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This supplementary material gives the technical proofs of Theorems 1-4.

S1 Proof of Theorem 1

For simplicity, we drop 7 in all notations for model parameters in the sub-
sequent section. For example, we denote 0, = 0, Ry, = Rr, Ry, = Ry.
As in the standard arguments in Huberl ([967), it is sufficient to verify the

following three claims:

(a) supyepan! L,(\) = L,(\)| = 0 in the almost surely sense, where the

parameter space A is previously defined.

(b) E{p-ly: — My(N)]} > E{p-[y: — M;(\°)]} for any A € A. Additionally,
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the equality holds if and only if A = \°.

prlys — My(N)] = prlys — Mt(A)]‘} — 0, as n—0,

E{ sup
XEdA ()
where 5 () = {A € A: |A=X|| <7n},0 <n < 1and X € A. Therefore,

this shows that E {p,[M;(\)]} is a continuous function of A.

We first prove Claim (a). Let 7, = min{t : y;—q € (rz,rv]|}. By the
settings for the initial values, it holds that R,o=1forl<tc< Jn and
R, =R, _1=...=R;. We have

|20 -z

n

In In

= (1 - Rl) HI{TL <Ypa < TU} ) % Z[Pr(yt - x%“é’l) - PT(yt - $592)]

t=1 t=1
In

In
1
<[[H{a<ya<t}- - Ziulz [|f (62 — 01)7[ + |y — @7 0o + [y — 2 64]],
t=1 €

=1
which implies that Claim (a) holds if j, is finite. On the other hand,

applying the ergodic theorem, we obtain

1
— > suplaf (62 — 02)7| + [ye — 27 02| + |ye — 27 61 ]
Jn =1 AeA

- F {?\HE [lzf (0 — 00)T| + |yr — 7 02| + |y — xtT¢91|]} < 00, (A.1)
€
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when 3, — 00 as n — oo, and E(|y;|*™) < co. As in Liefall (2015a), it is

easy to show that

In
HI{a <Y—qg <b} —0, as 7, — oc. (A.2)

t=1

Thus, (A) and (A2) imply the validity of Claim (a).
Next, we prove Claim (b). Denote ¢, (w) = 7 — I{w < 0}, and it holds

that, for u # 0,

oot — ) — pr () = —vipr () + / (< 5)— I(u < 0))ds

=—v,(u)+ (u—v)I(0>u>v)— 10 <u<wv);

see [Knighfl (T99R). Moreover, E{¢,(y; — 27 0))RY|F;_1} = 0 and E{u, (y; —

z769)(1 — RY)|F,—1} = 0. As a result,

E{p-lye = MM} = E{p-lye — M)} + E{[pr(ye — 27 01) — pr(ye — 2f )| R Ry}
+ E{[p-(y — 27 01) — pr(ye — 27 0] Ri(1 — RY)}
+ E{[p-(ye — 27 05) — pr(ye — 2 })](1 — Ro) RY}
+ E{[pr(ye — 27 02) — pr(ye — 27 02)](1 — Re)(1 — RY)}

:Il+[2+13+[4+[5-
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where

I = E{p:[y: — Mt(AO)]}U

Iy = E{(y: — 27 00)(I{z7 0] >y > 276, } — [{z7 0] <y < 276, })RR}},

Iy = B{(y: — a7 0)(I{z{ 0y >y > 2701} — I{af 0y <y < 2{01})R(1 - R))},
L= B{(ys — a7 0o)(I{z{ 0 >y, > 270} — [{a7 6] <y, < x[0:})R)(1 - Ry)},

Is = E{(y, — 27 0:)(I{xT 09 > y, > 270} — [{aT05 <y, < 270,})(1 — RO)(1 — R,)}.

It can be shown that Iy, s, I3,1, and [5 are all nonnegative, and thus
E{p:lys — M;(N)]} > E{p;[y: — M;(\°)]}. Furthermore, the above equality
holds only when these nonnegative terms are all equal to zero.

From the equality
E{(y, — 270)(I{xT 6 >y, > 270} — [{a70? <y, < 270, })R.RY} = 0,

we have

E{(y; — 270 I[{x70? >y, > 270, } R,RY} = 0, (A.3)

and

E{(y; — 270 [{x70) <y, < 270} R,RY} = 0. (A.4)
Thus (AZ3) implies that

P{I{z70) >y, > 270} =0} > P{R:R) =1} > P{ysa <711, Ys_a0 <73} > 0.
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We then have

P{0 >y — a70) > 27 (0, — 0))} = P{aT0) >y, > 270,} = 0.

