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Abstract: This paper shows how to compute the Fisher information matrix and

the asymptotic covariance matrix for maximum likelihood estimators for a wide

class of parametric models that include combinations of censoring, truncation, and

explanatory variables. Although the models are based on underlying location-scale

distributions, applications extend, for example, directly to the closely related and

widely used Weibull and lognormal distributions. This paper unifies and generalizes

a number of previously published results. The results are important for determining

needed sample sizes and for otherwise planning statistical studies, especially in the

areas of reliability and survival analysis where censoring and/or truncation are

generally encountered.
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1. Introduction

1.1. Motivation

When planning an experiment or other study that will involve the collection
of data, it is generally important to evaluate the precision that the study will
provide to estimate parameters and functions of parameters of interest. Such
evaluations are essential for determining the test plan and the sample size to
be used in the study. With complete data and an assumed normal distribution,
standard methods found in text books on experimental design, survey design,
and statistical methods provide the necessary information. For studies involv-
ing nonnormal distributions, truncation, and/or censored data, the necessary
evaluations are more complicated. Typically exact theory is not available and
asymptotic approximations, sometimes supplemented by simulations, are used in
the planning stage.

1.2. Maximum likelihood estimation

Let L(θ) =
∑n

i=1 Li(θ) denote the total log-likelihood for a specified model
and test plan consisting of n independent but not necessarily identically dis-
tributed observations. Here Li(θ) is the contribution of the ith observation to
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the total log-likelihood. Let g(θ) be a vector function g(θ) of the parameters
for which all the first derivatives with respect to the elements of θ are contin-
uous and let θ̂ be the ML estimator of θ. Under standard regularity conditions
(e.g., page 429 in Lehmann (1983) or Bhattacharyya (1985))

√
n[g(θ̂) − g(θ)] is

asymptotically multivariate normal with mean zero and covariance matrix

Σĝ =
[∂g(θ)

∂θ

]TI−1
[∂g(θ)

∂θ

]
, (1)

where

I = lim
n→∞

{ 1
n

E
[
− ∂2L(θ)

∂θ∂θT

]}
= lim

n→∞

{ 1
n

n∑
i=1

E
[
− ∂2Li(θ)

∂θ∂θT

]}
(2)

and the expectation is with respect to the joint distribution of the data. Although
the elements of the matrix I depend on θ, we suppress this in the notation. For a
large class of model situations, including models with independent and identically
distributed observations, nI = Iθ where Iθ is the well known Fisher information
matrix for θ

Iθ = E
[
− ∂2L(θ)

∂θ∂θT

]
=

n∑
i=1

E
[
− ∂2Li(θ)

∂θ∂θT

]
.

1.3. Applications

Although equation (1) can be evaluated at θ̂ to estimate the covariance ma-
trix, the common practice is to use the “local” estimate of Σĝ that instead,
estimates the expectations in Iθ with the sample mean of the observed second
derivatives over the n observations. Primary applications of the results in this
paper, providing easy-to-compute expressions for expected information, will be
for planning statistical studies involving censoring and truncation. The results
are further extended to DOA (dead on arrival) and LFP (limited failure prob-
ability) models that have discrete atoms of probability at the extremes in the
sample space.

Lawless (1982), page 171 and Nelson (1982), page 342, (1990), page 368
give formulas for computing the elements of Iθ for some simple location-scale
models involving censoring and discuss test planning applications. Some other
specific applications include the following. Nelson and Meeker (1978) show how
to find optimal regression designs for accelerated life tests. Meeter and Meeker
(1994) find optimum accelerated life tests for a Weibull model in which the scale
and shape parameters are functions of stress. David (1981), page 280 shows
how to use the Fisher information matrix to determine coefficients for optimal
asymptotic estimation of µ and σ using linear combinations of order statistics.
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Meeker, Escobar, and Hill (1992) show how to find the minimum sample size
needed to estimate the Weibull failure rate with specified precision in life tests
with censored data. The algorithm by Escobar and Meeker (1994) facilitates these
and other test-planning applications for the following location–scale distributions:
smallest extreme value, largest extreme value, normal, and logistic distributions.
Applications extend directly to the related Weibull, lognormal, and loglogistic
distributions. For example, if a time to failure T follows a Weibull distribution,
then Y = log(T ) follows a smallest extreme value distribution.

This paper shows how to use the basic elements provided by the algorithm in
Escobar and Meeker (1994) and the expressions in Meeker (1986) to compute Iθ

and thus Σĝ for a wider range of models involving explanatory variables for both
location and scale parameters, time, failure, and interval censoring, truncated
distributions, and some special models involving a mixture of discrete and con-
tinuous parts. The methods apply to censoring on the right, the left, or on both
sides. The censoring may be single or multiple at fixed point(s) or at random
points (e.g. from competing risks).

