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Abstract: A K-sample testing problem is studied for multivariate semi-Markov
counting processes. Asymptotic distributions and efficiency of a class of nonpara-

metric test statistics are established for certain local alternatives. The concept
of the asymptotic efficiency states that for every nonparametric test in this class,
there is a parametric submodel for which the optimal test has the same asymptotic

power as the nonparametric test. The theory is illustrated by a simulation study
and by analyzing the multivariate failure time data of Thompson et al. (1978).
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1. Introduction

Multivariate failure time data arises from studies involving the recording
of times to two or more distinct events or “failures” on an individual subject.
The failure may be repetitions of essentially the same event or may be events of
entirely different types. Interesting multivariate failure time data was reported
by Thompson et al. (1978) from an experimental animal carcinogenesis study. In
order to analyze these data, Gail, Santner and Brown (1980) proposed several
models and tests for the comparison of multivariate failure time data arising from
two treatment groups.

Two of the important models studied by Gail et al. (1980) are the m-site
model and the semi-Markov model. A careful analysis shows that the K-sample
problem for the m-site model provides an excellent example of the K-sample
problem for the multiplicative intensity model of counting processes. This was
later studied by, among others, Gill (1980), Hjort (1985), and Andersen, Borgan,
Gill and Keiding (1982), (1993), (henceforth ABGK (1982) and ABGK (1993),
respectively). The purpose of this paper is to present an analogous theory for the
K-sample problem for semi-Markov model of counting processes. In particular,
we will propose a class of nonparametric test statistics, derive their asymptotic
distributions, and establish their asymptotic efficiency. It is expected that this
theory will provide a useful alternative for analyzing multivariate failure time
data.
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In order to facilitate the discussion, we need to introduce the following no-
tation. For k = 1, . . . ,K (K ≥ 2), j = 1, . . . , Jk, let Njk(t) denote the number
of events experienced up to time t by the jth individual in the kth experimental
group. Assume that the intensity λjk(·) of Njk(·) is of the semi-Markov form

λjk(t) =
( ∞∑
i=0

hki(t− Tjki)1(Tjki,Tjk(i+1)](t)
)
Yjk(t), (1.1)

relative to a filtration Fjk,t, for k = 1, . . . ,K, j = 1, . . . , Jk. Here Yjk(·) is a
bounded predictable process, hki(·) is a nonnegative deterministic function, and
Tjki = inf{t > 0|Njk(t) = i}. We also assume throughout the paper that for
every fixed t, the σ-fields Fjk,t, for k = 1, . . . ,K, j = 1, . . . , Jk, are independent.

Let H0 denote the null hypothesis that h1i(·) = · · · = hKi(·) for every i =
0, 1, 2, . . . . Let H1 denote the alternative hypothesis that hli(·) �= hki(·) for some
l �= k, and some i = 0, 1, 2, . . . .

We point out that (1.1) formalizes and generalizes the semi-Markov model
discussed in Gail et al. (1980), where hki was assumed to be a constant. We
note also that, assuming K = 2 and h2i(t) = h1i(t)eαi for some constant αi, Gail
et al. (1980) proposed tests for the hypothesis H0. There are several ways to
incorporate covariates in (1.1) for study of the treatment effect. See for example
Cox (1986), Commenges (1986), Chang and Hsiung (1994) and Chang (1995). In
particular, Chang and Hsiung (1994) established the asymptotic normality and
efficiency of a Cox-type estimator proposed by Prentice, Williams and Peterson
(1981).

The statistical problem of interest is to test the hypothesis H0 based on the
data {Njk(t), Yjk(t)| k = 1, . . . ,K, j = 1, . . . , Jk, 0 ≤ t ≤ t0}.

The plan of this paper is as follows. Section 2 presents a class of nonparamet-
ric test statistics for the null hypothesis H0. Section 3 establishes the asymptotic
distributions of the test statistics under both null hypothesis and local alterna-
tives by making use of the Martingale Central Limit Theorem and Le Cam’s
third lemma. Although this is a standard approach, additional work is needed
to introduce a discrete time filtration and exhibit certain martingale structures
in it so as to present an approximation useful in the derivation of asymptotic
distributions.

Section 4 establishes the asymptotic efficiency of the nonparametric test
statistics. We will introduce a class of parametric submodels and show that each
of the nonparametric test statistics is asymptotically equivalent to the asymp-
totically optimal test statistics in one of the parametric submodels. It seems
that this approach to the asymptotic efficiency of a nonparametric test statis-
tic for counting process appeared only in ABGK (1993), which deals with the
multiplicative intensity model.
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Finally, in Section 5, we illustrate our theory by a simulation study and by
analyzing the multivariate failure time data of Thompson et al. (1978).

Readers interested in identifying data for which this semi-Markov model is
needed are encouraged to consult Chang et al. (1997), which provides goodness-
of-fit tests for certain semi-Markov counting process.

2. A Class of Nonparametric Tests

Let (Ω(J),F (J), P (J)) be a probability space such that for every k = 1, . . . ,K,
N1k(·), . . . , NJkk(·) is an i.i.d. sequence of counting processes defined on it, and
(1.1) is satisfied for every Njk(·). Here J = (J1, . . . , JK). We note that the as-
sumption made in the lines following (1.1) implies that {Njk(·)|j = 1, . . . , Jk, k =
1, . . . ,K} is a family of independent processes.