By Assumption 4, we can obtain that z7(6; — 6?) > 0 almost surely. On
the other hand, by (BE4), we can obtain that z¥ (f; —0y) < 0 almost surely.
Thus we have 6; = 9.

Similarly, we can obtain that 6, = 69 from the equality

E{(ye — a7 02) (I{a] 03 >y > {2} — I{a] 03 <y <a{0})(1 — R))(1 — Ry)}

= 0.

Based on the following two inequalities

E{(ye—af 01)(I{z7 05 >y, > a7 01} —1{a70) <y, < a7 61})R,(1-R})} =0,

and

E{(yy— 2T 0)(I{xT 0 >y, > a7 0} —I{x7 09 <y, < 270:})RY(1—R,)} = 0.

As 09 # 69, we have E{(1—R;)R}} = 0 and F{(1—RY)R;} = 0, respectively.
As in Lief all (20153), we have rp, = % ryy = 7Y, and d = d°. Thus, Claim

(b) holds.
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To complete the proof, it is sufficient to verify Claim (c¢). We denote

X = (07,607, 7,, 7y, d)T € 65(n) with 0 <5 < 1, then
pelyr = My(N)] = prlyr — My(V)]
= [pr(ye — 27 01) — pr(y — 27 00| Ro(Fr. Trr, ) Ri(rr, 77, d)
+ pr(g — 27 02) = prlyy — 27 01)][1 = Ry(F, Tu, d)| Re(ri, 7y, )

+ [pr (g — 2701) — pr (g — 27 0,)] Ry(7r, Ty, )1 — Ry(rp, 7, d)]

+ [pr(ye — 27 02) — pr(ye — 27 02)][1 — Ro(Fr, Tor, d)][1 — Ry(rr, 7, d)).
Note that

(o (Y — xfgl) — pr(ye — 2T 0| R (7L, Ty, d) Ry (1, riy, d)
- «T (61—61)
= L G 0 — 270)) + / [{y — 276, < s}
0
— Hye — a6 < 0})ds | x Rl i, d)Rulru. o, d)

< 3l

In the same way,
[y — 27 02) — pr (e — 21 02)][1 — Ro(F, T, d)][1 = Ryl v, )] < 3|
On the other hand, it is easy to obtain that
I[1 — Ri(rp, 7y, )| Re(rp, ry, d)| < |Ri(TL, Ty, d) — Ry(rp, ry, d)|,
and

[l — Re(rp, v, d)|Re(Tp, Ty, d)| < |Re(rrL,7u,d) — Re(rp, v, d)].
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Moreover,
(o (yr = 21 01) = pr (v — 27 02)) Re(F, T, )1 = R, vy, d)]
= [pr(ye = 2F 01) = pr(ye — 2F 01)|Ro(Tr Tir, )1 = Ry(rp, vy, )]
+ [pr(yr — 2{01) — pr(ye — 27 02)| Re(FL, 7w, d)[1 — Re(rp, ru, d)]

< 3nl|@e|| + [or(ye — 2F61) + pr(ye — 2f02)]|Re(7L, Ty, d) — Re(rr, v, d)).

In a similar way, we obtain that
lo-(ye — 27 01) — pr(ye — 2T 0)|Ri(72, Ty, d)[1 = Ry(rp, 1o, d)]
< 3nllzell + [pr (ye — 2{ 01) + pr(ye — 27 02)|| Re (71, T, d) — Re(rp, v, d).
Denote C; = 12||2,|| and Cy = 2E{p-(y; — x701) + pr(y, — 2T 0y) }1+5/2,
respectively. It is easy to show both C; and C, are finite when E{|y;[**<} <

00. Applying Holder’s inequality, we have

E { sup
Xeda(n)

s/(2+9)
S Cln + 02 (E{ sup ‘Rt(TIﬂrUad) - Rt(?La?/U?d)’}) .

