

2(t−1)
p

)
6: Draw β(t) ∼ Np

((
X>X + (D(t))−1

)−1
X>y, σ2(t−1) (X>X + (D(t))−1

)−1)
7: for i = 1 to p do

8: Draw λ
2(t)
i ∼ IG

(
a(k) + 1

2 ,

(
β
(t)
i

)2

2σ2(t−1)ξ
2(t−1)
i

+ 1

)

9: Draw ξ
2(t)
i ∼ GIG

( (
β
(t)
i

)2

σ2(t−1)λ
2(t)
i

, 2, b(k) − 1
2

)
10: end for

11: Draw σ2(t) ∼ IG
(
n+p+2c

2 ,
||y−||Xβ(t)||22+(β

(t))
>
(D(t))

−1
β(t)+2d

2

)
12: EM: Update hyperparameters (a, b).

13: if t mod M = 0 and k ≤ max and dif ≥ δ then

14: k ← k + 1

15: low ← t−M + 1

16: high ← t

17: for j = 1 to p do

18: Uj ← 1
M

[
ln
(
λ
2(low)
j

)
+ . . .+ ln

(
ξ
2(high)
j

)]
19: Vj ← 1

M

[
ln
(
λ
2(low)
j

)
+ . . .+ ln

(
ξ
2(high)
j

)]
20: end for

21: Solve for a in −pψ(a)−
∑p
j=1 Uj = 0

22: a(k) ← a

23: Solve for b in −pψ(b) +
∑p
j=1 Vj = 0

24: b(k) ← b

25: dif ←
(
a(k) − a(k−1)

)2
+
(
b(k) − b(k−1)

)2
26: end if

27: end for
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Algorithm 2 Variational EM algorithm for the self-adaptive NBP model

1: Initialize:

2: l∗ = 2, c∗ = n+p+2c
2 , a(0) = b(0) = 0.01, δ = 10−3, J = 1000, and t = 1.

3: Initialize d∗(0), k
∗(0)
i , v

∗(0)
i , i = 1, . . . , p.

4: while |L(t) − L(t−1)| ≥ δ and 1 ≤ t ≤ J do

5: E-step: Update variational parameters in (S3.2).

6: Update m∗(t) ← a(t−1) − 1
2

7: Update u∗(t) ← b(t−1) + 1
2

8: UpdateD∗(t) ← diag
(
E
q
∗(t−1)
2

(λ−21 )E
q
∗(t−1)
3

(ξ−21 ), . . . ,E
q
∗(t−1)
2

(λ−2p )E
q
∗(t−1)
3

(ξ−2p )
)

9: Update Φ∗(t) ←
(
X>X +D∗(t)

)−1
10: Update Σ∗(t) ← E

q
∗(t−1)
4

(σ2)Φ∗(t)

11: Update β∗(t) ← Φ∗(t)X>y

12: for i = 1 to p do

13: Update k
∗(t)
i ← E

q
∗(t−1)
1

(β2
i )Eq∗(t−1)

4
(σ−2)E

q
∗(t−1)
3

(ξ−2i )

14: Update v
∗(t)
i ← 1

2Eq∗(t−1)
1

(β2
i )Eq∗(t−1)

4
(σ−2)E

q
∗(t−1)
2

(λ−2i ) + 1

15: end for

16: Update d∗(t) ←
E
q
∗(t−1)
1

(||y−Xβ2||22)+E
q(t−1)(β>D∗(t)β)+2d

2

17: M:step: Update hyperparameters (a, b).

18: Solve for a in −pψ(a) +
∑p
i=1 Eq∗(t−1)

2

[
log(λ2i )

]
= 0

19: a(t) ← a

20: Solve for b in −pψ(b)−
∑p
i=1 Eq∗(t−1)

3

[
log(ξ2i )

]
= 0

21: b(t) ← b

22: Update L(t), as in (S3.4).

23: t← t+ 1

24: end while



BIBLIOGRAPHY

Bibliography

Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. (2017). Variational in-

ference: A review for statisticians. Journal of the American Statistical

Association 112, pp. 859-877.

Bhattacharya, A., Chakraborty, A., and Mallick, B. K. (2016). Fast sam-

pling with gaussian scale mixture priors in high-dimensional regression.

Biometrika 103, pp. 985-991.

Song, Q. and Liang, F. (2017). Nearly optimal Bayesian shrinkage for high

dimensional regression. arXiv e-prints, 2017. arXiv:1712.08964.

Department of Statistics, University of South Carolina

E-mail: RBAI@mailbox.sc.edu

Department of Statistics, University of Florida

E-mail: ghoshm@ufl.edu


	Results for Simulations and Data Analysis
	Proofs of Main Theorems
	Details for the Monte Carlo EM and Variational EM Algorithms for the Self-Adaptive NBP Model
	Monte Carlo EM Algorithm
	Variational EM Algorithm


