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Abstract: The standard asymptotic regime for studying the properties of estimators

of the reduced second moment function K(t) of a spatial point process is to �x the

law of the process and t and let the observation region grow. No results comparing

the asymptotic variability of these estimators are available for processes other than

Poisson. This paper obtains asymptotic results for a large class of stationary point

processes by using a di�erent asymptotic regime. Speci�cally, the distance t at which

K is to be estimated is allowed to grow with the observation region. Using this

asymptotic setup, it is shown that using the notion of projection of a U -statistic leads

to estimators that converge to the truth at a faster rate than standard estimators not

using this projection idea.

Key words and phrases: Edge e�ects, interpoint distance distribution, reduced second

moment function, U -statistics.

1. Introduction

Correcting for edge e�ects is a fundamental problem in inference for spatial

point processes (Ripley (1988), Chapters 3 and 4). The impact of edge e�ects on

estimating the reduced second moment function has received particular attention:

see Ripley (1988, Chapter 3) and the references therein and Stein (1991, 1993).

For a stationary point process N in R
d with intensity �, the reduced second

moment measure K(�) is de�ned for Borel sets B as K(B) = ��1EfN(Bnf0g)j0 2

Ng, where N(B) = N \B. If the process is isotropic, then K(�) can be recovered

from the reduced second moment function K(t) = ��1EfN(b(0; t)nf0g)j0 2 Ng,

where b(0; t) is the ball of radius t centered at 0. All second moments of N are

determined by � and K(�).

Consider estimating K(t) based on observing a stationary isotropic point

process N in a bounded measurable set A � R
d with �d(A) = a, where �d

indicates Lebesgue measure in d dimensions. The basic problem is that for a

point x in N \ A within t of a boundary of A, we only have partial informa-

tion on the number of points in N within t of x. Two commonly used methods

for accounting for this e�ect are the isotropic (Ripley (1976)) and rigid motion
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corrections (Miles (1974), Ohser and Stoyan (1981)). The idea behind both of

these procedures is �rst to estimate �2a2K(t) unbiasedly using an estimator of

the form
P

0

�(x; y), where
P

0

means summation over all distinct ordered pairs

of points of N in A. Speci�cally, for all stationary isotropic N , � is required to

satisfy Ef
P

0

�(x; y)g = �2a2K(t). Without loss of generality, we can assume �

is symmetric in its arguments. Then K(t) is estimated by dividing
P

0

�(x; y)

by an estimator of �2a2, typically N(A)2 or N(A)fN(A) � 1g. The resulting

estimator for K(t) is, in general, biased. Stein (1993) argued that any estimator

of �2a2K(t) can be improved upon by viewing
P

0

�(x; y) as a U -statistic and

applying the notion of projecting U -statistics (Ser
ing (1980)). Speci�cally, con-

sider N Poisson, in which case, conditional on N(A) = n, the n points in A are

independent and uniformly distributed in A. Next, for each n, �nd the function

gn satisfying
R
A
gn(x)dx = 0 that minimizes

Var

�X0

�(x; y)�
X
x2A

gn(x)
�

under the uniform distribution for the n points in A. The minimizing gn(x) is

2(n� 1)��(x), where

��(x) = a�1

Z
A

�(x; y)dy � a�2

Z
A2

�(y; z)dydz;

leading to the estimator of �2a2K(t) given by

X0

�(x; y)� 2fN(A) � 1g
X

x2N\A

��(x) =
X0

�P (x; y); (1:1)

where �P (x; y) = �(x; y)� ��(x)� ��(y). I will call an estimator whose numerator

is of this form and whose denominator is N(A)fN(A)�1g a projected estimator.

The idea is that replacing � by �P should induce very little bias in the estimation

of �2a2K(t) for any stationary N and at the same time lower the variance when

N is Poisson. Stein (1993) provides both theory and simulations to support these

contentions.