1.4. Overview

In Section 2 we explain the basic quantities provided by the Escobar and
Meeker (1994) algorithm and show how to use these quantities to compute Iθ

for models with a single distribution with observations that may be either left
or right censored and for different kinds of censoring mechanisms (fixed or ran-
dom). In Section 3 we extend these results to truncated distributions. Section
4 gives similar results for some special life models that include discrete, as well
as continuous, components. In Section 5 we show how to extend applications to
regression models that allow either or both of the parameters of a location-scale
distribution to depend on explanatory variables. Section 6 provides additional
generalizations while the Appendix contains derivations.

2. Fisher Information Matrix Elements for a Single Distribution Model

2.1. Model and assumptions

We assume that the random variable Y follows a location-scale distribution
with cdf

GY (y; θ) = Φ(z) (3)

and pdf dGY (y; θ)/dy = φ(z)/σ, where z = (y − µ)/σ, and the components of
θ = (µ, σ) are, respectively, the location and scale parameters. Throughout the
paper we assume that Φ(·) and φ(·) are the standardized (i.e., µ = 0 and σ = 1)
cdf and pdf, respectively, and that φ satisfies the regularity conditions given in
Appendix A.
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2.2. Time censored data

Let Li(θ) denote the natural logarithm of the likelihood of a single observa-
tion for Y . We assume that Y may be observed exactly or be censored on the
left at (log) time yc

l or on the right at (log) time yc
r (log censoring times for the

Weibull, lognormal, and loglogistic distributions). Appendix A.1 of Escobar and
Meeker (1992) gives expressions for the likelihood and its first and second deriva-
tives for uncensored observations as well as for left, right, and interval censored
observations. Let θ = (µ, σ) and define the standardized censoring times

zc
l =

yc
l − µ

σ
, zc

r =
yc

r − µ

σ
. (4)

Then the elements of the Fisher information matrix, multiplied by σ2 are

f11(zc
l , z

c
r) = σ2E

[
− ∂2Li(θ)

∂µ2

]
, f12(zc

l , z
c
r) = σ2E

[
− ∂2Li(θ)

∂µ∂σ

]

f22(zc
l , z

c
r) = σ2E

[
− ∂2Li(θ)

∂σ2

]
. (5)

Escobar and Meeker (1994) provide an algorithm to compute these elements.
In general, these and other similar quantities can differ from observation-to-
observation in a sample, but except for Li(θ), we generally suppress notation
needed to show this dependence explicitly. The expectations in (5) are with
respect to the joint distribution of the data which depends on the model and the
censoring mechanisms associated with the data-generating process. This paper
shows how the elements in (5) provide basic building blocks that can be used to
obtain easy-to-compute expressions for the Fisher information matrix for a wide
range of statistical models.

For singly time censored data (also known as Type I censored data) with
fixed left and right censoring times the elements of Iθ = nI are obtained from

I11 =
1
σ2

f11(zc
l , z

c
r), I12 =

1
σ2

f12(zc
l , z

c
r), I22 =

1
σ2

f22(zc
l , z

c
r). (6)

Note that Φ(zc
l ) and 1 − Φ(zc

r) are, respectively, the probabilities that the unit
will be left and right censored. For multiply time-censored data (see Lawless
(1982), page 34-36), the values of zc

l or zc
r can differ across the sample and the

elements of Iθ can be expressed as sums of the individual Ijk’s.

2.3. Random censoring and competing risks

Here, for simplicity, we restrict the discussion to random right censored data;
the extension to other random censored situations is straightforward. In survival
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analysis, random right censoring is often due to competing risks. (See, for exam-
ple, Chapter 5 of Nelson (1982) or Chapter 10 of Lawless (1982).) We assume
that the right random censoring point yc

r has a continuous pdf h(x) and that
yc

r and Y are statistically independent. Then, using conditional expectations, it
follows that

Ijk =
1
σ2

∫ ∞

−∞
fjk(−∞, w)h(x)dx (jk = 11, 12, 22),

where w = (x − µ)/σ and the fjk(−∞, w) are defined in (5). David and
Moeschberger (1978), Chapter 3 provide expressions for the elements of the Fisher
information matrix for some particular models involving competing risks. This
situation requires some mild extensions to the regularity conditions for the com-
bination of distributions of yc

r and Y . (See, for example, page 43 of Lawless
(1982) for discussion and references.)

