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Abstract: The information contained in a discrete two-way contingency table can be
decomposed into three independent components: row marginals, column marginals
and cross-product ratios. The log-linear models and association models for ordered
contingency tables demonstrate the richness and flexibility of considering these com-
ponents separately. Holland and Wang (1987a) introduced the local dependence func-
tion, which mimics the cross-product ratios, for continuous bivariate densities. We
proved that the local dependence function and two marginal densities uniquely deter-
mine the joint density. An iterative procedure to approximate the joint density was
presented. Wang (1987) demonstrated this approach for the bivariate normal density.
Different systems of bivariate distributions are examined to reveal their strength and
limitation from a discrete perspective. Possible extensions are suggested.
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1. Introduction

The construction of continuous bivariate density functions (bpf’s) has been
approached from different directions. An insight into the pattern of association
between two random variables can influence our approaches to regression and cor-
relation analysis. Yule (1897) and Pearson (1905, 1923) studied the relationship
between some skewed bivariate surface and non-linear regression. Their observa-
tions reflected the need to study non-normal bpf’s with prescribed dependence
properties. According to Mardia (1970), some of the systematic methods for
constructing continuous bpf’s can be classified as:

(a) The solution of Pearson’s system of differential equations (see Van Uven
(1947-1948));

(b) series expansion using the normal distribution or marginal distributions as
basis, such as Edgeworth expansion and canonical expansion; and

(c) the translation method of Johnson (1949).
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No family of distribution functions can offer a spectrum broad enough to describe
adequately all the dependence structure contained in the continuous bpf’s used
in application. Kotz (1975) stated “One of the central problems of modern multi-
variate distribution theory is, no doubt, the proper and meaningful assessment of
dependence between components”. His statement, unfortunately, still bears some
truth today. This, to a certain extent, is rooted in our conventional wisdom to
summarize dependence in a single measure of association. A discrete perspective,
as we are about to unveil, may shed some new light on this old problem.

Plackett (1965) discretized a continuous bivariate frequency surface into 2 x 2
discrete contingency tables and considered the 2 x 2 odds ratios as measures of
dependence between two continuous random variables (r.v.’s). He is among the
first to approach the construction of bpf’s with a discrete intuition. But how to
generate a bivariate normal distribution from Plackett’s system is still unknown.
One reason his approach is not a complete success may be due to his scheme of
discretization. Considering only a 2 x 2 partition oversimplifies the process of
discretization. In this paper we will partition a bivariate surface into an » x ¢
table and study the construction of a continuous bivariate density analogous to
the construction of a two-way contingency table. _

In the following, we first review some known results in contingency tables.
To mimic the local cross-product ratios proposed by Yule & Kendall (1950, p.56)
and Goodman (1969) a local dependence function is defined. The construction
of a continuous bpf is discussed in Section 3. We prove that the local dependence
function along with any two univariate marginal densities uniquely determines a
bpf, which can be successively approximated by the iterative marginal replace-
ment process. This establishes a systematic way to construct all bivariate bpf’s.
In Section 4, we examine the local dependence function of different systems of
bivariate densities. It is demonstrated that Pearson’s family and Johnson’s fam-
ily, among others, pose restrictions on their local dependence functions. Possible
generalizations and extensions are also suggested.

2. Two-Dimensional Dependence Functions

In order to demonstrate the analogy between discrete and continuous distri-
butions, some notions about dependence are briefly reviewed.

2.1. Dependence measures for two discrete random variables

An 7 X c contingency table with cell probabilities p;; specifies the joint prob-
ability distribution of two discrete r.v.’s, S and T, via

pz]——-PT(S:i,T:]’), for ]-Sisr a'nd ISch' (2'1)
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The two marginal distributions for S and T are Pr(S = i) = >i=1Pij = piy and
Pr(T = j) = 3.1 pij = p4;, respectively. Yule & Kendall (1950) and Goodman
(1969) suggested the following non-redundant set of local cross-product ratios

_ PijPi+1j+1

for 1<i<r and 1<j<ec. (2.2)
Dij+1Pi+15

Also, let v;; = Inca;;. Both a;; and +;; measure the association of the 2 x 2
subtables formed by adjacent rows and adjacent columns. These (r —1) x (¢ — 1)
2 X 2 tables were called tetrades by Yule & Kendall. The local cross-product
ratios are invariant under the operations of both row multiplication and column
multiplications, which transform {p;;} into {p;ja;} for positive a; and into {p;;b;}
for positive b;, respectively. It is known that the set {aij}, or equivalently {7},
together with the marginal probabilities {p;;} and {p;;} uniquely determine the
population contingency table {p;;}, see Plackett (1981, p.36).