AESA (1)

pelyn = Mi(V)] = prlye = M) \}

Similar to Lief-all (2015a)), we have

E{ sup |Rt(TL7TU7d) - Rt(?L7?U7d)‘} — 07 as 1 — 0.
XEda(n)

We thus finish the proof of Claim (c).
Making use of the standard argument for strong consistency in Hiiher
(T967), based on the above three claims, it can be shown that A, — Ag

almost surely. We then complete the proof of Theorem 1.
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S2 Proof of Theorem 2

As Theorem 1 indicates that é\n is strongly consistent, without loss of gen-

erality, we restrict the parameter space to a neighborhood of €°, say,
EA)={0eO,a<r,<ry <b:|0—0°) < A, |lrp—r)| < A, |[rp—r)| < A},

for 0 < A < min{1, (r}; — r%)/2}. First, we assume p = d = 1. And for
simplicity assume z; < 0, zy > 0.
Similar to Chanl (T991), we need to verify that Ve > 0,3K > 0,

P{Ln (0,79 + 20,70 + 20) — Lo(0,70 r%) > 0} > 1 —¢, (A.5)

where 6 € £(A), |z] > K/n, and |zy| > K/n.

Denote
Ao =1{r}y <y <+ 2, R =1}, Bo={r} + 21 <wy1 <7, Ry =0},
Ajp ={y1, sy € (P2, 10) 1y < Yemjor <1+ 20, Rijo = 1} for j > 1,
and
Bjt = {ytflv e Y- € (7"277“(0]), 7"%+ZL <Y—j1 < 7“%, Ri_j_1= O} forj > 1,
where R, = Ry(rY + 2, r% + 2y). As Liefall (2015a), we have

Ri(r) + 2z, vy + 2v) — Re(ry, ry) = I{A(21, 20)} — I{Bi(z1, 2v) },
where A;(zr, zv) = U Aji, and Bi(zr, zv) = | Bji. Moreover, it can be

=1

Jj= J=1
shown that By(zr, zp) C {Bi(r?,rY) = 1} and Ai(z2, 20) C {A(rY, 7)) =
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0}. Then,
En(e, )+ 2,y 2u) — Zn(é, )

= [p(y — 2701) — plye — 2" 0)[Ry(r] + 21,7 + 20) — Ro(r], )]

= oy — 2761) = plyr — 27 02)|[I{ Au(21, 20)} — I{Bi(21, 20)}]

=L} (21, 2v) + L2 (21, 2v),

where

n

Li(z,20) = Y oy — 2761) — plye — 27 02) I{ A(21, 20) },

=1
and

n

Ll (20, 20) = Yoy — 2705) — plye — 270 T{By (21, 20) }.
t=1
Next, we show that Ve > 0, K > 0, such that
P{L}(z,2y) > 0} > 1 —¢,
when 0 € ((A), —A < zp <0, and K/n < zy < A. Then
L (21, 20) Z {p(ye — 2761) — p(ys — x70)} I{Ai(z1, zv)}
= Z {—ai (01— O2)pr (g — 27 02) } {A(2L, 20) }

+Z{ v — a7 00)(I{x] 0y >y, > a7 61}

— I{al 0y <y < a7 0,})H{A(2L, 20) }-
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By Assumption 4, when A is sufficiently small, for some v; > 0,

n

> {(ye — af00)(I{aT 6y > y > 2701} — I{aF 6y < yp < 270, }) H{ A2, 20)}

t=1

>0 Y Az, 20)}

As P{y; — 276 < 0} = 7, we have for some constant vy > 0,

Hy; — a0y < 0} = H{y, — a7 05 + 27 (69 — 6,) < 0}
= I{y, — 2703 <0} + I{0 < y, — 2705 < —x7 (09 — 6)}

= I{y, — 2769 < 0} + I{z769 <y, < x76,}.

Furthermore,

n

Z {=af (01 — O2) 7 (ye — x{ 02) } I{A(21, 20) }
{ Z¢T 0 ]{At ZL,ZU

+’U2{

Zyt {2709 <y < 2703 1{ A (21, 20 }‘ }

t=1

Zyt 19 (y foQ)I{At(ZLaZU)}‘}

t=1

Zl{xfﬁg <y < xtTHQ}I{At(zL,ZU)}‘
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Denote

T, (20) = E{{ Az, 20)}}, Tz (20) ZI{At 21,20},

Vo, (zv) = E{yi 1. (g — fTeg)[{At(ZL, zu) s

Vi, (20) Zyt 1 (ye — a7 09) I{ A2, 20) },
Viey (21, 22) Z!yt 1r (e — 27 05) | T{ Ay (21, 22) N Af (21, 21) },