2.4. Failure censoring

For failure censoring (also known as Type II censoring), the smallest r1 and
the largest r2 sample values are censored (r1 ≥ 0 and r2 ≥ 0, with r1 + r2 ≤ n).
The log-likelihood is given in terms of the order statistics which are not i.i.d., but
the log-likelihood still has the general form given in Section 1.2 and I is defined
by (2) with the understanding that 0 < limn→∞(r1/n) < limn→∞(1− r2/n) < 1.
It is interesting that the elements of I are again given by (6) except that zc

l and
zc
r are defined by Φ(zc

l ) = limn→∞(r1/n) and Φ(zc
r) = limn→∞(1 − r2/n). The

proof of this result is involved but it follows from Chernoff, Gastwirth, and Johns
(1967), page 68 or Bhattacharyya (1985).

Harter and Moore (1966, 1967, 1968) give formulas and tabulate I for right
and left failure censored samples from the normal, logistic, and extreme value
distributions. For progressive failure censored data, where units are removed in
stages determined by the times at which specified numbers of units have failed
(see Lawless (1982), page 33), the elements of Iθ can be expressed as sums of the
individual Ijk’s.

3. Fisher Information Matrix with Censored Data from Truncated
Distributions

In this section we provide expressions for expected information based on
censored data from truncated location-scale distributions.

3.1. Truncation model

We assume the same underlying location-scale distribution defined in (3).
Now, however, we introduce left and right truncation points yt

l and yt
r (yt

l < yt
r)
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and define the corresponding standardized left zt
l and right zt

r truncation quantiles
as

zt
l =

yt
l − µ

σ
< zt

r =
yt

r − µ

σ
.

The standardized left and right censoring quantiles (zc
l and zc

r respectively) are
as defined in (4) and we assume that zt

l ≤ zc
l < zc

r ≤ zt
r. The truncated cdf for

Y | Y ∈ (yt
l , y

t
r) is

GY |Y ∈(yt
l
,yt

r)(y; θ) = Pr
[
Y ≤ y | Y ∈ (yt

l , y
t
r)
]

=
Φ(z) − Φ(zt

l )
Φ(zt

r) − Φ(zt
l )

, yt
l ≤ y ≤ yt

r (7)

and the corresponding truncated pdf is

dGY |Y ∈(yt
l
,yt

r)(y; θ)

dy
=
( 1
σ

) φ(z)
Φ(zt

r) − Φ(zt
l )

, yt
l ≤ y ≤ yt

r.

When yt
r → ∞ one gets the special case of only left truncated data. Similarly

when yt
l → −∞ the model yields the case of only right truncated data. When

both yt
l → −∞ and yt

r → ∞ equation (7) reduces to equation (3).

3.2. Elements of the Fisher information matrix

When zt
l , zt

r, zc
l and zc

r are the same for all observations in a sample, the
elements of Iθ = nI for samples with truncation and censoring are obtained from

I11 = E
[
− ∂2Li

∂µ2

]
=
( 1
σ2

) 1
Φ(zt

r) − Φ(zt
l )

{
f11(zc

l , z
c
r) −

φ2(zc
r)

1 − Φ(zc
r)

− φ2(zc
l )

Φ(zc
l )

− [φ(zt
r) − φ(zt

l )]
2

Φ(zt
r) − Φ(zt

l )
+

[φ(zc
l ) − φ(zt

l )]
2

Φ(zc
l ) − Φ(zt

l )
+

[φ(zt
r) − φ(zc

r)]2

Φ(zt
r) − Φ(zc

r)

}

I12 = E
[
− ∂2Li

∂µ∂σ

]
=
( 1
σ2

) 1
Φ(zt

r) − Φ(zt
l )

{
f12(zc

l , z
c
r) − zc

r

φ2(zc
r)

1 − Φ(zc
r)

− zc
l

φ2(zc
l )

Φ(zc
l )

− [φ(zt
r) − φ(zt

l )][z
t
rφ(zt

r) − zt
lφ(zt

l )]
Φ(zt

r) − Φ(zt
l )

+
[φ(zc

l ) − φ(zt
l )][z

c
l φ(zc

l ) − zt
lφ(zt

l )]
Φ(zc

l ) − Φ(zt
l )

+
[φ(zt

r) − φ(zc
r)][zt

rφ(zt
r) − zc

rφ(zc
r)]

Φ(zt
r) − Φ(zc

r)

}

I22 = E
[
− ∂2Li

∂σ2

]
=
( 1
σ2

) 1
Φ(zt

r) − Φ(zt
l )

{
f22(zc

l , z
c
r) − (zc

r)
2 φ2(zc

r)
1 − Φ(zc

r)

−(zc
l )

2 φ2(zc
l )

Φ(zc
l )

− [zt
rφ(zt

r) − zt
lφ(zt

l )]
2

Φ(zt
r) − Φ(zt

l )
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+
[zc

l φ(zc
l ) − zt

lφ(zt
l )]

2

Φ(zc
l ) − Φ(zt

l )
+

[zt
rφ(zt

r) − zc
rφ(zc

r)]2

Φ(zt
r) − Φ(zc

r)

}
.