Lemma 2.1. The a;j for 1 <i<r and 1 < j < c are a mazimal invariant of
{pi;} under row multiplication and column multiplication.

Proof. If two 7 X c tables have the same set of a;;, then there exists a row and
column multiplication mapping one to another.

2.2. Local dependence function for continuous bivariate densities

In the sequel, let (X,Y) denote two continuous random variables with a
mixed-differentiable density function f(z,y) having the support

K ={(z,9): f(z,9) > 0}. (2.3)

In this paper we assume that the support of f(z,y) is an open connected set in R2.
The z-marginal density and y-marginal density are defined as fi(z) = [ f(z,y) dy
and f2(y) = [ f(z,y) dz, respectively. Let the support of fi(z) be the interval
(a,b) and the support of f2(y) be the interval (c,d), where a,b, ¢, and d can be
infinite. Then, K is a subset of the Cartesian product set (a,b) x (c, d).

Suppose that K has been partitioned by a fine rectangular grid. The prob-
ability content of the rectangle containing the point (z,y) with sides dz and
dy is approximately equal to f(z,y)drdy. This probability may be viewed as
one cell probability of a large two-way table. For this two way table the local
cross-product ratio at (z,y) is defined to be

f(z,y)f(z+ dz,y + dy)
f(z+dz,y)f(z,y + dy)’

which is the analogue of a;; of (2.2). Holland and Wang (1987a) considered the
limiting case of In a(z,y) as the partitioning grid becomes infinitely fine. The

a(z,y) = (2.4)
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local dependence function (1df), denoted by v¢(z,y), is defined as

62
Ozl0y

vi(z,y) = In f(z,y). (2.5)
Note, v¢(z,y) can be defined for any positive mixed-differentiable function which
need not be a density function.

It is easy to see that yf(z,y) = 0 if and only if (X,Y) are independent
provided K is a Cartesian product set. The local dependence function satisfies
the “margin-free” property defined in the following definitions.

Definition 2.1. Let f(z,y) be a continuous bpf with marginal densities f;(z) and
f2(y). Let g1(z) and g2(y) be, respectively, continuous univariate density defined
on the same supports of fi(z) and f2(y). The mapping Q1(f(z,y),91(z)) =
f(z,y)g1(z)/ fi(z) is called the z-marginal replacement by g;(z) and the mapping
Qa(f(z,9),92(y)) = f(z,9)92(y)/ f2(y) is called the y-marginal replacement by
92(y)-

Definition 2.2. A function computed from a bpf is called margin-free if it
is invariant when both z-marginal replacement and y-marginal replacement are
applied to the bpf. A statistic is called margin-free if it is invariant under both
z-marginal replacement and y-marginal replacement.

The z-marginal replacement changes the z-marginal density of f(z,y) from
fi(z) to gi(z). The ldf is not only margin-free but also a maximal invariant
under both z-marginal and y-marginal replacements. The proof is postponed to
Section 3.

3. Construction of Bivariate Density Function and the Iterative Mar-
ginal Replacement Algorithm

For any two univariate density functions g(z) over (a,b) and h(y) over (c,d),
let {g, h} be the set of all bpf’s over (a, b) X (¢, d) which has g(z) as its z-marginal
density and h(y) as its y-marginal density. That is

{g,h} = {f(ma y) : fl(m) = g(w) and f2(y) = h(y)a (may) in (a’b) X (C, d)} (31)

Also, for any subset S of R? and a bivariate function y(z,y) defined on S, let
{7, S5} be the collection of bivariate functions (not necessary bpf’s) defined in S
which have y(z,y) as their 1df, i.e.,

2
5257 In f(z,y) = v(z,y)

for all (z,y) in S}. (3.2)

{7,S} = {f:f has S asits support and
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For the discrete r.v.’s the specification of a;;j is independent of the marginal
total p;y and p;;. The margin-free property of 1df shows that the bpf can be
decomposed into three disjoint components: the two marginal densities, fi(z)
and f3(y), and the 1df, v¢(z,y). One way to construct a smooth bpf is to “paste”
back the 1df with any two univariate densities as its marginals. We summarize
this in the following theorem.