‘ZL (Zh 22) = E{|yt—1w7(yt - J;geg)u{At(Zb ZQ) n Af('ZL? Zl)}}7
where 6 € £(A), —A < z;, <0, K/n < zyp < A, and 21 < 29, Af(zr, 21) is
the complement set of A;(zy, 21). There thus exists 0 < m < M and H > 0

such that
mzy < T, (2v) < Mzy, Var{l{Ai(zr,z2v)}} < HT,, (2v),

E{|yr1tr (ye — 270 I{Ae (21, 22) N Af (20, 21)}} < H{T:, (22) — T., (21)},

and

Var{|yr—10-(ye — 27 0 I{Ai(z1, 22) N Af (21, 21)}} < H{T%, (22) — T%, (21)},
V., (21, 20) < H{T., (22) — Toy (21)}-

By Assumption 3, we have
Var{nT, ., (zv)} <nHT,, (zv), and Var{nV,., (2v)} <nHT,, (2v),

and

Var{nV,., (z1,2)} < nH{T., (z) — T., (z1)}.
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Moreover, we can obtain that, for any € > 0, any n > 0 and all n,

P sup
K/n<zy<A,—A<zr<0

P sup
K/n<zU<A,—A<ZL§0

P sup
K/n<zy<A,—A<z<0

By Assumption 4,
sup

P
K/n<zy<A,—A<z<0

P sup
K/n<zy<A,—A<z<0

ZL

1 n
N Ye 10 (Y
nT,, (zv) ;

1
nT,, (ZU)

ZU

Z[{At 2L, ZU)} -1

ZwT

we also have

1

nT., (zv)

1

nT

2L

(2v) 4

Zl{xfeg <y < af O} I{A(z, 20)}

t=1

Zyt {2709 <y, < 2T 03 1{ A (21, 20)}

Thus we show that for any € > 0,

— 2T ONT{A(zr, 20)}

aFONI{A(zr, zv)}

P{L}(z,2) > 0} > 1 —e¢.

<77}>1—5
<7]}>1—5.

< 77} > 1—e.
< 77} > 1—¢,
< 77} > 1—e.

Similarly, we obtain the result for Zi(z,;, 2y ), and then that for En(ﬁ, r? +

0
zr,rp+zu)—L

Ln(0,79,79). Together with Claim (a) in the proof of Theorem

1, we finish the proof of (A=5) for p=d =1, z;, < 0 and 2y > 0. Moreover,

the proof for the other cases is similar, and is hence ignored. The proof of

(a) is then completed.

As the proof of Claim (b) is routine and similar to Qiax (T99R), we omit

the the details.
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Next, we prove Claim (c). Denote X, = (z7 Ry, a7(1 — R))", V,, =

V(0 — 6%, and u; =y, — X76°. We have
pel(ye — 70 Ry + (g — 2702)(1 — Ry)] = prlugr — X7 (n12V)].
Thus we denote

Znﬁ(v) = Z{pT [utT - XtT (n_l/QV)] - pT(utT)}7 (A6)

and can obtain that if Vn is a minimizer of Z, -(V'), then Vn = ﬁ(@n —0%).

By Knight’s identity (Knighfi, T99%),

prtu=0) = o) = =vir (00 + [ (< 5} = T < 0} ),
we rewrite (A0) as

Zn: (V) = Z{PT[UtT - XtT(n_l/QV)] — pr(ur)}

where

and
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Note that
Ur(r) = 7 = T{(yr — 2700 Ry + (p — 2703) (1 — Ry) < 0}
=7y — F7 ()R + [y — B (0)](1 - Ri) < 0}
=71 —I{y, — F/'(1) < 0}

= Prlye — F (7)),

and

Itﬁét ~ ~
X X7 = (er Re 21 (1= Ry))
.Tt(]_ — Rt)

a:txtTﬁf I‘t.flf;ét(l — ét)

xtxf}N%t(l — Et) zixf (1 — ét)Q

= diag[mtxfét, i (1 — }th)]

Then using the martingale central limit theorem, we have

% S X7y — B -5 W,
t=1

where W is a 2(p + 1)-dimensional vector normal variate with covariance

matrix 7(1 — 7). On the other hand,

BZEV)IF) =Y / T Bl L= AT,

n L xT'v

=S [T ests 0,0

t=1

= LS AEOIVIXIXY 4 o),
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and thus

1
B{ZE(V)|Fia} = SVTUV.

We have

Zy:(V) = Z{Pr(utr - Xy (n_1/2V>> — pr(uer) }

= Z (V) + Z2)(V)

n,T

1
= VIV —VIW = Z.(V),

where 7 = 7 denotes the weak convergence. Knighfl (T998) and Pollard
(T99T) have shown that if the finite dimensional distributions of Z,(-) con-
verge weakly to Z(-) and Z(-) has a unique minimum, then the convexity
of Z,(-) implies that V,, converges in distribution to the minimizer of Z(-).