When H0 is true, we let hi(·) = hki(·) and denote by P (J)
0 the corresponding

probability measure.
Let Mjk(t) = Njk(t) −

∫ t
0

∑∞
i=0 hi(s− Tjki)1(Tjki,Tjk(i+1)](s)Yjk(s)ds, which is

a martingale under H0, for every k = 1, . . . ,K, j = 1, . . . , Jk.
Let t > 0. Let Fjk,Tjki+t denote the history of Njk(·) up to the time Tjki+ t.

Let S be a stopping time relative to the filtration {Fjk,Tjki+t|t ≥ 0}. Since
Tjk(i+1) − Tjki is an Fjk,Tjki+t-stopping time, so is S ∧ (Tjk(i+1) − Tjki). Here
a ∧ b is the minimum of a and b. This shows that Tjki + S ∧ (Tjk(i+1) − Tjki)
is an Fjk,t-stopping time. With this in mind, we know that EMjk((Tjki + S ∧
(Tjk(i+1) − Tjki)) ∧ t0) = 0. This implies that

Mjki(t) ≡Mjk((Tjki + t ∧ (Tjk(i+1) − Tjki)) ∧ t0) −Mjk(Tjki ∧ t0) (2.1)

is an Fjk,Tjki+t-martingale. (cf. Chang and Hsiung (1994)).
The relation (2.1) suggests a multiplicative intensity model as follows. Let

Njki(t) = Njk((Tjki+ t∧ (Tjk(i+1) −Tjki))∧ t0)−Njk(Tjki∧ t0), and let Yjki(t) =
Yjk(Tjki + t)1(Tjki,Tjk(i+1)](Tjki + t)1(0,t0](Tjki + t). A straightforward calculation
shows that

Mjki(t) = Njki(t) −
∫ t

0
hi(s)Yjki(s)ds. (2.2)

It follows from (2.1) and (2.2) that {Njki(·)| k = 1, . . . ,K, j = 1, 2, . . . , Jk}
form a multiplicative intensity model for every given i, relative to the filtration
G(J,i)
t , the σ-field generated by Fjk,Tjki+t for k = 1, . . . ,K, j = 1, . . . , Jk.

The above observation based on a random time change technique for semi-
Markov counting process was noted by Prentice, Williams and Peterson (1981)
and Voelkel and Crowley (1984).

Following ABGK (1982), we define

Z
(J,i)
l (t) = J

−1/2
·

K∑
k=1

Jk∑
j=1

∫ t

0
G

(J)
i (s)

(
δlk − Y

(Jl)
·li (s)

Y
(J)
··i (s)

)
dNjki(s). (2.3)
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Since

Z
(J,i)
l (t) = J

−1/2
·

K∑
k=1

Jk∑
j=1

∫ t

0
G

(J)
i (s)

(
δlk − Y

(Jl)
·li (s)

Y
(J)
··i (s)

)
dMjki(s),

we know that (2.3) is a martingale under H0. Here J· = J1 + · · · + JK , G(J)
i (·)

is a G(J,i)
t -predictable process, δlk is 1 if l = k, and is 0 otherwise, Y (Jl)

·li (·) =∑Jl
j=1 Yjli(·), Y (J)

··i (·) =
∑K
k=1

∑Jk
j=1 Yjki(·) and 0

0 ≡ 0.

Let Z(J,i)(·) = (Z(J,i)
1 (·), . . . , Z(J,i)

K (·))′. Let i be given. When J1 = · · · =
JK = J , ABGK (1982, 1993) showed that, in the problem of testing the hy-
pothesis h1i(·) = · · · = hKi(·) based on {(Njki(t), Yjki(t))| 0 ≤ t ≤ t0, k =
1, . . . ,K, j = 1, . . . , J}, a particular test statistic based on Z(J,i)(t0) is asymp-
totically chi-squared under both null and alternative hypotheses. Moreover it is
optimal in the sense that it is asymptotically equivalent to the best test statistic
in a parametric submodel (cf. ABGK (1993), p. 615).

Let Σ̂(J)(t) be the matrix whose (l,m)-entry is

Σ̂(J)
lm (t) = J−1

·
∞∑
i=0

K∑
k=1

Jk∑
j=1

∫ t

0

(
G

(J)
i (s)

)2Y·mi(s)
Y··i(s)

(
δlm − Y·li(s)

Y··i(s)

)
dNjki(s),

which is symmetric and asymptotically equivalent to

J−1
·

∞∑
i=0

K∑
k=1

Jk∑
j=1

∫ t

0

(
G

(J)
i (s)

)2(
δlk − Y·li(s)

Y··i(s)

)(
δmk − Y·mi(s)

Y··i(s)

)
dNjki(s).

Let Σ̂(J)−(t) be a generalized inverse of Σ̂(J)(t). The statistic we propose for
testing H0 is

X(J) ≡ Z(J)(t0)′
∑̂(J)−

(t0)Z(J)(t0), (2.4)

where Z(J)(t0) =
∑∞
i=0 Z(J,i)(t0).

We will reject H0 if X(J) ≥ Cα, where Cα is the (1 − α)th quantile of
the central chi-squared distribution with degree of freedom K − 1. The local
asymptotic power can be obtained by computing P (X ≥ Cα), where X has a
noncentral chi-squared distribution with degree of freedom K − 1 and noncen-
trality η(t0)′Σ(t0)−η(t0), as given in Theorem 3.2. In practice, both η and Σ are
to be estimated.