The derivation is given in Appendix B. As in Section 2, when the values of zt
l ,

zt
r, zc

l or zc
r differ in a sample, the elements of Iθ can be expressed as sums of the

individual Ijk’s.

3.3. Special cases

There are a number of special cases of the expressions in Section 3.2 and
these are easily obtained, depending on the desired case, by allowing,
• If zt

r → ∞ there is no right truncation.
• If zt

l → −∞ there is no left truncation.
• If zc

r ↑ zt
r there is no right censoring.

• If zc
l ↓ zt

l there is no left censoring.
The expressions for these special cases are obtained directly from the equations
above by noting that, under the regularity conditions given in Section (2.1),
z2φ2(z)/Φ(z) and z2φ2(z)/[1 − Φ(z)] approach 0 as z → ±∞ and [φ(z1) −
φ(z2)]2/[Φ(z1) − Φ(z2)] and [z1φ(z1) − z2φ(z2)]2/[Φ(z1) − Φ(z2)] approach 0 as
|z1 − z2| → 0.

4. Fisher Information Matrix for the DOA and LFP Models

In this section we provide expressions for expected information for models
that have atoms of probability at one or both ends of the sample space of the
response. These expressions again depend on the elements in Equation (6). The
“Dead on Arrival” (DOA) model has a proportion of units that have already
failed at time 0 (or −∞ on the log scale), putting an atom of probability at that
point. The “Limited Failure Population” (LFP) model has a proportion of units
that will never fail, putting an atom of probability at ∞.

4.1. The DOA/LFP model

When the DOA and LFP models arise, the response is typically time T and
usually we would have Y = log(T ). For compactness we combine the DOA and
LFP models and consider cases where Y follows a location-scale distribution and
there is left censoring at yc

l and right censoring at yc
r. The DOA/LFP model has

a cdf G(y) = p0 + p1(1 − p0)Φ(z) where θ = (µ, σ, p0, p1)T , z = (y − µ)/σ, p0 is
the proportion of units “dead on arrival”, and p1 is the proportion of units that
will eventually fail from the “good on arrival” population. The corresponding
pdf of Y is

dG(y)
dy

=
(

1
σ

)
p1(1 − p0)φ(z).
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At time yc
l (> 0) we cannot distinguish between “failures” that were DOA and

those that failed between 0 and yc
l . At time yc

r we cannot distinguish between
units that will and those that will not “fail” after yc

r. The standardized censoring
quantiles zc

l and zc
r are defined as in Section 2. Two special cases of the model

are:
• The LFP model described by Meeker (1987) is obtained when p0 = 0 giving

G(y) = p1Φ(z).
• The DOA model described in Nelson (1982), page 52 is obtained when p1 = 1

giving G(y) = p0 + (1 − p0)Φ(z).

4.2. Elements of the Fisher information matrix

When zc
l and zc

r are the same for all observations, the elements of the infor-
mation matrix of θ = (µ, σ, p0, p1), Iθ = nI are obtained from

I = E
[
− ∂2Li

∂θ∂θT

]
=

(
B11 B12

BT
12 B22

)
,

where

B11 =
p1(1 − p0)

σ2

[(f11(zc
l , z

c
r) f12(zc

l , z
c
r)

f12(zc
l , z

c
r) f22(zc

l , z
c
r)

)
− p0φ

2(zc
l )

Φ(zc
l )G(zc

l )

(
1 zc

l

zc
l (zc

l )
2

)

− (1 − p1)φ2(zc
r)

[1 − Φ(zc
r)][1 − p1Φ(zc

r)]

(
1 zc

r

zc
r (zc

r)
2

)]

B12 = −
( 1
σ

)



p1φ(zc
l )

G(zc
l )

(1 − p0)
( φ(zc

r)
1 − p1Φ(zc

r)
− p0φ(zc

l )
G(zc

l )

)
zc
l p1φ(zc

l )
G(zc

l )
(1 − p0)

( zc
rφ(zc

r)
1 − p1Φ(zc

r)
− zc

l p0φ(zc
l )

G(zc
l )

)



B22 =




1 − p1Φ(zc
l )

(1 − p0)G(zc
l )

Φ(zc
l )

G(zc
l )

Φ(zc
l )

G(zc
l )

(1 − p0)
p1

( Φ(zc
r)

1 − p1Φ(zc
r)

− p0Φ(zc
l )

G(zc
l )

)

 .

