
Statistica Sinica 32 (2022), 239-250
doi:https://doi.org/10.5705/ss.202020.0032

RELATIONSHIP BETWEEN ORTHOGONAL AND

BASELINE PARAMETERIZATIONS AND
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Abstract: When studying two-level factorial designs, factorial effects are usually

defined as a set of orthogonal treatment contrasts, which we refer to as the or-

thogonal parameterization (OP). While most design results and analysis strategies

have been developed and understood within the scope of the OP, a more appro-

priate alternative in some situations is the baseline parameterization (BP). In this

study, we examine the relationship between the OP and the BP, which allows us

to better understand the relatively unexplored BP. In addition to being insightful,

this relationship is useful in design construction. The design properties considered

here are estimability, optimality, and robustness. We find that a general class of

Rechtschaffner designs exhibit robust properties under the BP.
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orthogonal array, Rechtschaffner design, robust design.

1. Introduction

In many industrial and scientific investigations, the objective is to build a

model that can adequately describe how the response of a system changes when

the levels of the input factors change. The impact on the mean response caused

by changing the levels of one or more factors is called a factorial effect. The most

commonly adopted definition of factorial effects for a 2m factorial, given by Box

and Hunter (1961), is a set of mutually orthogonal treatment contrasts, called the

orthogonal parameterization (OP). Despite having received less attention, a more

appropriate alternative in some situations is the baseline parameterization (BP).

Under the BP, experimenters are more interested in the effects when non-involved

factors are kept at their intrinsic baseline levels.

The BP is relatively underexplored, but is becoming more import. Yang

and Speed (2002), Kerr (2006), and Banerjee and Mukerjee (2008) investigated

factorial designs under the BP in the context of cDNA microarray experiments.
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More recently, Mukerjee and Tang (2012) proposed a minimum K-aberration

criterion to sequentially minimize the bias in the estimation of main effects caused

by non-negligible interactions, in the order of importance given by the effect

hierarchical principle (Wu and Hamada (2009), p. 172–173). The construction

of minimum K-aberration designs is further considered in Li, Miller and Tang

(2014), Miller and Tang (2016), and Mukerjee and Tang (2016).

Because the factorial effects under the OP and BP are both treatment con-

trasts, there must exist a linear relationship between them. What cannot be

foreseen is the special way one set of effects depends on the other. This spe-

cial pattern in the linear relationship has some important implications in the

construction of baseline designs. We aim to derive this relationship and explore

its applications to design construction under the BP in terms of estimability,

optimality, and robustness.

The rest of this paper is organized as follows. In Section 2, we first provide

formal definitions of factorial effects under the OP and the BP. Then, we derive

the linear relationship between the two types of parameterization and examine

its implications. Section 3 shows how to use the results in Section 2 to find

designs under the BP. Here we show that certain orthogonal arrays continue to

be optimal under the BP. General Rechtschaffner designs are introduced, and are

shown to enjoy a robust property under the BP. Section 4 concludes the paper.

All proofs are given in the appendix.

2. The Relationship Between the OP and the BP

Consider a factorial experiment involving m two-level factors F1, F2, . . . , Fm,

each at levels zero and one. Let τg denote the mean response at the treatment

combination g = (g1, g2, . . . , gm), with gi = 0 or 1 (i = 1, 2, . . . ,m), and let G be

the collection of all 2m treatment combinations. Because the treatment combina-

tion (1, 1, 0, . . . , 0) corresponds to the subset {1, 2} of S = {1, 2, . . . ,m}, we use

τ12 and τ(1,1,0,...,0) interchangeably, depending on which one is more convenient

within the context. Under the OP, for a subset v = {i1, i2, . . . , ik} of S, the

k-factor interaction Fi1Fi2 · · ·Fik (the main effect if k = 1) is given by

βv =
1

2m

∑
g∈G

τg(−1)
∑k

h=1 gih . (2.1)

We let βφ = 2−m
∑
G τg, which is the grand mean. Under the BP, the main effect

of Fi is given by θi = τi − τφ, and the two-factor interaction FiFj is given by

θij = τij − τi − τj + τφ. More generally, for a subset w = {i1, i2, . . . , ik} of S, the
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k-factor interaction Fi1Fi2 · · ·Fik under the BP is given by

θw =
∑
u⊆w

τu(−1)|w|−|u|, (2.2)

where | · | stands for the cardinality of a set.