3. Asymptotic Distributions of the Test Statistics

In this section we first establish the asymptotic distributions of Z(J)(·) un-
der both null hypothesis and local alternatives, from which we can derive the
asymptotic distributions of X(J). However, since Z(J)(·) is not a martingale, we
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will introduce a discrete time filtration and exhibit certain martingale structures
relative to this filtration and show that Z(J)(·) can be approximated by a martin-
gale Z̄(J)(·). With this, we can apply the Martingale Central Limit Theorem to
obtain the asymptotic distribution of Z(J)(·) under null hypothesis. Its asymp-
totic distribution under local alternatives is established by introducing a suitable
local model, specifying its likelihood and then applying Le Cam’s third lemma.

In order to increase the readability of this section, we will present the results
in Subsection 3.1 and give the technical proofs in Subsection 3.2.

3.1. Local models, likelihoods and asymptotic distributions

The asymptotics of this paper are developed for the local model defined
by the bounded deterministic functions γki(·), k = 1, . . . ,K, i = 0, 1, 2, . . . , as
follows.

Let Q(J) denote a probability measure on (Ω(J),F (J)) so that N1k(·), . . . ,
NJkk(·) are i.i.d. counting processes with the intensity λjk(·) of Njk(·) equal to

{ ∞∑
i=0

hi(t− Tjki)
(
1 + J

−1/2
· γki(t− Tjki)

)
1(Tjki,Tjk(i+1)](t)

}
Yjk(t), (3.1)

for k = 1, . . . ,K, j = 1, . . . , Jk and the Njk(·)’s independent. Here we require
1 + J

−1/2
· γjk(·) ≥ 0.

We note that the existence of the probability measure Q(J) follows from the
existence of P (J)

0 , Doléans-Dade’s exponential martingale theorem, and the direct
Radon-Nikodym derivative theorem (cf. Brémaud (1981), p. 165–167). In fact,
we have the following log-likelihood process L(J)(·) on F (J)

t , the σ-field generated
by Fjk,t, k = 1, . . . ,K, j = 1, . . . , Jk:

L(J)(t) ≡ log
dQ(J)

dP
(J)
0

=
K∑
k=1

Jk∑
j=1

∫ t

0

∞∑
i=0

log(1 + J
−1/2
· γki(s− Tjki))1(Tjki,Tjk(i+1)](s)dNjk(s)

−
K∑
k=1

Jk∑
j=1

∫ t

0

∞∑
i=0

hi(s− Tjki)J
−1/2
· γki(s− Tjki)1(Tjki,Tjk(i+1)](s)Yjk(s)ds.

(3.2)

The following assumptions are needed for the main theorems in this paper.
(A1) G(J)

i (t) converges in probability to a deterministic function gi(t), as J· goes
to infinity, for every i = 0, 1, 2, . . . and every t ∈ [0, t0].



216 I-SHOU CHANG, YUAN-CHUAN CHUANG AND CHAO A. HSIUNG

(A2) There exists a constant M > 0 such that hi(t), |γki(t)|, |G(J)
i (t)|, |gi(t)|, and

Yjk(t) are all bounded by M for every i = 0, 1, 2 . . . , k = 1, . . . ,K, Jk =
1, 2, . . . , j = 1, . . . , Jk and t ∈ [0, t0].

(A3) For every k = 1, . . . ,K, j = 1, . . . , Jk, Njk(·) is non-explosive, i.e., E (t0 −
Tjki)+ goes to 0 as i goes to infinity.

(A4) For every k = 1, . . . ,K, there exists a constant αk > 0 such that Jk/J·
converges to αk as J· goes to infinity.
Let yki(t) = EY1ki(t) and y·i(t) =

∑K
k=1 yki(t). Let

σ2(t0) =
∞∑
i=0

K∑
k=1

∫ ∞

0
αkγ

2
ki(s)hi(s)yki(s)ds,

let Σ(t0) be a matrix with its (l, k)-entry

Σlk(t0) =
∞∑
i=0

∫ ∞

0
αkg

2
i (s)hi(s)yli(s)

(
δlk − yki(s)

y·i(s)

)
ds

and let η(t0) be a vector with l-component

ηl(t0) =
∞∑
i=0

K∑
k=1

∫ ∞

0
αkgi(s)γki(s)hi(s)yki(s)

(
δlk − yli(s)

y·i(s)

)
ds.

Then we have the following weak convergences.

Theorem 3.1. Assume (A1)–(A4) hold. Then,
(i) Under P (J)

0 , (L(J)(t0),Z(J)(t0))
′ converges weakly, as J· goes to infinity, to

a normal random vector with mean (−1
2σ

2(t0),0)′ and covariance matrix(
σ2(t0) η(t0)

′

η(t0) Σ(t0)

)
;

(ii) Under Q(J), (L(J)(t0),Z(J)(t0))′ converges weakly, as J· goes to infinity, to a
normal random vector with mean (1

2σ
2(t0), η(t0))

′ and the same covariance
matrix as in (i).

Proposition 3.1. Assume (A1)–(A4) hold. Σ̂(J)(t0) is an asymptotically con-
sistent estimator for Σ(t0) under both P (J)

0 and Q(J).
The following theorem establishes the weak convergences of the test statistics

X(J). Let H(J)
1 denote the hypothesis that (3.1) is valid.

