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Abstract: In medical research, economics, and the social sciences data frequently

appear as subsets of a set of objects. Over the past century a number of descriptive

statistics have been developed to infer network structure from such data. How-

ever, these measures lack a generating mechanism that links the inferred network

structure to the observed groups. To address this issue, we propose a model-based

approach called the Hub Model which assumes that every observed group has a

leader and that the leader has brought together the other members of the group.

The performance of Hub Models is demonstrated by simulation studies. We apply

this model to the characters in a famous 18th century Chinese novel.

Key words and phrases: Affiliation network, Dream of the Red Chamber, expectation-

maximization algorithm, half weight index, social network analysis.

1. Introduction

A network can be denoted by N = (V,E), where V = {v1, v2, . . . , vn} is the

set of n nodes, and E is the set of edges between nodes. In this article, we focus

on symmetric weighted networks represented by an n × n adjacency matrix, A,

where the element Aij measures the relationship strength between nodes vi and

vj .

Traditionally, statistical network analysis focuses on modeling observed net-

work structure (e.g., highway systems or electrical transmission grids). In this

situation, nodes are well defined and the physical links between nodes is observ-

able (Hiller and Lieberman (2001); Newman (2011)). In some fields of research

(e.g., the social sciences) network structure is not explicit, the observable data

are groups of individuals and a model is presumed to produce the groups. The

fundamental task is to estimate model parameters from such data.

Wasserman and Faust (1994) introduce inference of relationships with the

example of children attending birthday parties. In their example, the children act

as nodes in the network and the birthday parties represent subsets of children.

https://doi.org/10.5705/ss.202016.0397
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In this paper, a collection of nodes observed in the same sample is called a

group and a dataset is called grouped data. In Wasserman and Faust’s example,

each party defines a group and the set of all parties is the grouped data. Two

individuals are said to co-occur if they appear in the same group.

One common technique used to estimate an adjacency matrix from grouped

data is to count the number of times that a pair of nodes appears in the same

group (Zachary (1977);Freeman, White and Romney (1989);Wasserman and Faust

(1994);Kolaczyk (2009);Brent, Lehmann and Ramos-Fernandez (2011)). Fre-

quently, a threshold is applied to this count to create an unweighted adjacency

matrix; however, Choudhury, Hofman and Watts (2010) show that the charac-

teristics of networks inferred by this technique are sensitive to the threshold.

We adopt a generalized version of the inter-citation frequency (Kolaczyk (2009))

which measures the number of times a pair of nodes is observed to co-occur in

the dataset. We refer to this measure as the co-occurrence matrix.

An alternative technique, called the half weight index (Cairns and Schwager

(1987)), estimates an adjacency matrix by the frequency that two nodes co-

occur given that one of them is observed. This addresses a shortcoming of the

co-occurrence matrix in which nodes that appear rarely can be estimated to have

a weak relationship even though the relationship is quite strong (Voelkl, Kasper

and Schwab (2011)).

The co-occurrence matrix and half weight index both have probabilistic in-

terpretations. The co-occurrence matrix estimates the probability that two nodes

will be observed together. The half weight index estimates the probability that

two nodes will be observed together given that one of them is observed. These

are not equivalent to the probability of an active relationship between nodes, and

neither of these techniques describe the process which leads to the generation of

the observed groups. It is unclear how these descriptive statistics relate to the

grouped data in these methods.

We propose a model-based approach for grouped data generation which we

refer to as the Hub Model because each observed group is assumed to be brought

together by a hub node (see Figure 1).

The Hub Model differs from such classical network models as the stochastic

blockmodel and its variants (Holland, Laskey and Leinhardt (1983);Airoldi et al.

(2008)), the exponential random graph models (Frank and Strauss (1986);Robins

et al. (2007)), the latent space model and its variants (Hoff, Raftery and Hand-

cock (2002);Handcock, Raftery and Tantrum (2007)), among others (see Golden-

berg et al. (2010) for a comprehensive review). These models focus on modeling
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Figure 1. The generating mechanism of the Hub Model is demonstrated on a group of 10
nodes. In the observed sample, nodes v1, . . . , v6 are members of the group while nodes
v7, . . . , v10 are not members of the group. The observed group is the result of the hub
node, v1, bringing together nodes v2, . . . , v6.

the statistical behavior of the network, treating the network as the observed data,

while the Hub Model treats the network as latent governing the grouping behav-

ior of a population. Our task is to estimate the latent network, the adjacency

matrix, from the observed group data. In this article, we treat the adjacency

matrix as fixed parameters and make no structural assumption about it. If there

were a priori information about the latent network, such as that it follows the

stochastic blockmodel or the exponential random graph model, then one could

take a Bayesian approach and use this model as a prior. For more discussion,

refer to Section 7.

The Hub Model belongs to the family of finite mixture models which has

been applied in many situations, including text classification (Carreira-Perpinan

and Renals (2000)), topic models (Anandkumar et al. (2015)), fingerprint iden-

tification (Vretos, Nikolaidis and Pitas (2012)), and product recommendation

(Colace et al. (2015)).