The derivation is given in Appendix C. As in Section 2, when the values of zc
l or

zc
r differ in a sample, the elements of Iθ can be expressed as sums of the individual
Ijk’s.

4.3. Special cases

The LFP model: In this case p0 = 0, θ = (µ, σ, p1)T , and the 3 × 3 Fisher
information matrix is made up of B11 (with p0 = 0), the second column of B12
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and the (2,2) element of B22, giving

I=




p1

σ2

{(f11(zc
l , z

c
r) f12(zc

l , z
c
r)

f12(zc
l , z

c
r) f22(zc

l , z
c
r)

)
− (1−p1)φ2(zc

r)
[1−Φ(zc

r)][1−p1Φ(zc
r)]

( 1 zc
r

zc
r (zc

r)
2

)}
1
σ


 −φ(zc

r)
1−p1Φ(zc

r)

−zc
rφ(zc

r)
1−p1Φ(zc

r)




symmetric 1
p1

(
Φ(zc

r)
1−p1Φ(zc

r)

)


 .

This Fisher information matrix is for the LFP model with right and left censored
data. It contains as a particular case the Fisher information matrix for the LFP
model with right censored data given by Meeker (1987). Observe, that the left
censoring point enters into I only through the fjk’s. It is interesting that the left
censoring affects only the (µ, σ) entries but it does not affect any entry involving
p1.

The DOA model: In this case p1 = 1, θ = (µ, σ, p0)T , and the 3× 3 Fisher
information matrix is made up of B11 (with p0 = 1), the first column of B12 and
the (1, 1) element of B22, giving

I =




1−p0

σ2

{(f11(zc
l , z

c
r) f12(zc

l , z
c
r)

f12(zc
l , z

c
r) f22(zc

l , z
c
r)

)
− p0φ2(zc

l )

Φ(zc
l
)G(zc

l
)

(
1 zc

l

zc
l (zc

l )
2

)}
1
σ


 −φ(zc

l )

G(zc
l
)

−zc
l φ(zc

l )

G(zc
l
)




symmetric 1
1−p0

(
1−Φ(zc

l )

G(zc
l
)

)


 .

This Fisher information matrix is for the DOA model with left and right censoring
and it contains as a particular case the Fisher information matrix for the DOA
model with left censored data.

5. Fisher Information Matrix for Location-Scale Regression Models

In this section we provide expressions for expected information based on
censored data with regression models.

5.1. Location/scale regression model

The assumed cdf for Y , allowing the location parameter µ and the scale
parameter σ to depend on (a possibly different set of) explanatory variables, is

GY (y) = p0 + (1 − p0)Φ
[y − µ(x)

σ(w)

]
,

where µ(x) = xT β, log[σ(w)] = wT γ, xT = (x0, . . . , xr) and wT = (w0, . . . , ws)
(with w0 = 1) are vectors of explanatory variables, βT = (β0, . . . , βr) and γT =
(γ0, . . . , γs) are vectors of unknown constants. We also assume, without loss of
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generality, that all of the explanatory variables have been standardized (i.e., 0 ≤
xi ≤ 1 and 0 ≤ wj ≤ 1 for all i, j). For convenience, we reparameterize the scale
parameter σ = σ(w) as follows. Let σ0 = exp(γ0) and σj = exp(γ0 + γj), j =
1, . . . , s. Then log(σ) = (2 − wT 1) log(σ0) +

∑s
j=1 wj log(σj), or equivalently,

σ = σ
(2−wT 1)
0

s∏
j=1

σ
wj

j ,

where 1 is a vector with all the components equal to 1. Observe that σ0 is
the scale parameter at wT

0 = (1, 0, . . . , 0) and σj is the scale parameter at
wT

j = (1, 0, . . . , 1, 0, . . . , 0) where the second 1 is at the j + 1 position. Let
σT = (σ0, . . . , σs) and define the generic parameter vector θT = (βT , σT , p0, p1).