Theorem 3.2. Assume (A1)–(A4) hold. Then,
(i) Under the null hypothesis H0, X(J) converges weakly to χ2(K−1), the central

chi-squared distribution with degree of freedom K − 1, as J· goes to infinity;
(ii) Under the local alternatives H(J)

1 , X(J) converges weakly to χ2(K − 1, η(t0)′

Σ(t0)−η(t0)), the noncentral chi-squared distribution with degree of freedom
K − 1 and noncentrality η(t0)′Σ(t0)−η(t0), as J· goes to infinity.
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3.2. Proofs

We omit the proof for Theorem 3.2, since it follows from Theorem 3.1 by
applying the continuous mapping theorem and Proposition 3.1. Proposition 3.1
is easy and we do not prove it either. We now prove Theorem 3.1, which is
preceded by several lemmas.

We first introduce a martingale Z̄(J)(·) to approximate Z(J)(·).
Let

Z̃
(J,i)
l (t) = J

−1/2
·

K∑
k=1

Jk∑
j=1

∫ t

0
gi(s)

(
δlk − yli(s)

y·i(s)

)
dMjki(s)

= J
−1/2
·

K∑
k=1

Jk∑
j=1

∫ t

0
gi(s)

(
δlk − yli(s)

y·i(s)

)
1(Tjki,Tjk(i+1)](Tjki + s)

1(0,t0](Tjki + s)dMjk(Tjki + s)

= J
−1/2
·

K∑
k=1

Jk∑
j=1

∫ (Tjki+t∧(Tjk(i+1)−Tjki))∧t0

Tjki∧t0
gi(s− Tjki)

(
δlk − yli(s− Tjki)

y·i(s− Tjki)

)
dMjk(s). (3.3)

Since (Tjki + t ∧ (Tjk(i+1) − Tjki)) ∧ t0 = Tjk(i+1) ∧ t0 when t ≥ t0, we know,
if t ≥ t0, then

Z̃
(J,i)
l (t)=J−1/2

·
K∑
k=1

Jk∑
j=1

∫ t0

0
gi(s−Tjki)

(
δlk− yli(s−Tjki)

y·i(s−Tjki)
)
1(Tjki,Tjk(i+1)](s)dMjk(s).

Let Z̃(J)
l (·) =

∑∞
i=0 Z̃

(J,i)
l (·) and let

Z̄
(J)
l (t)=J−1/2

·
K∑
k=1

Jk∑
j=1

∫ t

0

∞∑
i=0

gi(s−Tjki)
(
δlk−yli(s−Tjki)

y·i(s−Tjki)
)
1(Tjki,Tjk(i+1)](s)dMjk(s),

which is a martingale relative to the calender time filtration F (J)
t . Let Z̃(J)(·) =

(Z̃(J)
1 (·), . . . , Z̃(J)

K (·))′, and Z̄(J)(·) = (Z̄(J)
1 (·), . . . , Z̄(J)

K (·))′. Note that

Z̃
(J)
l (t) = Z̄

(J)
l (t0) (3.4)

if t ≥ t0, which is needed in the proof of Theorem 3.1.

Lemma 3.1. If for each i, Mi(t) is a mean zero G(J,i)
t -martingale and is G(J,i+1)

0 -
measurable, then for every given t ≥ 0,

∑I
i=0Mi(t) is a martingale with respect

to the filtration {G(J,I+1)
0 , I = 0, 1, 2, . . .}.
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Lemma 3.2. Assume (A1)–(A3) hold. Then, under P (J)
0 , limJ·→∞ E (Z(J)

l (t0)−
Z̃

(J)
l (t0))2 = 0.

Let Ỹjki(t, s) = Yjk(Tjki + s)1(Tjki,Tjk(i+1)](Tjki + s)1(0,t](Tjki + s), ỹki(t, s) =
E Ỹ1ki(t, s) and ỹ·i(t, s) =

∑K
k=1 ỹki(t, s). Note that Yjki(·) = Ỹjki(t0, ·) and

yki(·) = ỹki(t0, ·).
Lemma 3.3. Assume (A1)–(A4) hold. Then under P (J)

0 as J· goes to infinity,
(L(J)

1 (t), Z̄(J)(t))′ converges weakly to a normal random vector with mean 0 and

covariance matrix
(
σ2(t) η(t)′

η(t) Σ(t)

)
for t ≥ 0, where

L(J)
1 (t) = J

−1/2
·

K∑
k=1

Jk∑
j=1

∫ t

0

∞∑
i=0

γki(s − Tjki)1(Tjki,Tjk(i+1)](s)dMjk(s), (3.5)

σ2(t) =
∞∑
i=0

K∑
k=1

∫ ∞

0
αkγ

2
ki(s)hi(s)ỹki(t, s)ds,

Σ(t) is a matrix whose (l, k)-entry is

Σlk(t) =
∞∑
i=0

∫ ∞

0
αkg

2
i (s)hi(s)

(
δlkỹli(t, s) − ỹli(t, s)yki(s) + yli(s) tildeyki(t, s)

y·i(s)

+
yli(s)yki(s)ỹ·i(t, s)

y2·i(s)

)
ds,

and η(t) is a vector whose l-component is

ηl(t) =
∞∑
i=0

K∑
k=1

∫ ∞

0
αkgi(s)γki(s)hi(s)

(
δlk − yli(s)

y·i(s)

)
ỹki(t, s)ds.

Lemma 3.4. Assume (A2)–(A4) hold. Then under P (J)
0 as J· goes to infinity,

L(J)
1 (t) − L(J)(t) converges in probability to 1

2σ
2(t).