Both βv and θw measure the impact on τg caused by level changing of the

involved factor(s). However, the former considers an overall effect, whereas the

latter focuses on the situation in which all non-involved factors are set at level

zero, the baseline level. For example, consider v = w = {1} in (2.1) and (2.2).

Let G∗ = {(g2, g3, . . . , gm) : gi = 0, 1}. The main effects of F1 under the OP

and the BP can be written as β1 = (1/2m)
∑

g∗∈G∗

(
τ(0,g∗) − τ(1,g∗)

)
and θ1 =

τ(1,0,...,0)− τ(0,0,...,0), respectively. Up to a constant, β1 averages out the effects of

F1 conditional on every g∗ ∈ G∗, while θ1 computes only the effect of F1 when all

other factors are set at their baseline levels.

The BP arises naturally when each factor has a null state or a baseline level.

For example, in a toxicological study, each factor is a toxin, and each treatment

combination is a mix of several toxins. The absence and presence of a particular

toxin can be represented by levels zero and one, respectively. In an agricultural

experiment, two kinds of fertilizers may be applicable, serving as the two levels

of a factor. Then level zero can stand for the currently used fertilizer, and level

one for the new fertilizer.

By combining (2.1) and (2.2), we obtain a linear relationship between the

OP and BP, as stated in the following theorem.

Theorem 1. We have that

(i) βv =
∑

w⊇v awθw, with aw = (−1)|v|2−|w|,

(ii) θw =
∑

v⊇w cvβv, with cv = (−2)|w|.

In Theorem 1, the θw’s in the expression of βv are those with w containing v. A

similar phenomenon occurs in the expression of θw in terms of βv. It is this special

pattern in the linear relationship between θw and βv that makes it useful in the

construction of baseline designs, which we examine in Section 3. Proposition 2 in

Mukerjee and Tang (2012), which states that an orthogonal array is universally

optimal for estimating the main effects under the BP, is established based on the

simple fact that θi = −2βi, for i = 1, 2, . . . ,m, if βv = 0 for all |v| ≥ 2. A more

important implication is that the absence of interactions under the OP yields the

same result under the BP, and vice versa. We now consider a situation that is

more general than the absence of interactions. For a collection C of subsets of S,
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we say it is echelon if for any s collected by C, all subsets of s are also collected.

Then, Theorem 1 implies the following result.

Corollary 1. Let C be echelon. Then, βv = 0 for all v /∈ C, if and only if θw = 0

for all w /∈ C. As a special case, the absence of factorial effects of order k or

higher is invariant to the choice of the parameterization.

If a collection of factorial effects, say {βv : v ∈ C} or {θw : w ∈ C}, are believed

to be active, the corresponding models under the OP and BP are, respectively,

τg =
∑
v∈C

βv
∏
k∈v

(1− 2gk) (g ∈ G); (2.3)

τg =
∑
w∈C

θw
∏
k∈w

gk (g ∈ G). (2.4)

We say that models (2.3) and (2.4) are, respectively, the OP and the BP models

associated with C, and are called echelon if C is echelon. Corollary 1 states that

these two models are equivalent if C is echelon. The main-effect-only model and

the models that contain all of the main effects, plus some/all of the two-factor

interactions, are most often used in practice, all of which are echelon models. We

end this section with two toy examples that illustrate Theorem 1 and Corollary

1.

Example 1. Consider a three-factor system A, with mean responses given by

System A: (τ000, τ001, τ010, τ011, τ100, τ101, τ110, τ111) = (1, 1, 1, 1, 2, 2, 5, 5).

By equation (2.2), there are only two active factorial effects under the BP: θ1 = 1

and θ12 = 3. However, by equation (2.1), there are three active factorial effects

under the OP: β1 = −1.25, β2 = −0.75, and β12 = 0.75. The OP model that

contains only β1 and β12 fails to characterize the mean response structure, because

C = {φ, {1}, {1, 2}} is not an echelon collection. Applying part (i) of Theorem 1,

β12 = 0.25θ12 + 0.125θ123 = 0.75. One can compute βv similarly for other v.