Theorem 3.1. For any continuous densities g(z) and h(y) defined on (a,b) and
(c,d), respectively, and an integrable function y(z,y) defined over K = (a,b) x
(¢,d), there exists a unique continuous bpf, f(z,y), defined in K such that

[ 1 tydt = o), (53)
/ f(t,y) dt = h(y), and (3.4)

2
5207 In f(z,y) = v(z,y) for all (‘m,y) € K. (3.5)

Proof. For any given bpf n(z,y), defined on K, the existence and uniqueness
of a bivariate density of the form w(z,y) = A(z)B(y)n(z,y) with prescribed
marginal g(z) and h(y) have been proved by Kullback (1968). Kullback proved
that w(z,y) is the bivariate density which minimizes the Kullback information
distance between 7(z,y) and {g(z), h(y)}, or equivalently, w(z,y) is the Kullback
information projection of 7(z,y) to {g(z), h(y)}. For a given y(z,y), a bivariate
density of the form v(z,y) = Cexp(I'(z,y)) can be constructed, where I(z,y) is
an anti-derivative of y(z,y) such that exp(I'(z,y)) is integrable over K and C is
the integral of exp(I'(z, y)) over K. It is easy to see that the solution bpf, f (z,9),
is the Kullback Information projection of v(z,y) to {g(z), h(y)}.

Lemma 3.2. The local dependence function Y#(z,y) is a mazimal invariant
under both z-marginal and y-marginal replacements.

Proof. If two densities f(z,y) and g(z,y) have the same 1df, i.e., v¢(z,y) =
Y¢(z,y), then there exists a sequence of z-marginal replacements and y-marginal
replacements which transform f(z,y) to g(z,y), due to Theorem 3.1.

Theorem 3.1 is equivalent to the fact that {y(z,y),K} N {g(z),h(y)} =
{f(z,y)}. There is one and only one element in the intersection of {v(z,y), K}
and {g(z),h(y)} regardless of the functional forms of 4, ¢ and k. When K #
(a,b) x (c,d) the intersection may be empty. If it is not empty then the solution
of (3.3), (3.4) and (3.5) must also be unique, see Holland and Wang (1987D).

For the discrete bivariate distribution the iterative proportional fitting pro-
cess (IPF) is used to construct a two-way table with prescribed marginals and
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prescribed cross-product ratios, see Plackett (1981). Kullback (1968), Csiszar
(1975) and Speed & Kiiveri (1986) used the z-marginal replacement, €21, and
y-marginal replacement, 2o, iteratively to achieve the prescribed marginal den-
sities. Similarly, the solution f(z,y) can be approximated successively from
v(z,y) = Cexp(I'(z,y)) by the iterative marginal replacement described be-
low. Let fO(z,9) = Cexp(T(z,y)), &) = Qi (), g(c)) and f*+2) =
Qo (f(2*+1) h(y)) for k = 0,1,2,.... The sequence {f")(z,y), for n > 0} is called
the iterative marginal replacement process (IMR). The above authors proved that
the sequence {f (), for n > 0} converges to a unique density.

Numerical implementation of IMR can provide a discrete approximation for
the continuous bpf of Theorem 3.1. For example, the numerical solution satis-
fying y(z,y) = 8 for 0 < z,y < 1, g(z)—1f0r0<m<1andh()—lfor
0 < y < 1 can be computed at discrete points {(z; = 2’2; VY = ) for 1 <

i,j < n}. The iteration starts from O (z,y) = exp(6zy) and proceeds to com-
pute fD(z1,9) = 7O (2:,5)/FO(s), where fO(z:) = [} F©(z;,t)dz. This is
a row-marginal replacement. The column-marginal replacement scales f(U(z;,y)
into 7(zs,47) = FO (zi,3;)/ D (y;), where FV(y;) = JF FO(t,y;)dt. The it-
eration will converge in a few cycles. The result is a discrete representation of
the desired bpf. For marginals “curved” more than the uniform distribution, the
selection of {z;} and {y;} needs to properly reﬂect the curvatures of the marginal
distributions. Reasonable choices are {z; = Fj *((2i —1)/2n) for 1 < i < n} and
{y; = F;1((2j —1)/2n) for 1 < j < n}, where Fi(z) and Fz(y) are the df’s of
f1(z) and f2(y), respectively.