Proof of Theorem 3.1. It follows from Lemma 3.2, Lemma 3.4, and (3.4)
that (L(J)(t0)− 1

2σ
2(t0),Z(J)(t0))′ and (L(J)

1 (t0), Z̄(J)(t0))′ have the same limiting
distribution. This together with Lemma 3.3 shows that (L(J)(t0),Z(J)(t0))′ has
the desired limiting distribution under P (J)

0 . Finally, the weak convergence of
(L(J)(t0),Z(J)(t0))′ under Q(J) follows from Le Cam’s third lemma in a standard
way. This completes the proof.

Proof of Lemma 3.1. Since G(J,i)
0 ⊂ G(J,I+1)

0 for i ≤ I and
∑I
i=0Mi(t) is



K-SAMPLE TEST FOR SEMI-MARKOV MODEL 219

G(J,I+1)
0 -measurable, this lemma is proved by observing the following equations.

E
( I∑
i=0

Mi(t)|G(J,I)
0

)
=

I−1∑
i=0

Mi(t) + E (MI(t)|G(J,I)
0 ) =

I−1∑
i=0

Mi(t).

Proof of Lemma 3.2. It follows from (2.3) and (3.3) that both Z
(J,i)
l (t) and

Z̃
(J,i)
l (t) satisfy the conditions in Lemma 3.1. With this, we observe that

E
( I∑
i=0

Z
(J,i)
l (t0) −

I∑
i=0

Z̃
(J,i)
l (t0)

)2

=
I∑
i=0

E (Z(J,i)
l (t0) − Z̃

(J,i)
l (t0))2 (3.6)

=
I∑
i=0

E
{
J
−1/2
·

K∑
k=1

Jk∑
j=1

∫ t0

0

[
G

(J)
i (s)

(
δlk−Y

(Jl)
·li (s)

Y
(J)
··i (s)

)
−gi(s)

(
δlk− yli(s)

y·i(s)

)]
dMjki(s)

}2

=
I∑
i=0

E J−1
·

K∑
k=1

Jk∑
j=1

∫ t0

0

[
G

(J)
i (s)

(
δlk−Y

(Jl)
·li (s)

Y
(J)
··i (s)

)
− gi(s)

(
δlk − yli(s)

y·i(s)

)]2
hi(s)Yjki(s)ds

=
I∑
i=0

K∑
k=1

∫ t0

0
E
[
G

(J)
i (s)

(
δlk − Y

(Jk)
·li (s)

Y
(J)
··i (s)

)
− gi(s)

(
δlk − yli(s)

y·i(s)

)]2

hi(s)J−1
·

Jk∑
j=1

Yjki(s)ds. (3.7)

We note that the first equality uses Lemma 3.1 and the martingale property, and
the third equality uses the quadratic variation formula of a stochastic integral.

Let

FJ·ki(t) = E
{[
G

(J)
i (t)

(
δlk− Y

(Jk)
·li (t)

Y
(J)
··i (t)

)
−gi(t)

(
δlk− yli(t)

y·i(t)

)]2
hi(t)J−1

·
Jk∑
j=1

Yjki(t)
}
.

From (A2) there is a constant C > 0 such that

|FJ·ki(t)| ≤ C, (3.8)

for every i = 0, 1, . . . , k = 1, . . . ,K, J· = 1, 2, . . . , and t ∈ [0, t0]. Thus, it follows
from (A1), (3.8), the Law of Large Numbers, and the Dominated Convergence
Theorem, that for every t ∈ [0, t0], FJ·ki(t) converges to zero as J· goes to infinity.
This implies that (3.6) converges to zero as J· goes to infinity.
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Calculations similar to (3.7) and (3.8), together with Fatou’s Lemma, give
the following inequality:

E
{ ∞∑
i=I+1

(
Z

(J,i)
l (t0) − Z̃

(J,i)
l (t0)

)}2 ≤ C

J·

K∑
k=1

Jk∑
j=1

∞∑
i=I+1

E 1(Tjki∧t0,Tjk(i+1)∧t0](s)

≤ C ·
K∑
k=1

E (t0 − T1kI)+, (3.9)

for a suitable constant C. Because of the non-explosiveness of Njk(·), we know
(3.9) is small if I is large.

We can now choose a large I to make (3.9) small and then a large J· to make
(3.6) small. This shows that E (Z(J)

l (t0) − Z̃
(J)
l (t0))2 is small if J· is large and

completes the proof.

Proof of Lemma 3.3. Since both L(J)
1 (·) and Z̄(J)(·) are martingales, the proof

is a standard application of the Martingale Central Limit Theorem (cf. ABGK
(1982), (1993), or Fleming and Harrington (1991)). We omit the details of the
proof.

Proof of Lemma 3.4. Let

L(J)
2 (t) = − 1

2J·

K∑
k=1

Jk∑
j=1

∫ t

0

∞∑
i=0

γ2
ki(s− Tjki)1(Tjki,Tjk(i+1)](s)dNjk(s).