Example 2. A second system has the following mean responses:

System B: (τ000, τ001, τ010, τ011, τ100, τ101, τ110, τ111) = (1, 1,−1,−1, 2, 2, 3, 3).

Under the BP, (θ1, θ2, θ12) = (1,−2, 3), and all other θw are zero. Because the

model is associated with an echelon collection C = {φ, {1}, {2}, {1, 2}}, by Corol-

lary 1, the OP model that contains only β1, β2, and β12 is true as well. Using

equation (2.1) to verify this, we find that (β1, β2, β12) = (−1.25, 0.25, 0.75), and

all other βv are zero.
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3. Finding Baseline Designs

3.1. Preliminary results

Suppose N experimental runs are allowed in a design D, and let (gi1, gi2, . . . ,

gim) denote the ith run (i = 1, 2, . . . , N). Under design D, the OP and BP models

associated with C are, respectively,

E(Yi) =
∑
v∈C

βv
∏
j∈v

(1− 2gij) (i = 1, 2, . . . , N); (3.1)

E(Yi) =
∑
w∈C

θw
∏
j∈w

gij , (i = 1, 2, . . . , N), (3.2)

where Yi is the response of the ith run. Let XC and WC be the model matrices of

(3.1) and (3.2), respectively. A design is said to be able to estimate model (3.1)

(respectively, model (3.2)) if X ′CXC (respectively, W ′CWC) is invertible.

Theorem 2. If a design is able to estimate an echelon OP model, it is able to

estimate its counterpart BP model, and vice versa.

Theorem 2 allows the estimability of certain BP models to be established with

little effort. One example is that the full kth-order model, the model that contains

all factorial effects of order k or lower, can be estimated under an orthogonal array

of strength 2k. Another interesting application of Theorem 2 is given in the next

example.

Example 3. Cheng (1995) showed that an N -run orthogonal array, if N is not a

multiple of eight, can estimate the full second-order model when projected onto

any four factors. This projection property, by Theorem 2, holds regardless of the

parameterization.

For a design D and an OP model associated with C, we define its DC-efficiency

as det(X ′CXC), and its AC-efficiency as trace(X ′CXC)
−1. We say a design is DC-

optimal (respectively, AC-optimal) if it maximizes det(X ′CXC) (respectively, min-

imizes trace(X ′CXC)
−1) among all competing designs. Similarly, we can define

the DC- and AC-optimality criteria under the BP by replacing XC with WC .

Proposition 1. Let C be an echelon collection. If a design is DC-optimal under

the OP, it is DC-optimal under the BP, and vice versa.

Proposition 1 is an implication of a more general result given by Proposition 2,

which can be derived directly from Theorem 1. Note that Propositions 1 and 2

are both special cases of Lemma 6 in Stallings and Morgan (2015), though stated

in a different context.



244 SUN AND TANG

Proposition 2. If C is echelon, then det(X ′CXC) is proportional to det(W ′CWC).

The ratio does not depend on the design, but on C alone.

We conclude this subsection with a corollary. Its implication will be discussed

after Theorem 3 in the next subsection.

Corollary 2. Let C be an echelon collection. The DC-efficiency of a design

remains unchanged under level switching of one or more factors, regardless of

the parameterization.

3.2. Designs from orthogonal arrays

Cheng (1980) showed that an orthogonal array is universally optimal under

the main-effect-only model. As another example, a design given by an orthogonal

array of strength 2k is A- and D-optimal under the full kth-order model. These

results are all obtained all under the OP. In this subsection, we generalize a result

of Moriguti (1954) to baseline designs. We also comment on generating baseline

designs with robust properties.

Consider the OP model associated with C, and let β̂v be the least squares

estimator of βv. We assume, as usual, that all observations are uncorrelated and

have a common variance. Moriguti (1954) proved that a design in which the

model matrix XC has mutually orthogonal columns minimizes Var(β̂v) for each

v ∈ C among all competing designs. The next theorem states that a similar result

holds for the BP if C is echelon.