To study the asymptotic variability for edge-corrected estimators of K(t),

Ripley (1988) uses the approach of taking t and the law of N as �xed and letting

the observation region A grow. In two dimensions, assuming the boundary of A

can be approximated by a straight edge in an appropriate sense as A grows, he

obtains expansions for the variance of various edge-corrected estimators of K(t)

of the form
2

�2

��t2
a

+ c1
pt3

a2
+ c2

pt5

a2

�
+ o

� p
a2

�
;
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where p is the perimeter of A. Stein (1993) shows that among a large class of

estimators the minimum possible value for c1 is 2=3 and for c2 is 0 and that by

applying the projection idea to the rigid motion correction due to Miles (1974)

and Ohser and Stoyan (1981), these minimum values are both attained. As A

grows, p will typically be o(a), for example, if we have a sequence of observation

regions A1; A2; : : : that is a convex averaging sequence: each set is convex and

the radii of their largest inscribed circles tend to in�nity (Daley and Vere-Jones

(1988)). Thus, to the highest order term, all reasonable edge-corrected estima-

tors have the same asymptotic variance and it is only in the second term that

di�erences emerge. Since the fraction of points within t of an edge of A decreases

as A increases, this result is not surprising.

A clear weakness in these results is that they say nothing about the variability

of the estimators when N is not Poisson. For non-Poisson N , one would expect

the di�erences in the variability of the various edge-corrected estimator again to

occur only in the second order term of the asymptotic expansion for the variances.

It appears to be rather di�cult to obtain such a second-order expansion for

non-Poisson N . Heinrich (1988) shows that a large class of statistics, including

estimators of �2K(t), is asymptotically normal as A grows for Poisson cluster

processes. Bertram, Wendrock and Stoyan (1993) give a heuristic approximation

to the variance of estimators of the pair correlation function for non-Poisson

processes. However, the results in these works do not distinguish between the

behavior of di�erent edge-corrected estimators (Heinrich (1988)) and thus do not

provide any guidance as to which edge corrections work best for non-Poisson

processes.

The approach taken here to distinguish the asymptotic behavior of di�erent

edge-corrected estimators for non-Poisson processes is to �x the ratio between t

and the size of the observation region A. Speci�cally, for a stationary process

N , consider estimating K(�t) based on observing N in �A as � ! 1, where

�A = fx : x=� 2 Ag. Equivalently, we can take A and t to be �xed and consider

the class of processes N� de�ned by N�(B) = N(�B) and then consider what

happens as � !1. The two viewpoints are formally identical; the second is more

convenient mathematically and is the one used here. Since, under this asymptotic

paradigm, the fraction of points near an edge of A stays roughly constant as �

increases, one might expect that the variances of the various edge-corrected esti-

mators will di�er in the constant multiplying their leading term. However, for a

process in Rd whose �rst four factorial moment measures satisfy certain technical

conditions, the main result of this work shows that for an unprojected estimator,

the error is Op(�
�d=2), and for a projected estimator, the error is Op(�

�d). That

is, projecting actually increases the rate of convergence of the estimator. For N

Poisson, this result follows immediately from the properties of U -statistics (Ser-
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ing (1980)); the faster rate of convergence for projected estimators corresponds

to the fact that projected estimators are essentially degenerate U -statistics.

Baddeley and Gill (1993) use another asymptotic approach in which edge

e�ects are kept constant to study estimates of the empty space function F , the

distribution of the distance from a �xed point in space to the nearest point in the

process, and the nearest neighbor distribution G, the distribution of the distance

from a point in the process to its nearest neighbor in the process. Speci�cally,

they consider what happens if many independent replicates of a Poisson process

with low intensity are observed through a �xed, bounded and convex window.

These sparse Poisson limit results do not tell us anything about how the estima-

tors behave for non-Poisson processes. On the other hand, the approach taken

here may not provide much insight for studying estimates of F or G, even if it

could be carried out. In particular, suppose N is Poisson in, say, two dimensions,

with parameter � and de�ne F�(t) = F (�t) as the empty space function for N�,

and de�ne G� similarly. Then F�(t) = G�(t) = 1 � expf����2t2g, which tends

to 1 exponentially fast in the intensity ��2 of N�. It would be of greater interest

to study F at distances where it is not so near to 0 or 1. The Baddeley and Gill

approach considers estimates of F and G at distances where the truth tends to

0, but the rate of convergence is proportional to the intensity.

Section 2 states the main results comparing projected and unprojected es-

timators. Section 3 discusses their relevance to problems of practical interest.

Section 4 provides proofs.