Define L(J)
3 (t) by requiring L(J)(t) = L(J)

1 (t) + L(J)
2 (t) + L(J)

3 (t). It is clear that
L(J)

2 (t) converges in probability to

−1
2

K∑
k=1

αkE
∫ t

0

∞∑
i=0

γ2
ki(s− T1ki)1(T1ki,T1k(i+1)](s)hi(s − T1ki)Y1k(s)ds

= −1
2

∞∑
i=0

K∑
k=1

∫ ∞

0
αkγ

2
ki(s)hi(s)E Ỹ1ki(t, s)ds

= −1
2

∞∑
i=0

K∑
k=1

∫ ∞

0
αkγ

2
ki(s)hi(s)ỹki(t, s)ds,

as J· goes infinity. Since | log(1 + x) − x+ 1
2x

2| ≤ cx3 for some constant C on a
neighborhood of 0, we have

|L(J)
3 (t)| ≤ C

J
3
2·

K∑
k=1

Jk∑
j=1

∫ t

0

∞∑
i=0

γ3
ki(s− Tjki)1(Tjki,Tjk(i+1)](s)dNjk(s)

≤ CM3

J
3
2·

K∑
k=1

Jk∑
j=1

(Njk(t) + 1),
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which converges to 0 as J· goes to infinity. This completes the proof.

4. Asymptotic Efficiency of the Nonparametric K-sample Tests

In this section we introduce a parametric submodel and study the hypothesis
testing problem of H(J)

0 versus H(J)
1 in the submodel. In particular, by consid-

ering the likelihood process in this submodel, we are able to present its optimal
test statistic in Theorem 4.1. Subsection 4.2 shows that the nonparametric test
statistic of Section 3 is asymptotically equivalent to the statistic introduced in
Subsection 4.1 for the parametric submodel, which establishes the asymptotic
efficiency of the test statistic.

4.1. The parametric submodel

Assume that the function γki(·) in (3.1) is of the form

γki(t) = γi(t)
(
φk +

∑K
l=1 ψlyli(t)
y·i(t)

)
, (4.1)

where φ1, . . . , φK , ψ1, . . . , ψK are unknown parameters and γi(·) is a known
bounded deterministic function. With this assumption, we have a paramet-
ric submodel and we will treat ψ1, . . . , ψK as nuisance parameters. The null
hypothesis now becomes H(J)

0 : φ1 = · · · = φK and the alternative becomes
H

(J)
1 : φl �= φk for some l �= k.

We set the following notation to ease the discussion. Let

φ = (φ1, . . . , φK)′, ψ = (ψ1, . . . , ψK)′,

U
(J)
l = J

−1/2
·

∞∑
i=0

Jl∑
j=1

∫ t0

0
γi(s)dMjli(s), for l = 1, . . . ,K,

V
(J)
l = J

−1/2
·

∞∑
i=0

K∑
k=1

Jk∑
j=1

∫ t0

0
γi(s)

yli(s)
y·i(s)

dMjki(s), for l = 1, . . . ,K,

U(J) = (U (J)
1 , . . . , U

(J)
K )′, V(J) = (V (J)

1 , . . . , V
(J)
K )′,

σ2(φ,ψ, t0) =
∞∑
i=0

K∑
k=1

∫ ∞

0
αkγ

2
i (s)

(
φk +

∑K
l=1 ψlyli(s)
y·i(s)

)2
hi(s)yki(s)ds,

I11
lk = δlk

∞∑
i=0

∫ ∞

0
αkγ

2
i (s)yli(s)hi(s)ds, for l = 1, . . . ,K, k = 1, . . . ,K,

I22
lk =

∞∑
i=0

∫ ∞

0
γ2
i (s)

yli(s)yki(s)
y·i(s)

K∑
m=1

αmymi(s)
y·i(s)

hi(s)ds, for l = 1, . . . ,K,

k = 1, . . . ,K,
I12
lk = I21

lk = I22
lk , I11 =

(
I11
lk

)
K×K , I12 = I21 = I22 = (I22

lk )K×K,
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and

I =

(
I11 I12

I21 I22

)
2K×2K

.

Let Q(J,φ,ψ) denote the probability measure specified by (4.1), and let
L(J)(φ,ψ, t0)= log dQ(J,φ,ψ)

dP
(J)
0

. From Theorem 3.1 we have the following lemma.

Lemma 4.1. (i) Under P (J)
0 as J· goes to infinity, L(J)(φ,ψ, t0) converges weakly

to a normal random variable with mean −1
2σ

2(φ,ψ, t0) and variance σ2(φ,ψ, t0).
(ii) Under Q(J,φ,ψ) as J· goes to infinity, L(J)(φ,ψ, t0) converges weakly to a

normal random variable with mean 1
2σ

2(φ,ψ, t0) and variance σ2(φ,ψ, t0).

Lemma 4.2.
(
φ

ψ

)′ I
(
φ

ψ

)
= σ2(φ,ψ, t0).

Proof of Lemma 4.2. Let el = (
l︷ ︸︸ ︷

0, . . . , 0, 1, 0, . . . , 0)′ ∈ R2K and

elk = (
l︷ ︸︸ ︷

0, . . . , 0, 1, 0, . . . , 0, 1,
K−k︷ ︸︸ ︷

0, · · · , 0)′ ∈ R2K .

The lemma follows from the following straightforward calculations: σ2(el,0, t0) =
I11
ll , σ2(elk,0, t0) = I11

ll +I11
kk, σ

2(0, el, t0) = I22
ll , σ2(0, elk, t0) = I22

ll +2I22
lk +I22

kk,
and σ2(el, ek, t0) = I11

ll + 2I12
lk + I22

kk.