Theorem 3. Under an OP model associated with C, a design D minimizes

Var(β̂v) for each v ∈ C among all competing designs if XC is orthogonal. Further-

more, if C is echelon, then under the counterpart BP model, D also minimizes

Var(θ̂w) among all competing designs for every w in C that is not contained by

another u in C.

For convenience, we call θw a cap effect if w is not contained by another u

in C. Then, Theorem 3 establishes the optimality for every cap effect under the

stated conditions. Cap effects should be tested first for their significance when

seeking a simpler model in the analysis stage. We consider some useful cases.

If the main-effects model is considered with the inclusion of an intercept, then

all the main effects are cap effects. Therefore, Theorem 3 generalizes a result of

Mukerjee and Tang (2012), who established the optimality for every main effect.

For a model consisting of all main effects and all two-factor interactions, the

two-factor interactions are cap effects. In a model of all main effects plus some

two-factor interactions, these two-factor interactions are cap effects, as are the

main effects not involved in these two-factor interactions.
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Because switching the two levels does not affect the orthogonality of XC ,

Theorem 3 also suggests a simple strategy for generating an efficient baseline

design that is robust to non-negligible effects. While a full investigation of this

problem is beyond the scope of this study, we give an example to illustrate the

idea.

Example 4. Consider the model associated with C = {φ, {1}, {2}, {3}, {4}, {1, 2},
{1, 3}} and an eight-run design D, displayed in transposed form below:

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

0 1 1 0 1 0 0 1

 .
Design D is a resolution-IV regular design. Because the design has an or-

thogonal model matrix XC , it has the optimal properties given in Theorem 3. Let

D∗ be the design obtained from D by level switching the fourth factor. Then, D∗

has the same optimality properties as D. To further distinguish one design from

the other, we compute the bias caused by non-negligible effects. Assume θ24 is

the only non-negligible effect. Following the idea of the minimum K-aberration,

the design with smaller value of ‖(W ′CWC)−1W ′CW24‖ is preferred, where WC is

the model matrix under the BP, W24 is the Hadarmard product of the second and

fourth factors in the design matrix, and ‖·‖ denotes the Euclidean norm. Because

‖(W ′CWC)−1W ′CW24‖ is equal to 2 for D and 0.816 for D∗ , D∗ is preferred.

3.3. Rechtschaffner designs

Consider the full second-order model associated with the collection C2 = {s ⊆
S : |s| ≤ 2}. Based on the aforementioned one-to-one correspondence between

a subset and a treatment combination, C2 corresponds to a design consisting of

(1 + m + m(m − 1)/2) different treatment combinations, which is known as the

Rechtschaffner design, denoted by DC2 . Using the same correspondence, we define

DC similarly for any C, and still call it a Rechtschaffner design. Design DC2 was

first presented by Rechtschaffner (1967), who suggested its use under the full

second-order model. The estimability of DC2 under the OP was later proved by

several authors, with generalizations to echelon models for mixed-level and/or

higher-order situations. We state a result for the two-level situation, which is a

special case of Theorem 15.25 in Cheng (2014).

Proposition 3. For an echelon collection C, the OP model associated with C is

estimable under the Rechtschaffner design DC.
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Under the BP, the Rechtschaffner design DC has a stronger property.

Theorem 4. For any collection C, the BP model associated with C is estimable

under the Rechtschaffner design DC.

Compared with Proposition 3, Theorem 4 does not assume that C is echelon.

A special case of Rechtschaffner designs is DC1 with C1 = {s ⊆ S : |s| ≤ 1}.
This design, commonly known as a one-factor-at-a-time design, was discussed

in Mukerjee and Tang (2012) for its following robust property: non-negligible

interactions never cause bias in the estimation of the main effects under the BP.

This property, in fact, holds for any Rechtschaffner design DC with an echelon C.

Theorem 5. Let C be an echelon collection. Then, the Rechtschaffner design

DC allows an unbiased estimation of the BP model associated with C, even if the

effects outside the model are non-negligible.