2. Main Results

Consider a stationary point process N on Rd and de�ne for each � > 0 the

process N� by N�(B) = N(�B) for all Borel sets B. Suppose A is the observation

region with �d(A) = a and consider a statistic of the form

T� =

P
0

� (x; y)P
0

��(x; y)
; (2:1)

where  and � are symmetric in their arguments and
P

0

� means summation over

all distinct pairs of points x and y that are in N� \ A. If the denominator in

(2.1) is 0, de�ne T� = 0. When �(x; y) � 1, which is commonly the case for

existing estimators, the denominator is N�(A)fN�(A) � 1g. Ripley (1988) and

Stein (1993) use the denominator N�(A)
2; to the order of approximation studied

here, the di�erence between the two denominators does not a�ect the variability

of T�. The form of the denominator in (2.1) will be slightly more convenient

here.

Suppose  and � are absolutely integrable over A2 and let c =
R
A2 (x; y)dxdy
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and c� =
R
A2 �(x; y)dxdy where c� > 0. Then

T� =
c 

c�
+

P
0

�f(x; y)P
0

��(x; y)
;

where

f(x; y) =  (x; y) �
c 

c�
�(x; y): (2:2)

By construction, Z
A2

f(x; y)dxdy = 0: (2:3)

The asymptotic variance of T� depends critically on whether or not

Z
A

nZ
A

f(x; y)dy
o2
dx = 0; (2:4)

which is equivalent to
R
A f(x; y)dy = 0 for almost every x 2 A. For example,

(2.4) holds if �(x; y) � 1, f is as given in (2.2) and  in (2.2) is of the form �P

given in (1.1). Thus, (2.4) holds for the estimator of K(t) recommended in Stein

(1993) but does not hold for any of the standard estimators of K(t) discussed by

Ripley (1988). Suppose that N has �nite fourth moments and that the �rst four

factorial moment measures have densities with respect to Lebesgue measure. Let

m[k] denote the density of the kth factorial moment measure of N , which implies

that the density of the kth factorial moment measure of N� at (x1; : : : ; xk) is

�dkm[k](�x1; : : : ; �xk). Then (Ripley (1988))

Var�

nX0

�
f(x; y)

o
= �4d

Z
A4

fm[4](�x)�m[2](�x1; �x2)m[2](�x3; �x4)gf(x1; x2)f(x3; x4)dx

+ 4�3d

Z
A3

m[3](�x1; �x2; �x3)f(x1; x2)f(x1; x3)dx1dx2dx3

+ 2�2d

Z
A2

m[2](�x1; �x2)f(x1; x2)
2dx1dx2; (2:5)

where x = (x1; x2; x3; x4); dx = dx1dx2dx3dx4 and Var� and E� indicate expec-

tations taken under the law of N�. To approximate this variance for large �, we

need some sort of mixing condition on the �rst four factorial moment densities.

To this end, for two �nite sets of points U and V in R
d, de�ne the distance

between U and V as

d(U; V ) = min
x2U; y2V

jx� yj:
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The main results here assume that for all U and V containing i and j points,

respectively, where i � 1; j � 1 and i+ j � 4, there exists a nonnegative function

h such that h(t) = o(t�3d) as t!1 and

jm[i+j](U; V )�m[i](U)m[j](V )j � h(d(U; V )): (2:6)

If m[4] is bounded, this condition implies that the fourth reduced cumulant mea-

sure is integrable, a condition used by Mase (1982), Jolivet (1981) and Karr

(1987) to obtain asymptotic results for point processes using the standard asymp-

totic approach of �xing the characteristic of the process to be estimated and let-

ting the observation region grow. These works consider only �rst order asymp-

totics and so do not provide a basis for studying edge e�ects. Whether the

integrability of the fourth reduced cumulant measure would be su�cient here is

unclear, although (2.6) does appear to be stronger than necessary.