Theorem 3.1 can be used to characterize bivariate densities. It is well known
that different bpf’s can have the same marginals. For example, Gumbel (1960)
and Marshall & Olkin (1967) each defined a bivariate exponential distribution.
Their distributions have the same exponential marginal densities but different
1df’s. Continuous bpf’s can be characterized and constructed via Theorem 3.1.
For example, the bivariate normal distributions can be characterized in the fol-
lowing corollary.

Corollary 3.1. Let f(z,y) be a bivariate density defined in R2. If

82
Oz 0y

/f z,t)dt = (27)~Y/2 exp(—22/2),

and [ f(s,u)ds = (@m)7V2exp(~4/2),

In f(z,y) = a constant, 7,

then f(x,y) is the bpf of a normal distribution with correlation coefficient {(1 +
4n?)1/2 ~1}/(27).
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Similarly, bivariate Cauchy densities have univariate Cauchy marginals and
v(z,y) = 3zy/(z% + y? + ¢?)? for ¢ > 0. The 1df indicates that the Cauchy dis-
tributed X and Y are positively dependent in the first and third orthant and
negatively dependent in the second and fourth orthant. Bivariate Gamma distri-
butions have univariate Gamma marginals and (z,y) = (1—q)(y— z)? for ¢ > 0.
Bivariate F' distributions have F marginals and v(z,y) = (1/2)(vv1v2 Jv3) /(1 +
(v1z + vay)/vo)?. The above density functions can be found in Mardia (1970).

4. Comparisons with Other Systems of Bivariate Densities

The attempts to construct continuous bpf’s with prescribed marginals include
Morgenstern (1956), Plackett (1965), Johnson (1949), Narumi (1923), Lancaster
(1958), Fréchet (1951) and more recently Kimeldorf and Sampson (1975), Frank
(1979), Johnson & Tenenbein (1981) and Marshall & Olkin (1988). Their dif-
ferences are caused by different strategies to model and express the dependence
structure. One method of constructing a bivariate bpf may not include distri-
butions which can be generated by other methods. An examination of the 1df’s
for different families of constructing bivariate densities shall reveal the reason
why no system is broad enough to include all the continuous bpf’s. Barndorff-
Nielsen (1978, p.27) defined the concept of variation independent for variables.
Let wy,...,wm be a collection of variables and let M, ..., M,, denote their do-
mains of variation. If the domain of variation M say, of the combined variable
w = (wi,...,wn) is equal to the product, M; x --- X M,,, of each and every
domain then wi,...,wn are called variation independent. Theorem 3.1 implies
that the three parameter functions of f(z,y) : fi(z), f2(y) and v(z, ), are varia-
tion independent. In the following ,we will examine different systems of bpf’s. It
becomes clear that the ldf is not variation independent of the marginal densities.
In other words, the constraint placed on the 1df by the marginals limits the scope
of the bpf.

4.1. The Pearson family

Pearson proposed the differential equation approach to generate univariate
densities. Van Uven (1947-1948) employed a pair of Pearson-type differential
equations to generate bpf’s. Consider the following two equations

0 Ll(may)

'é;lnf(m,y) = ilzy) (4.1)
i z — L2($,y)
6y111f( ,Y) 0s(z.1) (4.2)

where L; and Q; are linear functions and quadratic functions of (z,y), respec-
tively. Since (62/0z8y)In f = (82/0yBz)1In f, the L;’s and Q;’s can not be
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chosen arbitrarily. Also, some restrictions about the coefficients of L; and Q; are
needed to ensure the positiveness of f(z,y). The ldf for the Pearson family is of
the form:

v(z,y) = (_1_) <Q2(z,y)(M)_Lz(m,y)<3Q2(-’B,y)))

Q2 Oz
_ (‘&) (Ql(m )(M)_Lm,y)(”ﬂy’w)). (4.3)

Some constrains must be put on (L;,Q;) and (L2, Q2) to ensure the equality in
Equation (4.3). Moreover, the 1df in (4.3) is restricted to a quadratic function
divided by a squared quadratic function.

The original purpose of Pearson’s family is to generate a rich family with con-
ditional distributions belonging to univariate Pearson’s family. It does not place
any model on the interdependence between X and Y, explicitly. Equations (4.1)
and (4.2) determine the conditional distributions f(z|y) and f(y|z), respectively,
whereas the marginal distributions are to be forged. “Sagrista (1952) pointed
out a direct extension of Pearson’s original first order equations into a system
of partial differential equations is impractical, since the equations are difficult to
solve and in most cases the solutions are too general in nature.”, quoted from
Kotz (1974). Kotz also stated that “these surfaces, as Pearson pointed out again,
were thus of little practical importance” since they “did not fit the theoretical
frequencies”. Equations (4.1) and (4.2) contain redundant information about
~(z,y), hence, are not variation independent. Our single differential equation
(3.5) coupled with two integral equations, (3.3) and (3.4), is more flexible than
Pearson’s family. It eliminates the complicated restrictions on L3, L2, @1 and
Q- represented in (4.3). It also offers to specify marginal densities explicitly.