Example 5. Consider the model associated with C = {φ, {1}, {2}, {3}, {4}, {1, 2},
{1, 3}} and the Rechtschaffner design DC , displayed in transposed form below:

0 1 0 0 0 1 1

0 0 1 0 0 1 0

0 0 0 1 0 0 1

0 0 0 0 1 0 0

 .
If θ24 is a non-negligible effect, the bias it causes can be found using (W ′C

WC)
−1W ′CW24θ24. It is clear that W24 is an all-zero vector; hence, θ24 does not

cause bias in θ̂w, for all w ∈ C. The same argument can be made for all other

effects outside the model.

Though the Rechtschaffner design DC enjoys a nice property of robustness,

it is not very efficient. We now consider a class of N -run Rechtschaffner designs

based on DC , where C = {s0 = φ, s1, s2, . . . , sp}, by allowing each run in DC to

appear multiple times. Let fj be the number of times the treatment combination

corresponding to sj appears in DC , for j = 0, 1, . . . , p, where N =
∑p

j=0 fj . The

next result gives an optimal allocation.

Proposition 4. Let C be an echelon collection. An N -run Rechtschaffner design

based on DC is AC-optimal under the BP if fj = Nq
1/2
j /

∑p
j=0 q

1/2
j , for j =

0, 1, . . . , p, where qj is the number of subsets in C that contain sj.
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4. Conclusion

We have derived a linear relationship between the OP and the BP. From

its special pattern, we conclude that an echelon model has the same form under

the two types of parameterization. We further discuss its implications for the

estimability, optimality, and robustness of baseline designs. In particular, we

show that certain orthogonal arrays continue to be optimal under the BP. We

introduce general Rechtschaffner designs, showing they enjoy a robust property

that is only available under the BP.

There are two possible future research directions. The first is illustrated by

Example 5, in which we find the level permutations that minimize the bias caused

by non-negligible effects. Under the main-effect-only model, this has been investi-

gated by Mukerjee and Tang (2012) and Li, Miller and Tang (2014). However, it

would be useful to obtain results for more general echelon models. The second is

to consider a compromise between robust and optimal designs, which can be done

by adding runs to a Rechtschaffner design. The compromise designs are expected

to enjoy in-between performance in terms of both efficiency and robustness, as

demonstrated for the main-effect model of Karunanayaka and Tang (2017).
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Appendix

A. Appendix: Proofs

A.1. Proof of Theorem 1

Let τ be a column vector with componenets τφ, τ1, τ2, τ12, . . . , τ12···m in Yates

order. Vectors θ and β are similarly defined. Let Hm be the m-fold Kronecker

product of H and Lm the m-fold Kronecker product of L, where

H =

[
1/2 1/2

1/2 −1/2

]
and L =

[
1 0

1 1

]
.

We then have β = Hmτ and τ = Lmθ. Therefore β = HmLmθ and θ =

(HmLm)−1β. Theorem 1 follows by noting that HmLm is the m-fold Kronecker

product of HL and (HmLm)−1 is the m-fold Kronecker product of (HL)−1 and
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the special forms of HL and (HL)−1 as given by

HL =

[
1 1/2

0 −1/2

]
and (HL)−1 =

[
1 1

0 −2

]
.

A.2. Proof of Theorem 2

This result follows immediately from Proposition 2.

A.3. Proof of Corollary 2

For a design D, let Dπ be the design obtained from D by level switching one

or more factors. We use W and Wπ to denote the model matrices under D and

Dπ for the BP, respectively. Matrices X and Xπ are defined similarly for the OP.

By Proposition 2, the ratio (det(X ′X)/det(W ′W )) = (det(X ′πXπ)/det(W ′πWπ))

is a constant which only depends on the model. Since det(X ′X) = det(X ′πXπ),

we conclude that det(W ′W ) = det(W ′πWπ).

A.4. Proof of Theorem 3

Due to a result by Moriguti (1954), Var(β̂v) attains its minimal value for

each v ∈ C if XC is orthogonal. If C is echelon, by Theorem 1 and Corollary 1,

we have that θw =
∑

v⊇w,v∈C cvβv. If w is not contained by another u in C, then

θw = cwβw. Thus, Var(θ̂w) = c2wVar(β̂w) is minimized.