5.2. Elements of the Fisher information matrix

Let Li(θ, x,w) denote the contribution of the ith observation to the log-
likelihood, possibly left or right censored. The Fisher information matrix for this
observation is

I = E
[
− ∂2Li

∂θ∂θT

]
=

[
MB11M

T MB12

(MB12)T B22

]
, (8)

where

M =

[
x 0
0 ρη

]

with

ρ = ρ(w) =
σ

σ0
=

s∏
j=1

υ
wj

j , υj = σj/σ0, η =




2 − wT 1
w1/υ1

...
ws/υs


 . (9)

The derivation of these elements is contained in Appendix D. For observa-
tions that might also be truncated, one can simply substitute the values of
σ2Ijk(zc

l , z
c
r , z

t
l , z

t
r) from Section 3.2 for the fjk(zc

l , z
c
r)’s in (8).

5.3. Special cases

• When p0 = 0, p1 = 1, we get the simpler form

I = E
[
− ∂2Li

∂θ∂θT

]
=

1
σ2

0



( 1
ρ2

)
f11(zc

l , z
c
r)x xT

(1
ρ

)
f12(zc

l , z
c
r)x ηT

(1
ρ

)
f12(zc

l , z
c
r) η xT f22(zc

l , z
c
r) η ηT


 .

Other important special cases (still with p0 = 0, p1 = 1) that have been used
previously in the literature are:
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• When r = s = 0 then x = w = 1 (scalars), ρ = 1, and we get the expressions
for the single distribution model given in Section 2.

• When r = 1, s = 0 then x = (1, x1)T , w = 1 (a scalar), ρ = 1, and we have the
simple regression model used in Nelson and Kielpinski (1976), Nelson (1990)
and elsewhere for planning single-factor accelerated life tests.

• When r = k, s = 0 then x = (1, x1, . . . , xk)T , w = 1 (a scalar), ρ = 1, and
we have the model used in Escobar and Meeker (1995) for planning k-factor
accelerated life tests.

• When r = s = 1 then x = w = (1, x)T , ρ = σ/σ0, and we get the special case
model used in Meeter and Meeker (1994) for planning single-factor accelerated
life tests with nonconstant location and scale parameters.

6. Further Generalizations and Applications

The general ideas described in this paper can be extended readily to other
situations. In particular,
• The Escobar and Meeker (1994) algorithm assumes that uncensored data are

observed exactly. When data are binned or when failures are discovered at
inspection times, data will be interval censored. An algorithm, similar to
the one given in Escobar and Meeker (1994), which specifies the standardized
inspection quantiles, could be used in the general formulas derived in this
paper. See Meeker (1986) for expressions for the basic elements of the Fisher
information matrix for this case.

• The regression model used in Section 5 assumed linear and loglinear relation-
ships, respectively, for µ and σ. For nonlinear regression relationships µ =
µ(β) and σ = σ(γ), if one replaces x with ∂µ/∂β and w with (1/σ)∂σ/∂γ , the
expressions in this section allow straightforward computation of the asymp-
totic covariance matrix for the parameters of the nonlinear regression model.

• The results in this paper could also be used to obtain optimum test plans with
censoring using a Bayesian-like prior as described in, for example, Chaloner
and Larntz (1992). The basic idea is optimize by using the prior to average
over needed “planning” values of model parameters.
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Appendix
A. Regularity Conditions

Let z = (y − µ)/σ and θT = (µ, σ), then the following regularity conditions
are assumed to hold:
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• φ(z) > 0 for all −∞ < z < ∞.
• limz→±∞ z2φ′(x) = 0, where φ′(·) is the first derivative of φ(·).
• The second derivative φ′′(·) is continuous.
• The expected values E{−∂2 log /∂θ ∂θT } are all finite.

These regularity conditions are sufficient to guarantee the correctness of the
asymptotic covariance matrices presented in this paper and are satisfied by many
location-scale families including the normal, smallest and largest extreme value,
and logistic distributions.

B. Derivation of the Fisher Information Matrix for Censored Samples
from Truncated Distributions

Let ∆(v, u) = Φ(u)−Φ(v),ΦL = Φ(zc
l ),ΦR = Φ(zc

r), φL = φ(zc
l ), φR = φ(zc

r).
The log-likelihood contribution of one observation at y is

Li = Ψ(zt
l
,zc

l
) log

[∆(zt
l , z

c
l )

∆(zt
l , z

t
r)

]
+ Ψ(zc

l
,zc

r) log
[ φ(z)/σ
∆(zt

l , z
t
r)

]
+ Ψ(zc

r ,zt
r) log

[∆(zc
r, z

t
r)

∆(zt
l , z

t
r)

]