4.2. Johnson’s translation family

Johnson (1949) considered the distribution of (X,Y") such that Z; = a7 ((X —
¢1)/A1) and Z2 = ay((Y — (2)/A2) have a joint bivariate normal distribution,
where a; and ay are the marginal transformations which are both differentiable
and one-to-one. From Corollary 3.1, if Johnson’s translation family is put in the
context of Theorem 3.1, Equation (3.5) takes the following form:

2

3383,/ In f(z,y) = c(-d—%aiz)-l (@#)—1. (4.4)

And equations (3.3) and (3.4) become the following boundary conditions:

[ e,y) dy = (2m) 2 exp(—a}(@)/2) (der(z) /d2), (45)
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and
[ 1,9 dz = (2) exp(=a}(w)/2)(d0sw) /). (4.6)

According to equations (4.4), (4.5) and (4.6), it can be concluded that Johnson’s
translation family is limited in two respects: First, the 1df is a product of a
function of z only and a function of y only. Secord, the 1df is completely specified
by the marginal densities. In short, the joint density is completely determined by
the two marginal transformations. The bivariate Cauchy, bivariate Gamma and
bivariate F' distributions, mentioned following Corollary 3.1, obviously can not
be members of the Johnson translation family.

An straightforward generalization of Johnson’s translation family is to relieve
the confinement imposed on ldf by the marginal densities. We can replace the }
partial differential equation (4.4) via

32
Oz 0y

In f(z,y) = a(z)B(y), (4.7)

which was proposed by Goodman (1985, p.39). The distribution satisfying (4.5),
(4.6) and (4.7), though not completely general, is more flexible than Johnson’s
family. It was used to model a translated bivariate normal distribution by Good-
man (1985).

4.3. Canonical representation

For any given marginal fi(z) and f2(y), Lancaster (1963) defined a set of
complete orthonormal function {(;(z)} and {7;(y)} such that the bpf, f(z,y),
can be decomposed as follows:

few = {1+ oiGie)i(o) 1 (@) atw), (4.8)
1=1

where ¢; = [f (;(z)n:(y) f(x,y) dzdy is called the ith canonical correlation. The
right-hand side of (4.8), in theory, can represent all continuous bpf’s. But in
practice, it offers limited usefulness because it is hard to determine a bpf from
the right-hand-side of (4.8). The ldf gives a clear indication about positive or
negative association but Equation (4.8) reveals little about the local dependence.
Lancaster pointed out that the above infinite expansion is a continuous version of
the following canonical expansion in Fisher (1940) for a discrete m x n (m < n)

contingency table:
m-—1

D VrChik }Pi+P+j- (4.9)

Pij = {1 +
k=1
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One motivation for (4.9) is the Pearson’s chi-square statistic, x? =¥, 2i{lpi; -

Pi+P+j)?/Pi+p+;}, which can be decomposed as the sum of squared canomcal

correlatlons, 21/:2 But the likelihood ratio statistic for a contingency table,
=2 2 (Pi+P+;) In(piyp+;/pij), does not have a simple expression.

Fisher and Lancaster, in fact, took a linear decomposition for cell probability
directly. Their approaches are in contrast with the prevailing log-linear models
for contingency table analysis. More specifically, the likelihood-based log-linear
mode] offers some practical advantages. Its terms give a direct description of the
local dependence, which is not clear from (4.9).

Goodman (1987) proposed canonical correlation models and association mod-
els to study ordered contingency table. His canonical models can be represented
by (4.9) with 9; to be estimated from data. As an alternative to (4.9), he sug-
gested the following log-linear model for the cell probability:

m—1
pij = a;if; eXP(Z /\kVik,ujk)- (4.10)

k=1

This representation can be viewed as a discretized version of a continuous bpf
a(z)B(y) exp(C7 1 AU (z)V (y)), which is the solution of equations (4.7), (3.3)
and (3.4). Goodman thought (4.10) could offer more flexibility in modeling cell
probability than (4.9). Comparison between canonical correlation model (4.9)
and association model (4.10) for discrete distribution can shed light on the com-
parison between the canonical expansion (4.8) and the system of densities pro-
posed in Theorem 3.1 for a continuous bpf.