Thus by the lemma A of Knight| (T989), we have
V0, — 0°) - 7(1 — 1) Q0

This finishes the proof of Theorem 2.
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S3 Proof of Theorem 3

Note that u;; = y; — 07 X, arguing as in the proof of Theorem 5 of [Lief al

(P0T5H), for any v € R**? we have

L*(v) = ZwtﬂT(yt — (0 +n"0)"X,) — ZwtpT(yt —0"X,)
t=1

1 n n = n—1/2,TX,
S Lpp— ZwtlpT(u”)Xt + Zwt/ Iug <s)—I(err <0)ds
Vi t=1 t=1 0
r 1 L 7y *
= —v - % ;wt¢7(et7T)Xt + 51} Qiv + op(l)7

where (O} = 1 t;wtft[Ffl(T)]XtTXt = ; + 05(1), and the notation oy(1)

is referred to the bootstrapped probability space. Moreover, L*(v) is a

convex function with respect to v, thus we have the following Bahadur

representation
. 1 &
\/ﬁ(e* _ 9) = Ql_l— Zwt¢7(utT)Xt -+ O;(l) (A7>
Vs
On the other hand, by the proof of Claim (c), we have
. 1 —
Vil — ) = Q7 —= 3" s (ur) Xi + 0,(1). (A8)
v t=1
(A7) and (A=R) imply that
. R 1 <&
t=1

Similar to the proof of Theorem 5 of Liet-all (2015H), we have the left-hand-

side of the (A) is tight. Subsequently, we complete the proof of Theorem
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3 by the central limit theorem and Cramer-Wold device.

S4 Proof of Theorem 4

By Theorems 1 and 2, d is consistent with integer value, and the estimators
of 7z, and 7y are super-consistent. Therefore, we can assume that the true
values of (r%, 7%, d%) are known in advance. As the regime indicator R only

depends on (r?,r%, d%), RY is known as well. For each 0 < p < ppax, let

01 () = argmin E{p,[(y: — 27,01,4)) R{]},

and
08,(29) = argmin E{p-[(y; — xz:pel(p))(l - R?)]L

where notation (,) indicates the dependence on p. Furthermore, let

. 1 © ~ N 1 & .

T = > p{yi—a7,01,0)) R} and Gy ) = n—2 > pd =7, 02,4))(1-R))}
t=1 t=1

with

61,(p) = argmin Z pr{(y: — xgpelv(p))R?},
t=1
and

~

o, = argmin Y pr{(ye — 7,02, (1 — R}
t=1

Define o), = E{p-{(y:—27,01,)) R} } and 03 ) = E{p{ (ys—2],02,0)) (1~

RY)}}. By the fact that 9Ak,(p) —527@) = Op(\/iﬁ), we obtain that, for k = 1, 2,
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and for any p,

Furthermore, we have

0 0 0 0 _ 0
T10) 2 O1,(1) Z -+ = OLpg) = TL(pot1) = **+ = O1(pa)
and
0 0 0 0 . 0
T2,0) Z O2,(1) Z -+ = 02, (pg) = O2,(pgt1) = =+ = 02 (pmane)*

When p < pg, we have

BIC(p)—BIC(po) = 2n1In(G1,(5)/T1,(po) ) +212 In(T2 () / T2, (o) )+ (P—P0) In(11722).

Therefore, we have o (po—1) > o) () When 169 | # 0, and O'g(

0
1ap0 > 0-27( )

po—1) Po

when |05, | # 0. Denote C' =1n[o? /o7 . IP(R} = 1)+Info] /o9, IP(R] =

2,po

0) > 0. Then

BIC(p) — BIC(pg) = Cn + 0,(n). (A.10)

When p > po, it is easy to obtain that n,01 )/01,py) = Op(1). Thus
11 (01, (p)/T1,(p0)) = Op(1). In the same way, we have ny In(Gs () /02, py)) =

O,(1). Then by n; = nP{R) = 1} and ny = nP{R) = 0}, with p > p, we
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have
BIC(p) — BIC(po)
=211 In(G1 () /01, (py)) + 2n210[02 (1) /T2, (p0)] + (P — Do) In(n1722)
= (p = po) In(nang) + Op(1)
=2(p = po) In(n) + (p — po) [P(R} = 1) P(R] = 0)] + O,(1).
Together with (A0), we have BIC(p) — BIC(py) > 0 when p # py. We

complete the proof of Theorem 4.
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