De�ne the covariance density function �(y) = m[2](0; y)��
2 (Daley and Vere-

Jones (1988)). Ifm[2] is bounded, then (2.6) with i = j = 1 implies
R
Rd j�(y)jdy <

1. We have the following results:

Theorem 1. Suppose N is a stationary point process whose �rst four factorial

moment densities are bounded and satisfy (2:6) and A is a �nite union of bounded

convex sets and �d(A) = a. Furthermore, assume f is a symmetric, bounded

measurable function from A2 to R satisfying (2:3) and that for almost every

x 2 A; f(x; y) is continuous in y for almost every y 2 A. Then as � !1

��3d
Var�(

X0

�
f(x; y)) �! 4�2

�
�+

Z
Rd

�(y)dy
� Z

A

nZ
A

f(x; y)dy
o2
dx:

Theorem 2. Assume the same conditions on N , A and f as in Theorem 1. If,

in addition, f satis�es (2:4), then as � !1

��2d
Var�

�X0

�
f(x; y)

�
�! 2

�
�+

Z
Rd

�(y)dy
�2 Z

A2

f(x; y)2dxdy:

The proof of Theorem 2 is given in Section 4. The proof of Theorem 1 is

similar and is omitted.

Since

��2d
X0

�
�(x; y)

L2

�! c��
2;

it is tempting to conclude, for example, that under the conditions of Theorem 2,

�2d
Var�

�P0

�f(x; y)P
0

��(x; y)

�
�!

2

c2��
4

�
�+

Z
Rd

�(y)dy
�2 Z

A2

f(x; y)2dxdy: (2:7)
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However, this result does not immediately follow from Theorem 2, because of the

di�culty in computing the moments of ratios.

When N is Poisson and �(x; y) � 1, it is not di�cult to prove (2.7) holds with

�(y) � 0. Moreover, using the asymptotic theory of U -statistics, the asymptotic

distribution of T�, de�ned in (2.1), is easily obtained. Speci�cally, for N Poisson,

�(x; y) � 1, f de�ned by (2.2) and A and f satisfying the conditions of Theorem

1,

�d=2(T� �
c 

a2
)

L

�! N

 
0;

4

�a4

Z
A

�Z
A

f(x; y)dy

�2

dx

!
; (2:8)

which follows by Theorem A, page 192 of Ser
ing (1980) by �rst conditioning

on N�(A) and then unconditioning. Similarly, if f satis�es the conditions of

Theorem 2, then using the fact that conditional on the value of N�(A);
P

0

�f(x; y)

is a degenerate U -statistic (Ser
ing (1980)),

�d
�
T� �

c 

a2

�
L

�! (2�a)�1
X

�j(�
2
1j � 1); (2:9)

where �2
11; �

2
12; : : : are independent �

2
1 random variables and �1; �2; : : : are eigen-

values associated with f : corresponding to �j there exists a function hj not

identically 0 on A such that a�1
R
A
f(x; y)hj(y)dy = �jhj(x) for almost every

x 2 A.

Silverman (1978) studied the asymptotic behavior of the natural estimator of

the interpoint distance distribution, given by (2.1) with  (x; y) = Ifjx� yj � tg

and � identically 1, where If�g is an indicator function. He showed that for

independent observations uniformly distributed on a surface with no edges, such

as a sphere or torus, as the number of observations tends to in�nity, this estimator

posesses an asymptotic distribution of the form (2.9), and that otherwise, (2.8)

gives the limiting distribution. The results here provide a clearer understanding

as to why regions without edges yield such a radically di�erent result. The point

is that for regions without edges, the estimator considered by Silverman (1978)

is already a projected estimator. However, for other regions we can easily apply

the projection technique described in Section 1 to obtain an estimator of the

interpoint distance distribution satisfying (2.4). For projected estimators, there

is no sharp distinction in their asymptotic behavior depending on the presence or

absence of edges: for all observation regions satisfying the conditions in Theorem

1, (2.9) holds as the number of independent uniformly distributed observations

tends to in�nity.