4.4. Edgeworth expansion

For any bivariate bpf f(z,y), its Edgeworth expansion ¢(z,y), can be written
as

a(e,9) = exp ({ ks (52) (55)+ 5 (-1, (%)G)(f;)’(%)"}q&(xw(y)),

r+8>3
(4.11)

where k., is the (r,s) cumulant of f(z,y) and ¢(z) = (1/27)1/2 exp(—z?/2).
The independent normal density ¢(z)$(y) is used as a convenient base density
(starting point). The partial derivatives are used to find orthogonal coordinates,
such as the Hermite polynomials, in the expansion. Most Edgeworth expansion
will be limited to order of r + s < 4. One major purpose of the Edgeworth
expansion is to match the cumulants of ¢(z,y) with that of f(z,y). But the
marginal densities of ¢(z,y) are usually different from those of f(z,y).

Besides, ¢(z,y) can sometime become negative in the support of K, and it
is well-known that the cumulants k., are not sufficient to specify the dependence



CONSTRUCTING BIVARIATE DENSITIES 183

structure of f(z,y). In other words, the dependence structure contained in f(z,y)
can not be reproduced by g(z,y). An alternative is to first find a finite series
approximating the ldf and then to perform IMR for the matching of the marginals.
Let {¢i(z)} and {7;(y)} be orthogonal sets of functions. The 1df can be modeled
as

7f(ma y) Z Z cz](:z $)771 (y) (412)

i=1j=

Or consider the set {8x(z,y)} of bivariate orthogonal functions. The ldf can be
expanded as

vf(z,y) = Zn: dibr(z,y), (4.13)

where the choice of » and s or n may depend on the complexity of vy(z,y).

Let the primitive function (anti-derivative) of 6i(z,y) or (i(z)n;(y) be ex-
pressed as Ag(z,y). The iterative marginal replacement algorithm can be used
to find the expansion which takes the form

¢(z,3) = A®)B(y) exP(f: hda(@,3) ), (4.14)

k=1

such tha.t density function ¢(z,y) will satisfy the boundary equation (3.3) and
(3.4), i.e. g1 = f1 and g2 = fo. If Equation (4.12) or (4.13) is a good approxima-
tion of y¢(z,y), then g(z,y) offers a good approximation of f(z,y).

Arnold and Strauss (1991) considered a bpf whose conditional distributions
belong to any specified exponenma.l families. Their densities take the following
forms:

¢(z,y) = A(z)B(y) exp (Z mz;&(-’b‘)n; (y) + z a;ii(z) + Z bjm; (y)) (4.15)

which can be considered as a special case of (4.14), and the discrete version of
(4.15) is Goodman’s (4.10).

5. Conclusion

The idea used to construct contingency tables has been extended to the cases
of continuous bivariate densities. The iterative marginal replacement process is
the continuous analogue of iterative proportional fitting (Bishop, Fienberg &
Holland (1975, p.83)). The separation of the dependence structure vy(z,y) from
the marginals, fi(z) and fa(y), offers flexibility to specify bivariate densities.
Conceivably all the bivariate densities can be generated from the proposed system.
The bivariate normal density takes a simple form by having v(z,y) = p/(1 — p?)
and f1 = f2 = (1/27)/2 exp(—2?/2).
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In the modeling of a two-way contingency table, the log-linear model repre-
sents the cell probability by

Inpij = p+ pay + pagg) + Paags)- (5.1)

An advantage of model (5.1) is the clear separation of marginal information from
dependence. Consider py(;), pa(j) and p19(;5) as parameters for the discrete dis-
tribution {p;;}. These three sets of parameters are variation independent and
L-independent, according to. Barndorff-Nielsen (1978). They can be modeled
separately without creating a consistency problem. For a continuous bpf, the
v(z,y), fi(z) and fo(y) are parameters (parameter function) for f(z,y). It is
in light of this L-independence, that Theorem 3.1 provides a parameterization
which factors the information of f(z,y). It also offers flexibility in modeling the
1df independent of the marginals. In Section 4, we demonstrated some of the
constraints, especially variation dependence, placed on the 1df by other systems
of bpf. This helps the statistician to understand its limitations and to envision
possible generalizations.