Lemma 4.3. Under both P (J)
0 and Q(J,φ,ψ),

L(J)(φ,ψ, t0) =

(
φ

ψ

)′ (
U(J)

V(J)

)
− 1

2

(
φ

ψ

)′
I
(
φ

ψ

)
+ op(1). (4.2)

Proof of Lemma 4.3. It follows from (3.2), (3.5), Lemma 3.4 and Lemma 4.2
that, as J· goes to infinity,

L(J)(φ,ψ, t0)

=J−1/2
·

∞∑
i=0

K∑
k=1

Jk∑
j=1

∫ t0

0
γi(s)

(
φk+

∑K
l=1 ψlyli(s)
y·i(s)

)
dMjki(s)− 1

2
σ2(φ,ψ, t0)+op(1)

=
K∑
k=1

φk

J
1/2
·

∞∑
i=0

Jk∑
j=1

∫ t0

0
γi(s)dMjki(s)+

K∑
l=1

ψl

J
1/2
·

∞∑
i=0

K∑
k=1

Jk∑
j=1

∫ t0

0
γi(s)

yli(s)
y·i(s)

dMjki(s)

−1
2
σ2(φ,ψ, t0) + op(1)

=

(
φ
ψ

)′ (
U(J)

V(J)

)
− 1

2

(
φ
ψ

)′
I
(
φ
ψ

)
+ op(1).
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This completes the proof.

With Lemma 4.1, Lemma 4.3 and the Cramér-Wold device, we can obtain
the following weak convergences.

Lemma 4.4. (i) Under P (J)
0 as J· goes to infinity, (U(J),V(J))′ converges weakly

to a normal random vector with mean 0 and covariance matrix I.
(ii) Under Q(J,φ,ψ) as J· goes to infinity, (U(J),V(J))′ converges weakly to a

normal random vector with mean I · (φ,ψ)′ and covariance matrix I.

It follows from Lemma 4.4 that the optimal test for the parametric submodel
testing problem is based on Ũ(J), defined by

Ũ(J) ≡ U(J) − I12(I22)−1V(J), (4.3)

whose asymptotic distributions are given in the following lemma.

Lemma 4.5. (i) Under H(J)
0 as J· goes to infinity, Ũ(J) converges weakly to a

normal random vector with mean 0 and covariance matrix I11|22, where I11|22 ≡
I11 − I22.

(ii) Under H(J)
1 as J· goes to infinity, Ũ(J) converges weakly to a normal

random vector with mean I11|22 · φ and covariance matrix I11|22.

Proof of Lemma 4.5. Let (Ĩ1, . . . , Ĩ2K)′ = I · (φ,ψ)′. It follows from Lemma
4.4, the Continuous Mapping Theorem and multivariate normal theory that,
under Q(J,φ,ψ) and as J· goes to infinity, Ũ(J) converges weakly to a normal
distribution with mean (Ĩ1, . . . , ĨK)′ − I12(I22)−1(ĨK+1, . . . , Ĩ2K)′ and variance
I11 − I12(I22)−1I21. Then the second weak convergence of the lemma follows
by observing that (Ĩ1, . . . , ĨK)′ −I12(I22)−1(ĨK+1, . . . , Ĩ2K)′ = (I11 −I12) · φ =
I11|12 · φ and that I11 − I12(I22)−1I21 = I11 − I22 = I11|12. The fact that
(I11 − I12) · φ = 0 if and only if φ1 = · · · = φK establishes the first weak
convergence and completes the proof.

From Lemma 4.5, the test statistic W (J) ≡ (Ũ(J))′(I11|12)−Ũ(J) is an asymp-
totically optimal test for the parametric submodel testing problem in the sense
that it is asymptotically most powerful in an invariant class of tests, with power
invariant under transformations of the parameters of interest (φ2 − φ1, . . . , φK −
φK−1) which preserve the effective information for these parameters, i.e., tests
whose power is constant on the ellipsoids φ′I11|12φ = constant. See Choi (1989)
for a related concept of optimality.

The asymptotic distribution of W (J) is now derived as a consequence of
Lemma 4.5.

Theorem 4.1. Under H(J)
0 , W (J) converges weakly to χ2(K − 1); under H(J)

1 ,
W (J) converges weakly to χ2(K − 1, φ′I11|12φ), where K − 1 = rank of I11|12.
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4.2. Asymptotic efficiency of the nonparametric tests

From Theorem 3.2 and Theorem 4.1, the nonparametric test statistic X(J)

and the asymptotically optimal test statistic W (J) for the parametric submodel
(4.1) have the same asymptotic distribution under the null hypothesis. By con-
sidering a specific parametric submodel of the form (4.1), we can show further
that X(J) and W (J) are asymptotically equivalent.

Theorem 4.2. If γi = gi for i = 0, 1, 2, . . . in (4.1), then the asymptotic distri-
bution of W (J) is the same as that of X(J) under the local alternative H(J)

1 for
(4.1).