= Ψ(zt
l
,zc

l
) log

[
∆(zt

l , z
c
l )
]
+ Ψ(zc

l
,zc

r) log
[
φ(z)/σ

]
+ Ψ(zc

r ,zt
r) log

[
∆(zc

r, z
t
r)
]

−Ψ(zt
l
,zt

r) log
[
∆(zt

l , z
t
r)
]
, (10)

where ΨH denotes the indicator function of the set H.
To obtain the needed expectations with respect to the truncated distribution

of Z, we use the following result. If W is a function of the random variable Z

then
E
[
W | Z ∈ (zt

l , z
t
r)
]

=
1

∆(zt
l , z

t
r)

E
[
Ψ(zt

l
,zt

r)W
]
, (11)

where the second expectation is computed with respect to the unconditional
distribution of Z. Then letting θ be the vector (µ, σ)T , under the regularity
conditions,

I = E
[
− ∂2Li

∂θ ∂θT

∣∣∣Z ∈ (zt
l , z

t
r)
]

=
1

∆(zt
l , z

t
r)

E
[
− Ψ(zt

l
,zt

r)
∂2Li

∂θ ∂θT

]

=
1

∆(zt
l , z

t
r)

E
[
− ∂2Li

∂θ ∂θT

]

=
1

∆(zt
l , z

t
r)

E
[(∂Li

∂θ

)T(∂Li

∂θ

)]
. (12)

The derivatives on the right-hand side (RHS) of (12) are obtained by taking
term-wise expectations of gradient vector inner products. The expectation cor-
responding to the second term on the RHS of (10) can be obtained from the
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untruncated expectations (e.g. equations 9.3.7a, b, c in David (1981)) by sub-
tracting out the terms corresponding to left and right censoring. Thus

E
[
Ψ(zc

l
,zc

r)

( ∂

∂θ

{
log

[
φ(z)
σ

] })T( ∂

∂θ

{
log

[φ(z)
σ

]})]

=
( 1
σ2

) [f11(zc
l , z

c
r) f12(zc

l , z
c
r)

f12(zc
l , z

c
r) f22(zc

l , z
c
r)

]

− 1
ΦL

[∂ΦL

∂θ

]T [∂ΦL

∂θ

]
− 1

1 − ΦR

[∂ΦR

∂θ

]T [∂ΦR

∂θ

]
. (13)

For the other terms in (12), direct computations give

E
[
Ψ(u,v)

( ∂

∂θ

{
log[∆]

})T( ∂

∂θ

{
log[∆]

})]
=

1
∆

[∂∆
∂θ

]T [∂∆
∂θ

]
(14)

E
[
Ψ(zc

l
,zc

r)
∂

∂θ

{
log[

φ(z)
σ

]
}]

=
∂

∂θ
∆(zc

l , z
c
r), (15)

where, for simplicity, we use ∆ = ∆(u, v). Substitution into (12) gives

I =
1

∆(zt
l , z

t
r)

{( 1
σ2

) [f11(zc
l , z

c
r) f12(zc

l , z
c
r)

f12(zc
l , z

c
r) f22(zc

l , z
c
r)

]
− 1

ΦL

[∂ΦL

∂θ

]T [∂ΦL

∂θ

]

− 1
1 − ΦR

[∂ΦR

∂θ

]T [∂ΦR

∂θ

]
+

1
∆(zt

l , z
c
l )

[∂∆(zt
l , z

c
l )

∂θ

]T [∂∆(zt
l , z

c
l )

∂θ

]

+
1

∆(zc
r, z

t
r)

[∂∆(zc
r, z

t
r)

∂θ

]T[∂∆(zc
r , z

t
r)

∂θ

]
− 1

∆(zt
l , z

t
r)

[∂∆(zt
l , z

t
r)

∂θ

]T[∂∆(zt
l , z

t
r)

∂θ

]}
.

Then using

[∂∆(u, v)
∂θ

]T [∂∆(u, v)
∂θ

]
=
( 1
σ2

)[ [φ(v) − φ(u)]2 [vφ(v) − uφ(u)][φ(v) − φ(u)]

symmetric [vφ(v) − uφ(u)]2

]

in I above gives the general form of the Fisher information matrix elements given
in Section 3.2.