3. Discussion

Let us now consider the implications of the results of the previous section for

the estimation of the reduced second moment function of an isotropic process. In
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this case, �(y) depends on y only through jyj, so we de�ne ��(jyj) = �(y). Then

for N� as de�ned in the previous section,

K�(t) = �dt
d +

!d

�2�d

Z �t

0

��(r)rd�1dr;

where �d and !d are the volume and surface area, respectively, of the unit sphere

in d dimensions. Under (2.6), we have the approximation

K�(t) = �dt
d +

!d

�2�d

Z
1

0

��(r)rd�1dr + o(��2d): (3:1)

First, consider the bias characteristics of estimators of K�(t). For both

the rigid motion (Miles (1974), Ohser and Stoyan (1981)) and isotropic correc-

tions (Ripley (1976)) we can take �(x; y) � 1 in (2.1), in which case, � satis�es

��2dE�f
P

0

��(x; y)g = �2a2K�(t) for all stationary isotropic N . Thus, for the

projected versions of � (see (1.1)) we have, under (2.6),

��2dE�f
X0

�
�P (x; y)g = �2a2K�(t)� 2��2d

Z
A2

��(x)�(�(x � y))dxdy

= �2a2K�(t) +O(��d�1);

using
R
A
��(x)dx = 0. Thus, in this asymptotic regime, ��2d

P
0

��
P (x; y) has a

bias that is asymptotically negligible relative to K�(t) � �dt
d, the deviation of

K�(t) from the reduced second moment function for a Poisson process. On the

other hand, under (2.6) it can be shown that

��2dE�[N�(A)fN�(A)� 1g] = �2a2 + ��da

Z
1

0

��(r)rd�1dr + o(��d)

and

��2dE�[N�(A)
2] = �2a2 + ��da

n
�+

Z
1

0

��(r)rd�1dr
o
+ o(��d):

Thus, no matter which denominator we use, we see that the bias is O(��d) and

in general not o(��d), so it is of a higher order than the bias in the numerator

caused by projecting. This result is in agreement with simulations reported in

Stein (1993), in which both projected and unprojected estimators sometimes

exhibited substantial bias but that projecting did not noticeably change the bias

of an estimator.

Next, consider the variation of T� about K�(t). For both the projected and

unprojected rigid motion and isotropic corrections,

T� = �dt
d +

P
0

�f(x; y)

N�(A)fN�(A)� 1g
; (3:2)
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where f satis�es (2.3). Thus, from Theorem 1 and (3.1), T��K�(t) = Op(�
�d=2).

For the projected estimators, f in (3.2) satis�es (2.4), so that T� � K�(t) =

Op(�
�d).

The speci�c forms for the asymptotic variance of
P

0

�f(x; y) in Theorems 1

and 2 provide some insight into the behavior of the various estimators of K�(t)

for N not Poisson. In both theorems, the answer factors into a term depending

on � +
R
Rd �(y)dy and a term depending on f . An expected result is that for

clustered processes, for which � tends to be positive, the limiting variance is

increased relative to the Poisson in both theorems. Less obviously, since the

term � +
R
Rd �(y)dy is squared in Theorem 2 and not in Theorem 1, we should

expect the relative advantage due to projecting to be somewhat less for a clustered

process than for a Poisson process. Conversely, for a process that has points more

evenly spaced than the Poisson, � tends to be negative so that the improvement

due to projecting should be particularly large in such cases. Note that these

conclusions do not depend on f since in both theorems the asymptotic variance

factors into a term depending on � and � and a term depending on f . This

factorization further implies that among some speci�ed class of functions, the one

that asymptotically minimizes Var�(
P

0

�f(x; y)) does not depend on the process

N as long as (2.6) is satis�ed.

The asymptotic approach used here essentially assumes that the distance at

which we are estimating the reduced second moment function is large relative to

the distances over which there are nonnegligible dependencies in the process that

can be captured by the �rst four moments. In particular, it is important to note

that the bias and spread of even a projected estimator of K�(t) are of order �
�d,

which is the same order as K�(t)��dt
d, which by (3.1), is the deviation of K�(t)

from the Poisson result. Thus, we should not expect to be able to detect, reliably,

variations from the Poisson model over short distances by looking at estimates

of K at distances much longer than the scale on which nontrivial dependencies

exist. To detect deviations from the Poisson models over small distances, we

need to look at estimates of K at these same small distances.