Hub Models have the advantage that relationship strength is both mathe-

matically well defined and practical to researchers. In the Hub Model, Aij , is

defined as the probability that node vi will include node vj when vi is the hub

node of a group. The formal definition of the Hub Model is given in Section 3.
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Figure 2. Comparison of estimation techniques.

As an introduction, consider the hypothetical relationships in Figure 2a. In

this example there is a pair of nodes, v1 and v2, that never directly pair to each

other, but have an 80% chance of interacting with five nodes: Aij = 0.8 for all

i ≤ 2 and j ≥ 3, while Aij = 0 otherwise. In Figure 2b, the co-occurrence matrix

mistakenly assigns a relatively strong relationship to nodes v1 and v2 because

they often co-occur. In Figure 2c, the half weight index arrives at a similar

conclusion. In both Figures 2b and 2c, the non-existent relationship between

nodes v1 and v2 is estimated to be stronger than all other relationships. By

contrast, the Hub Model in Figure 2d clearly captures the relationships of the

population.

To the best of our knowledge, there have been limited attempts to apply

model-based approaches to these data. Rabbat, Figueiredo and Nowak (2008)

provide an application for telecommunication networks. They model group for-

mation as a random walk from a source node to a terminal node. This model

assumes a distinctly different process of group formation than do Hub Models.

The nodes along the path are subjected to an unknown permutation to account

for the lack of order information. Treating permutations as missing data, they

employ a Monte Carlo EM algorithm based on importance sampling to estimate

the parameters of the model.

In the following sections we present a formal description of the grouped data

structure, review existing techniques, and define Hub Models. Then we address

Hub Model identifiability and provide a theorem that proves that a symmetric

adjacency matrix is a sufficient condition for identifiability. We propose an EM

algorithm to solve the maximum likelihood estimator of the Hub Model. We

have evaluated the model performance by simulation studies. We have applied

the Hub Model to infer the relationships among the characters of the 18th century

Chinese novel, Dream of the Red Chamber. We close with a discussion of how the

size of the population impacts model efficiency and ways to incorporate network
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structure assumptions to simplify the model.

2. Grouped Data

2.1. Data structure

For a population of n individuals, V = {v1, . . . , vn}, we observe T subsets of

the global population, {V (t)|V (t) ⊆ V, t = 1, . . . , T}. Each observed subset can

be coded as an n length row vector G(t) where

G
(t)
i =

{
1 if vi ∈ V (t),

0 if vi /∈ V (t).

The full set of observations is denoted by a T × n matrix, G. The tth row of

G is G(t).

2.2. Existing methods

Inferring relationships from grouped data relies on descriptive statistics that

count the number of times that two nodes are observed together. We focus on

two popular techniques which estimate probabilities of individual behavior.

A simple measure of grouped data is the co-occurrence matrix. Versions of

this technique appear throughout the literature under many names and notations

including: capacity matrix (Zachary (1977)), sociomatrix (Wasserman and Faust

(1994)), inter-citation frequency (Kolaczyk (2009)), cocitation matrix (Newman

(2011)), and strength (Brent, Lehmann and Ramos-Fernandez (2011)).

A co-occurrence matrix, O, is the n× n symmetric matrix

O =
G′G

T
, (2.1)

which estimates the frequency that the nodes vi and vj are observed in the same

group.

One shortcoming of the co-occurrence matrix is that it estimates the proba-

bility that two nodes will be observed to co-occur in a given observation. If two

nodes have a strong relationship, but appear in the dataset infrequently, the co-

occurrence matrix estimates a low probability that the two nodes will be observed

to co-occur.

As an example, consider four nodes v1, . . . , v4 and the grouped data repre-

sented in Table 1. For this dataset, O1,2 = 2/5 and O3,4 = 2/5, but every time

node v3 is present node v4 is also present. A researcher might conclude that

there is some aspect of the relationship between nodes v3 and v4 which has been

understated.
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Table 1. Notional grouped data.

Node
Event v1 v2 v3 v4

1 1 0 0 0
2 1 1 0 0
3 1 1 0 0
4 1 0 1 1
5 0 1 1 1

As an alternative, the half weight index estimates the probability that two

nodes will be observed to co-occur given that one of them is observed (Cairns

and Schwager (1987)).

The half weight index has been introduced in a number of equivalent forms

(Dice (1945)). Computationally, the most direct form is

Hij =
2
∑

tG
(t)
i G

(t)
j∑

tG
(t)
i +

∑
tG

(t)
j

. (2.2)

Returning to the example in Table 1, H1,2 = 4/7 while H3,4 = 4/4. There-

fore, the half weight index infers a different network than the co-occurrence ma-

trix.

3. Hub Models

3.1. Generating mechanism

Hub Models (HM) assume that each group is a star subgraph on the global

population. The hub node connecting the observed group is represented by an n

length row vector, S(t), where

S
(t)
i =

{
1 if vi the hub node of sample t,

0 otherwise.