The purpose of the paper is to propose a general scheme for constructing all
smooth bivariate densities. The scheme also suggests an approach to model data.
We suggested modeling the two marginal distributions and 1df separately and then
“paste” them back. Theorem 3.1 implies this procedure has a definite solution.
It is interesting to note that either the loglinear models or association models
are models for the local cross-product ratios (lcpr), a;j, not for the marginal
distributions. For example, the independence model assumes ¢;; = 1, the uniform
association model assumes «;; = 6 and the row-effect model assumes a;; = a;.
It is under these hypothetical models, the cell probabilities are estimated. An
acceptable value for the goodness-of-fit statistics implies the model is adequate.
The same approach can be applied to continuous data by assuming models for
v¢(z,y) and models for marginal densities and finding the minimum-distance
estimator for f(z,y). Specifically, one could start with the most parsimonious
model, v7(z,y) = constant, and gradually increase the complexity of models for
v¢(z,y) until an acceptable goodness-of-fit is achieved.

As Castillo and Galambos (1987) pointed out, and reiterated by Arnold and
Strauss (1988), a researcher frequently has better insight into the forms of the
conditional distributions of an experimental variable rather than the joint distri-
bution. Usually data provide direct information about conditional distributions,
not joint distributions. Since the 1df derived from the conditional bpf , f(z|y), or
f(y|z), is the same 1df derived from the joint bpf, f(z,y), models for (3.5) may
come from prior knowledge about the conditional distribution or from slicing
data.
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Generalization of Theorem 3.1 to multivariate cases is possible, but far more
complicated. For example, a trivariate density f(z,y,z) can be identified by the
three univariate marginal densities fi(z), f2(y), f3(2), two bivariate marginal
1df’s y13(z, 2) and 7y23(z, z) and the three-dimensional conditional 1df Y12i3(2, ¥|2)

= % In f(z,y,2) which measures the dependence between z and y conditioned

on z. When the three-dimensional 1df vy123(z,y,2) = &% In f(z,y,2) is a null
function, then fi(z), f2(y), f3(2), 712(z, ), M13(z, 2) and v12(z,y) are sufficient
for f(z,y,2). Wang (1991) used the above characterization to compute probabil-
ity integrals for the trivariate normal distribution, because multivariate normal
distributions exhibit no three-way dependence. For three-way contingency tables,
there are five levels of complexity, ranging from independence to full saturated
models. Each model has its corresponding continuous analogue.

References
Arnold, B. C. and Strauss, D. (1988). Bivariate distribution with Exponential conditionals. J.
Amer. Statist. Assoc. 83, 522-527.

Arnold, B. C. and Strauss, D. J. (1991). Bivariate distributions with conditionals in prescribed
exponential families. J. Roy. Statist. Soc. Ser.B 58, 365-375.

Barndorff-Nielsen, O. (1978). Information and Ezponential Families in Statistical Theory. John
Wiley, New York.

Bishop, Y. M. M., Fienberg, S. E. and Holland, P. W. (1975). Discrete Multivariate Analysis:
Theory and Practice. MA: MIT Press, Cambridge.

Castillo, E. and Galambos, J. (1987). Bivariate distributions with normal conditionals. In Proc.
Internat. Symp. Simulation Modeling and Development Cario, 59-62. Acta, Anaheim.

Csiszar, 1. (1975). I-divergence geometry of Probability Distributions and minimization Prob-
lems. Ann. Probab. 3, 146-158.

Fisher, R. A. (1940). The precision of discriminate functions. Ann. Eugenics 10, 422—429.

Frank, M. J. (1979). On the simultaneous associativity of F(z,y) and z + y — F(z,y). Aequa-
tiones Math. 19, 194-226.

Fréchet, M. (1951). Sur les tableaux de correlation dont les marges sont donnees. Ann. Univ.
Lyon Sec. A, Ser.8, 14, 55-77.

Genest, C. and Mackay, R. J. (1986). Copules archimédiennes et familles de lois bidimension-
nelles dont les marges sont données. Canad. J. Statist. 14, 145-159.

Goodman, L. A. (1969). How to ransack social mobility tables and other kinds of cross-classifica-
tion tables. Amer. J. Soc. 75, 1-39.

Goodman, L. A. (1987). The analysis of cross-classified data having ordered and/or unordered
categories: Association models, correlation models, and asymmetry models for contin-
gency tables with or without missing entries. Ann. Statist. 13, 10-69.