The asymptotic approach used by Ripley (1988) of �xing the law of the

process and t and letting the observation region grow is better suited for in-

vestigating this problem of detecting deviations from the Poisson model over

small distances. However, for non-Poisson processes, it appears quite di�cult to

carry out the second-order variance calculations necessary to assess the e�ect of

various edge corrections. Furthermore, there may be circumstances where devi-

ations from randomness at larger distances are of interest even when the process

is obviously not Poisson at shorter distances. For example, when studying the

locations of trees in a forest (Diggle (1983)), there will often be a short-range re-

pulsion between trees just due to the physical extent of the branches or roots. In



230 MICHAEL L. STEIN

such cases, it may still be of interest to detect departures from randomness over

larger scales due, for example, to heterogeneity in soil conditions or constraints

on the dispersal of seeds. The results obtained here show that even if the process

is obviously not Poisson over short distances, there may still be an enormous

bene�t to projecting if we want to �nd departures from randomness over longer

distances. Finally, it is interesting to note that the mathematical formulation of

a problem can a�ect our perception of what asymptotic approach is natural. For

example, as noted earlier, Silverman (1978) studied the behavior of statistics as

the number of independent uniformly distributed observations on a �xed region

increases. Because we just have the standard asymptotic setting of a sequence of

independent identically distributed observations, it does not seem unusual in any

way. However, this scenario is also essentially the special case of the one used

in Section 2 where N is Poisson. Thus, if one is willing to accept the setting in

Silverman (1978) as an appropriate asymptotic formulation, it follows that the

approach used here is also appropriate in at least some circumstances.

4. Proof of Theorem 2

De�ne

J(�) =

Z
A4

fm[4](�x)�m[2](�x1; �x2)m[2](�x3; �x4)gf(x1; x2)f(x3; x4)dx:

The main step in proving Theorem 2 is to show that as � !1,

�2dJ(�) �! 2
nZ
Rd

�(y)dy
o2 Z

A2

f(x; y)2dxdy: (4:1)

To obtain (4.1), use the symmetry properties of m[4] and f to write

J(�) =

Z
A4


�(x)dx+ 2

Z
A4

�(�(x1 � x3))�(�(x2 � x4))f(x1; x2)f(x3; x4)dx;

where


�(x) =fm[4](�x)��
4��(�(x1�x2))�(�(x3�x4))��(�(x1�x3))�(�(x2�x4))

� �(�(x1 � x4))�(�(x2 � x3))gf(x1; x2)f(x3; x4):

Then (4.1) follows by showing

�2d

Z
A4

�(�(x1 � x3))�(�(x2 � x4))f(x1; x2)f(x3; x4)dx

�!
nZ
Rd

�(y)dy
o2 Z

A2

f(x; y)2dxdy (4:2)
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and

�2d

Z
A4


�(x)dx �! 0: (4:3)

To obtain (4.2), make the substitutions y = �(x3 � x1) and z = �(x4 � x2)

in (4.2), yielding

�2d

Z
A4

�(�(x1 � x3))�(�(x2 � x4))f(x1; x2)f(x3; x4)dx

=

Z
A2

Z
�A

�x1

Z
�A

�x2

�(y)�(z)f(x1; x2)f
�
x1 +

y

�
; x2 +

z

�

�
dzdydx1dx2;

where Ax = fy : y � x 2 Ag indicates set translation and set translation is done

before scalar multiplication, so that �A�x1 = fy : y
�
+ x1 2 Ag. Now, for almost

every (x1; x2; y; z) 2 A
2 � R

2d,

f(x1; x2)f
�
x1 +

y

�
; x2 +

z

�

�
�(y)�(z)Ify 2 �A�x1 ; z 2 �A�x2g

�! f(x1; x2)
2�(y)�(z): (4:4)

Using f bounded, the left-hand side of (4.4) is dominated by some constant

times j�(y)�(z)j, which is integrable over A2�R2d, so (4.2) follows by dominated

convergence.

To obtain (4.3), we need to introduce some notation. Let Q = ffi; jg : 1 �

i < j � 4g and for any S � Q, de�ne

B(S; r) = fx : x 2 A4; jxi� xj j � r for fi; jg 2 S and jxi� xj j > r for fi; jg 2 Scg:

That is, B(S; r) is the subset of A4 such that pairs of points that are within r of

each other are exactly those whose indices are the elements of S. Furthermore

de�ne

C(S; r) = fx : x 2 A4 and jxi � xjj � r for fi; jg 2 Sg;

the subset of A4 for which pairs of points whose indices are in S are within

distance r of each other and no explicit restrictions are placed on pairs whose

indices are not in S. It will be useful to think of S as the edges of a graph and to

use terminology from graph theory occasionally, see, for example, Harary (1969).