A.5. Proof of Theorem 4

Consider the matrix Wm = Lm in the proof of Theorem 1, which is the model

matrix of the full model. Let W ∗m be the N × N submatrix of Wm, obtained

by deleting all rows and columns except for the j1-, j2-,. . . , jN -th rows and

columns. It is sufficient to show that W ∗m is non-singular. Note that j1 = 1 since

a Rechtschaffner design always contains g = (0, . . . , 0) and the model always

contains the intercept. The non-singularity of W ∗m is easily seen since Wm is a

lower triangular matrix with all diagonals being one, which the case is because

Wm = Wm−1 ⊗W1 and W1 has the same pattern.

A.6. Proof of Theorem 5

Let C = {s0 = φ, s1, s2, . . . , sp}. Without loss of generality, let the i-th run

gi = (gi1, . . . , gim) correspond to si, i = 0, 1, . . . , p. The fitted model can be writ-

ten as E(Y ) = WCθC , where E(Y ) = (τs0 , τs1 , . . . , τsp)′ and θC = (θφ, θs1 , . . . , θsp)′.

Since there may exist some non-negligible effects θw with w /∈ C, we let the true

model be E(Y ) = WCθC +
∑

w/∈CWwθw, where Ww is a (p+ 1)× 1 column vector
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with the i-th entry equal to
∏
j∈w gij .

Let θ̂C be the least square estimator from the fitted model. Then, E(θ̂C) =

(W ′CWC)
−1W ′CE(Y ) = θC+

∑
w/∈C(W

′
CWC)

−1W ′CWwθw. Thus, if we can show that

for each w /∈ C, Ww is an all-zeros column vector, then the proof is completed.

This is evident because
∏
j∈w gij is one if si contains w as a subset, and zero

otherwise. However, due to the fact that C is echelon, no si can contain w as a

subset.

A.7. Proof of Proposition 4

Let model (3.2) under the Rechtschaffner design DC (i.e., fj = 1 for j =

0, 1, . . . , p.) be E(Y ) = WCθC , where E(Y ) = (τs0 , τs1 , . . . , τsp)′ and θC =

(θφ, θs1 , . . . , θsp)′. Consider an N -run Rechtschaffner design and let E be the

(p + 1) × (p + 1) identity matrix. The model matrix can be written as AWC ,

where A is an N × (p+ 1) matrix. The first f0 rows of A are the first row of E,

the following f1 rows are the second row of E, and so on. The AC-efficiency is

tr
(
(AWC)

′(AWC)
)−1

= tr
(
W−1C (A′A)−1(W ′C)

−1) = tr
(
(A′A)−1(W ′C)

−1(WC)
−1)

It is evident that (A′A)−1 = diag(f−10 , f−11 , . . . , f−1p ), so the AC-efficiency is∑p
j=0 qjf

−1
j , where qj is the (j, j)-th element of (W ′C)

−1(WC)
−1, for j = 0, 1, . . . , p.

By Cauchy-Schwarz inequality, subject to
∑p

j=0 fj = N ,
∑p

j=0 qjf
−1
j is minimized

if fj = N(qj
0.5/

∑p
j=0 qj

0.5), so the proof can be completed by showing qj is the

number of subsets in C that contain sj .

By definition (2.2), for any w ∈ C, θw =
∑

u⊆w τu(−1)|w|−|u|, which is equal to∑
u∈C,u⊆w τu(−1)|w|−|u| since C is echelon. It is then implied that θC = W−1C E(Y )

gives the definition back, and thus the j-th column of W−1C is(
(−1)|s0|−|sj |I(s0 ⊇ sj), (−1)|s1|−|sj |I(s1 ⊇ sj), . . . , (−1)|sp|−|sj |I(sp ⊇ sj)

)′
,

where I(si ⊇ sj) = 1 if si contains sj as a subsets, and 0 otherwise. Now we can

find that the (j, j)th element of (W ′C)
−1(WC)

−1, which is the squared length of

the jth column vector of W−1C , is
∑p

i=0{(−1)|si|−|sj |I(si ⊇ sj)}2 =
∑p

i=0 I(si ⊇
sj) (j = 0, . . . , p).
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