Gumbel, E. J. (1960). Bivariate Exponential Distributions. J. Amer. Statist. Assoc. 55, 698
707.

Holland, P. W. and Wang, Y. J. (1987a). Dependence function for continuous bivariate densi-
ties. Comm. Statist. Theory Methods 16, 863-876.



186 YUCHUNG J. WANG

Holland, P. W. and Wang, Y. J. (1987b). Regional dependence for continuous bivariate densi-
ties. Comm. Statist. Theory Methods 16, 193-206.

Johnson, M. E. and Tenenbein, A. (1981). A Bivariate Distribution Family With Specified Mar-
ginals. J. Amer. Statist. Assoc. 76, 198-201.

Johnson, N. L. (1949). Bivariate distributions based on simple translation systems. Biometrika
36, 297-304.

Kimeldorf, G. and Sampson, A. R. (1975). Uniform representations of bivariate distributions.
Comm. Satist. 4, 617-627.

Kimeldorf, G. and Sampson, A. R. (1978). Monotone dependence. Ann. Statist. 6, 895-903.

Kotz, S. (1974). Multivariate distributions at a cross road. Statistical Distributions in Scientific
Work, Vol. 1 (Edited by G. P. Patil et al.), 247-270. D. Riedal Publishing Company,
Dordrecht, Holland.

Kullback, S. (1968). Probabiﬁty densities with given marginals. Ann. Math. Statist. 39, 1236—
1243.

Lancaster, H. O. (1963). Correlations and canonical forms of bivariate distribution. Ann. Math.
Statist. 34, 532-538.

Mardia, K. V. (1970). Family of Bivariate Distributions. Hafner Publishing Co., Darien, Conn.

Marshall, A. W. and Olkin, I. (1967). A multivariate exponential distribution. J. Amer. Statist.
Assoc. 62, 30—44.

Marshall, A. W. and Olkin, I. (1988). Families of multivariate distributions. J. Amer. Statist.
Assoc. 83, 834-841.

Morgenstern, D. (1956). Einfache Beispiele Zweidimensionaler Verteilungen. Mitteilingsblatt
fir Mathematische Statistik 8, 234-235.

Narumi, S. (1923). On the general forms of bivariate frequency distributions which are math-
ematically possible when regression and variation are subjected to limiting conditions.
Biometrika 15, 209-221.

Nelsen, R. B. (1986). Properties of a one-parameter family of bivariate distributions with spec-
ified marginals. Comm. Statist. 15, 3277-3285.

Pearson, K. (1905). On general theory of skew correlation and non-linear regression. Drupper’s
Company Research Memoirs, Biometrics Series, 2.

Pearson, K. (1923). Notes on skew frequency surfaces. Biometrika 15, 222-230.
Plackett, R\ L. (1965). A class of bivariate distributions. J. Amer. Statist. Assoc. 60, 516-522.

Plackett, R. L. (1981). The Analysis of Categorical Data. Charles Griffin & Company Limited,
London.

Sagrista, S. N. (1952). On a generalization of Pearson’s curves to the two dimensional case.
Trabajos de Estadistica 3, 273-314.

Schweizer, B. and Sklar, A. (1983). Probabilistic Metric Spaces. North-Holland, Amsterdam.

Speed, T. P. and Kiiveri, H. T. (1986). Gaussian Markov distributions over finite graphs. Ann.
Statist. 14, 138-150.

Van Uven, M. J. (1947-48). Extension of Pearson’s probability distributions to two variables,
I-III. Proc. Roy. Academy Sci. Amsterdam 32, 793-807, 995-1007, 1085-1103.

Wang, Y. J. (1987). Probability integrals of bivariate normal distributions. A contingency table
approach. Biometrika T4, 185-190.



CONSTRUCTING BIVARIATE DENSITIES 187

Wang, Y. J. (1991). Multivariate normal integrals and contingency tables with ordered cate-
gories. Technical Report B-91-2, Institute of Statistical Science, Academia Sinica, Tai-

wan, R.O.C.

Yule, G. U. (1897). On the significance of Bravais formula for regression in the case of skew
correlation. Proc. Roy. Soc. London 60, 477-489.

Yule, G. U. and Kendall, M. G. (1950). An Introduction to the Theory of Statistics, 14th edi-
tion. Charles Griffin & Company Limited, London.

Institute of Statistical Science, Academia Sinica, Taipei 11529, Taiwan.

(Received December 1990; accepted June 1992)