Proof of Theorem 4.2. From Theorem 3.2 and Theorem 4.1, we need only
show that

η(t0)′Σ(t0)−η(t0) = φ′I11|12φ. (4.4)

Observe that

ηl(t0) =
∞∑
i=0

K∑
k=1

∫ ∞

0
αkgi(s)γki(s)hi(s)yki(s)

(
δlk − yli(s)

y·i(s)

)
ds

=
∞∑
i=0

K∑
k=1

∫ ∞

0
αkg

2
i (s)

(
φk +

∑K
m=1 ψmymi(s)

y·i(s)

)
hi(s)yki(s)

(
δlk − yli(s)

y·i(s)

)
ds

=
∞∑
i=0

K∑
k=1

∫ ∞

0
αkg

2
i (s)hi(s)yki(s)

(
φkδlk +

∑K
m=1 ψmymi(s)

y·i(s)
δlk

−φk yli(s)
y·i(s)

−
∑K
m=1 ψmymi(s)

y·i(s)
yli(s)
y·i(s)

)
ds

=
∞∑
i=0

∫ ∞

0
g2
i (s)hi(s)

(
αlyli(s)φl +

K∑
m=1

ψmymi(s)
y·i(s)

αlyli(s)

−
K∑
k=1

αkyki(s)φk
yli(s)
y·i(s)

−
K∑
m=1

ψmymi(s)
y·i(s)

yli(s)
K∑
k=1

αkyki(s)
y·i(s)

)
ds

=
∞∑
i=0

∫ ∞

0
g2
i (s)hi(s)yli(s)

(
αlφl −

K∑
k=1

αkφkyki(s)
y·i(s)

+
K∑
m=1

ψmymi(s)
y·i(s)

(
αl −

K∑
k=1

αkyki(s)
y·i

))
ds

= ((I11 − I22)φ)l = (I11|12φ)l, (4.5)

and

Σlk(t0) =
∞∑
i=0

∫ ∞

0
αkg

2
i (s)hi(s)yli(s)

(
δlk − yki(s)

y·i(s)

)
ds
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= ((I11 − I22))lk = (I11|12)lk. (4.6)

With (4.5) and (4.6), we get (4.4) immediately. This completes the proof.

5. Simulation and Example

The first part of this section describes a computer simulation of a two-sample
semi-Markov model under the null hypothesis. We generate counting processes
Njk(t), 0 ≤ t ≤ 1, satisfying the following properties. {Njk(·)} are independent
for k = 1, 2 and j = 1, 2, . . . , J . The intensity of Njk(·) is of the form λjk(·) given
in (1.1), with h1i(t) = (9− i)+ · 1.2, for i = 0, 1, 2, . . . , and Yjk(·) = 1, and we set
h2i(·) = h1i(·), for i = 0, 1, 2, . . .

Let X(J) be the statistic in (2.4) with weight process G(J)
i (·) ≡ 1, for i =

0, 1, 2, . . . , i.e.,

X(J)=
( ∞∑

i=0

J∑
j=1

∫ 1

0

Y·2i(s)
Y··i(s)

dNj1i(s)− Y·1i(s)
Y··i(s)

dNj2i(s)
)2( ∞∑

i=0

J∑
j=1

∫ 1

0

Y·2i(s)
Y··i(s)

dNj1i(s)
)−1

,

where Yjki(s) ≡ 1(Tjki,Tjk(i+1)](Tjki + s)1(0,1](Tjki + s).
A total of n = 5000 data sets are generated. From these data sets the em-

pirical distribution F̂
(J)
n of X(J) is computed at quantile points (χ2(1))−1(t) for

t = 0.05, 0.1, . . . , 0.95, with J = 50, where χ2(1) is the central chi-squared distri-
bution with one degree of freedom. These numbers are presented in Table 5.1.
It indicates clearly that F̂ (J)

n ((χ2(1))−1(t)) is quite close to t.

Table 5.1. The empirical distribution of X(J) at quantile points (χ2(1))−1(t)
for different values of t, under the null hypothesis h2i(·) = h1i(·), for i =
0, 1, 2, . . .

t 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60
(χ2(1))−1(t) 3.841 2.705 2.072 1.642 1.323 1.074 0.873 0.708

F̂
(J)
n ((χ2(1))−1(t)) 0.949 0.898 0.846 0.794 0.745 0.696 0.645 0.596

0.55 0.50 0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05
0.571 0.455 0.357 0.275 0.206 0.148 0.102 0.064 0.036 0.016 0.004
0.552 0.504 0.447 0.398 0.349 0.299 0.251 0.197 0.147 0.098 0.051

We now illustrate the theory of this paper by analyzing the multivariate fail-
ure time data of Thompson et al. (1978) in an experimental animal carcinogenesis
study. The data summarized here are taken from Gail et al. (1980).

Seventy-six animals were injected with a carcinogen for mammary cancer at
day zero, then all animals were given retinyl acetate to prevent cancer for sixty
days. After 60 days, the 48 animals which remained tumor-free were randomly as-
signed to continued retinoid prophylaxis (Treatment Group 1) or control (Treat-
ment Group 2). Rats were palpated for tumors twice weekly, and observation
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ended 182 days after the initial carcinogen injection. The times to development
of mammary cancer for 23 rats in treatment group 1 and 25 rats in the control
group are given.

Because rats were palpated only twice a week, two or more tumors may be
found at the same time on a given rat. In order to analyze these data with our
theory, in which it is required that no two events occur at the same time, we
transform the data by the following random mapping. If x is one of the times
to tumor of a certain rat reported in Gail et al. (1980), we replace it by m(x),
where m(x) is a number chosen randomly from (x−60−3.5

182−60 , x−60
182−60 ) according to

the uniform distribution.
Accepting the above randomization device, the result is as follows. The test

statistic X(J) with G(J)
i = 1 in (2.4) has value 12.9 for the transformed data, a p-

value of 3.3×10−4. This suggests that H0 is to be rejected, very nuch in line with
the results reported in Gail et al. (1980). We will investigate the appropriateness
of the randomization device for semi-Morkov counting process in a future study.
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