C. Derivation of the Fisher Information Matrix for the DOA/LFP
Model

Here, we use the additional notation, GL = G(zc
l ), GR = G(zc

r), and θ =
(µ, σ, p0, p1)T . The log-likelihood contribution of one observation at y is

Li = Ψ(−∞,zc
l
) log(GL) + Ψ(zc

l
,zc

r) log[p1(1 − p0)φ(z)/σ] + Ψ(zc
r ,∞) log(1 − GR)

= Ψ(−∞,zc
l
) log(GL) + Ψ(zc

l
,zc

r) log[φ(z)/σ] + Ψ(zc
l
,zc

r) log[p1(1 − p0)]

+Ψ(zc
r ,∞) log(1 − GR). (16)
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In the computation of the Fisher matrix, we use the following result. Let W be a
function of Y defined in a finite interval; then because of the form of the density
of Y , it follows that

EY [W ] = p1(1 − p0)E[W ], (17)

where the first expectation is computed with respect to the density dGY (y; θ)/dy

and the second expectation is computed with the density φ(z)/σ.
Under the regularity conditions, and using (17), one gets the contribution to

the Fisher information matrix for a single observation:

I = EY

[
− ∂2Li

∂θ ∂θT

]
= EY

[(∂Li

∂θ

)T(∂Li

∂θ

)]

= p1(1 − p0)E
[(∂Li

∂θ

)T(∂Li

∂θ

)]
. (18)

The derivatives on the RHS of (18) are obtained from (16). With the exception of
the term (19) below, the expected values in the RHS of (18) are easy to compute.

As in (13)

E
[
Ψ(zc

l
,zc

r)

( ∂

∂θ

{
log

[φ(z)
σ

]})T( ∂

∂θ

{
log

[φ(z)
σ

]})]
=

( 1
σ2

)f11(zc
l , z

c
r) f12(zc

l , z
c
r) O

f12(zc
l , z

c
r) f22(zc

l , z
c
r) O

O O O




− 1
ΦL

(∂ΦL

∂θ

)T(∂ΦL

∂θ

)
− 1

1 − ΦR

(∂ΦR

∂θ

)T(∂ΦR

∂θ

)
, (19)

where the O’s indicate matrices of 0’s appropriately dimensioned to complete
this 4 × 4 matrix. Then after simplification, one gets

I = p1(1 − p0)
{( 1

σ2
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c
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c
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O O O


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]T [∂GL
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+

1
1 − GR

[∂GR

∂θ

]T [∂GR
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.
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Straightforward computations yield,

[∂ΦL

∂θ

]T
=
(
− φL

σ

)



1
zc
l

0
0


 ,

[ ∂

∂θ

{
p1(1 − p0)

}]T
=




0
0

−p1

1 − p0


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[∂GL

∂θ

]T
=




p1(1 − p0)
(
−φL

σ

){ 1
zc
l

}

1 − p1ΦL

(1 − p0)ΦL




and similar expressions for [∂ΦR

∂θ

]T
and

[∂GR

∂θ

]T
.

Using these expressions in I above, one gets the expressions for the Bjk’s given
in Section 4.2.

D. Derivation of the Fisher Information Matrix for the Location/Scale
Regression Model

Let Li(θ, x,w) = Li[g(θ, x,w)], where g(θ, x,w) = [µ(x), σ(w), p0, p1]
T , and

Li denotes the ordinary log-likelihood function for one observation with param-
eters (µ(x), σ(w), p0, p1). Using a matrix form for the chain rule, we get

∂Li

∂θ
=
[∂Li

∂g

][∂g

∂θ

]

and
∂2Li

∂θ∂θT
=
[∂g

∂θ

]T [ ∂2Li

∂g∂gT

][∂g

∂θ

]
+

2∑
k=1

[∂Li

∂gk

][ ∂2gk

∂θ∂θT

]
,

where gk = gk(θ) denotes the kth component of the g function (i.e., g1 = µ(x),
g2 = σ(w)), etc. Taking expectations, we get

I = E
[
− ∂2Li

∂θ∂θT

]
=
[∂g

∂θ

]T
E
[
− ∂2Li

∂g∂gT

][∂g

∂θ

]
(20)

because
E
[∂Li

∂gk

]
= 0, k = 1, 2.

Straightforward computations yield

∂µ

∂β
= xT ,

∂σ

∂σ0
=
( σ

σ0

)
(2 − wT 1),

∂σ

∂σj
=
( σ

σ0

)(wj

υj

)
, j = 1, . . . , s,
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where υj = σj/σ0. Thus, ∂σ/∂σ = (σ/σ0)ηT . As in Section 4.2,

E
[
− ∂2Li

∂g∂gT

]
=

[
B11 B12

BT
12 B22

]

and from above

∂g

∂θ
=




x 0 0 0
0 ρ η 0 0
0 0 1 0
0 0 0 1


 =

[
M O

O J

]
,

where J is a 2 × 2 identity matrix. Substituting into (20) gives (8), where η is
defined in (9).
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