Using these de�nitions we have A4 =
S
S�QB(S; r) for any r. By (2.6),

there exists a function g(�) such that g(�) = o(��2=3) and h(g(�)) = o(��2d).

For convenience, write B�(S) = B(S; g(�)) and C�(S) = C(S; g(�)). On B�(;),

where ; is the null set, 
�(x) is uniformly O(h(g(�))), so

Z
B�(;)


�(x)dx = o(��2d): (4:5)
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For any S de�ning a connected graph, �4d(B�(S)) = O(g(�)�3d) = o(��2d). Since


�(x) is uniformly bounded in x and �,

Z
B�(S)


�(x)dx = o(��2d) (4:6)

for all S de�ning a connected graph.

Next, consider S de�ning a graph with a connected component of three

points, such as f12; 13g or f12; 13; 23g, where we use the shorthand ij = fi; jg.

For example, consider S = f12; 13g; cases such as f12; 13; 23g can be handled

similarly. On B�(S); 
B(x) = �m[3](�x1; �x2; �x3) � �4 + O(h(g(�))) uniformly

in x, so

Z
B�(S)


�(x)dx

= �

Z
B�(S)

fm[3](�x1; �x2; �x3)� �3gf(x1; x2)f(x3; x4)dx+O
�
h(g(�))g(�)2d

�

= � �

Z
C�(S)nB�(S)

fm[3](�x1; �x2; �x3)� �3gf(x1; x2)f(x3; x4)dx+ o(��2d)

= o(��2d); (4:7)

using (2.6) and �4d(C�(S)nB�(S)) = O(g(�)3d):

For S containing a single edge, we demonstrate, for example,

Z
B�(f12g)


�(x)dx

= �2
Z
B�(f12g)

�(�(x1 � x2))f(x1; x2)f(x3; x4)dx+ o(��2d)

= � �2
Z
C�(f12g)nB�(f12g)

�(�(x1 � x2))f(x1; x2)f(x3; x4)dx+ o(��2d)

= � �2
Z
B�(f12;34g)

�(�(x1 � x2))f(x1; x2)f(x3; x4)dx+ o(��2d); (4:8)

where the second equality follows from (2.4). To obtain the third equality, �rst

write

C�(f12g)nB�(f12g) =
[

S�Qnf12g;
S 6=;

B�(f12g [ S):

If S contains a single edge including x1 or x2 as a vertex, say S = f13g, then

the integral of 
�(x) over B�(f12g [ S) will be o(�
�2d) as in (4.7). Similarly,

all S � Qnf12g containing at least two edges contribute a term that is o(��2d)
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to the integral. Thus, only S = f34g can contribute a term that is not o(��2d),

yielding the third equality in (4.8). In addition,

Z
B�(f12;34g)


�(x)dx

= �2
Z
B�(f12;34g)

f�(�(x1 � x2)) + �(�(x3 � x4))gf(x1; x2)f(x3; x4)dx+ o(��2d)

= 2�2
Z
B�(f12;34g)

�(�(x1; x2))f(x1; x2)f(x3; x4)dx+ o(��2d);

so thatZ
B�(f12;34g)


�(x)dx+

Z
B�(f12g)


�(x)dx+

Z
B�(f34g)


�(x)dx = o(��2d):

Similarly,

Z
B�(f13;24g)


�(x)dx+

Z
B�(f13g)


�(x)dx+

Z
B�(f24g)


�(x)dx = o(��2d):

Combining these results with (4.5)-(4.7) yields (4.3) and hence (4.1).

Finally, using simpler versions of the argument leading to (4.1) yields

Z
A2

f(x1; x2)
2m[2](�x1; �x2)dx1dx2 �! �2

Z
A2

f(x; y)2dxdy (4:9)

and

�d
Z
A3

f(x1; x2)f(x1; x3)m[3](�x1; �x2; �x3)dx1dx2dx3

�! �

Z
Rd

�(y)dy

Z
A2

f(x; y)2dxdy; (4:10)

Theorem 2 follows from (2.5), (4.1), (4.9) and (4.10).
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