There is one and only one element of S(t) that is equal to 1, and each group

is independently generated by a two step process: we take the hub node to be

drawn from a multinomial distribution with parameter ρ = (ρ1, . . . , ρn), and we

suppose the hub node, vi, chooses to include vj in the group with probability

Aij = P(G
(t)
j = 1|S(t)

i = 1), with Aii = 1 for all i.

In most practical applications, the hub node of each group is unknown, and

we focus on this case. We refer to the model where leaders are known as the

Known Hub Model (KHM).
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Since the co-occurrence matrix and half weight index produce a symmetric

adjacency matrix, we assume the Hub Model adjacency matrix is symmetric.

Symmetry ensures the identifiability of the Hub Model when group leaders are

unobserved (Supplemental Material S1.2).

This generating mechanism implies that each observed group is independent

of every other. In particular, G(t) is not a transformation of G(t−1) and the order

in which groups are observed contains no information about the relationships

between group members. Researchers often collect data in such a way as to

ensure this property (Bejder, Fletcher and Brager (1998)).

3.2. Likelihood of the hub model

Under the HM, the probability of an observation has the form of a finite

mixture model with n components

P(G(t)|A, ρ) =

n∑
i=1

ρiG
(t)
i

∏
j

A
G

(t)
j

ij (1−Aij)1−G
(t)
j . (3.1)

By taking the log of the product of individual observed groups, the log

likelihood function for the full set of observations is

L(G|A, ρ) =
∑
t

log

 n∑
i=1

ρiG
(t)
i

∏
j

A
G

(t)
j

ij (1−Aij)1−G
(t)
j

 . (3.2)

Solving for the MLE of HM is an optimization problem with the constraints∑
i ρi = 1, and Aij = Aji for all i and j. This gives the Lagrange function

Λ(G|A, ρ) = L(G|A, ρ)− λo

{(∑
i

ρi

)
− 1

}
−
∑
i<j

λij(Aij −Aji). (3.3)

The log likelihood does not have a closed-form solution for the MLE. Instead

we derive estimating equations that can be incorporated into an Expectation

Maximization algorithm. Before doing so we investigate the identifiability of the

Hub Model.

A basic requirement for any model is identifiability. For Hub Models, this

means that, for any two sets of parameters {A, ρ} and {A∗, ρ∗},

P(G = g|A, ρ) = P(G = g|A∗, ρ∗) ∀g =⇒ A = A∗, ρ = ρ∗. (3.4)

The generating mechanism for Hub Models is equivalent to a finite mixture

model of multivariate Bernoulli random variables. In general, such a model is

not identifiable (Teicher (1961)). This shortcoming does not prevent such models

from being useful in many applications. For example, when dealing with clas-
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sification problems where the researcher only has to identify which component

density an observation came from, this type of mixture can be effectively used

(Carreira-Perpinan and Renals (2000)). In such a situation, the individual pa-

rameters of the multivariate Bernoulli random variables are not of interest, but

identifiability presents a challenge here because we are specifically interested in

the individual parameters of the adjacency matrix.

If no constraint is put on the adjacency matrix, the model is unidentifiable.

We have a sufficient condition for identifiability, see Supplemental Material S1

for more details.

Theorem 1. Let A and A∗ be symmetric adjacency matrices with Aii = A∗ii = 1

for all i, Aij < 1 and A∗ij < 1 for all i 6= j. If P(g|A, ρ) = P(g|A∗, ρ∗) for all g,

then {A, ρ} = {A∗, ρ∗}.

Even though symmetry of the adjacency matrix is a natural assumption, it

is only a sufficient condition for identifiability. For future work, we will explore

other assumptions to ensure identifiability.

3.3. Estimating equations

In Supplemental Materials S2, we derive (3.5) and (3.6) as estimating equa-

tions that the MLE must satisfy. The maximum likelihood estimator does not

have a closed-form solution for the parameters as the right side of the estimating

equations includes the estimated parameters. We will show that solving these

equations iteratively is equivalent to an EM algorithm.

Âxy =

∑
tG

(t)
y P(Sx = 1|G(t)) +

∑
tG

(t)
x P(Sy = 1|G(t))∑

t

{
P(Sx = 1|G(t)) + P(Sy = 1|G(t))

} . (3.5)

ρ̂x =

∑T
t=1 P(S

(t)
x = 1|G(t))

T
. (3.6)

4. EM Algorithm

These estimating equations depend on the probability P(S
(t)
x = 1|G(t)). This

suggests an algorithm updating {Â, ρ̂} and P(S
(t)
x = 1|G(t)) iteratively, which can

be fitted into the general framework of an EM algorithm.

EM algorithms formulate a complete data model, then solve the model as if

some data is observed and other data is missing. In this case, the Known Hub

Model serves as the complete data model, G is the observed data, and S is the

missing data. Each iteration of the EM algorithm consists of an expectation step

followed by a maximization step (McLachlan and Krishnan (2008)).
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E-Step

Since the log likelihood function of the complete data model is linear in

the unobserved data, the E-Step (on the (m + 1)th iteration) simply requires

calculating the current conditional expectation of S
(t)
i given the observed data

(see McLachlan and Krishnan (2008) for a detailed explanation).

E{S(t)
x |G(t)} = P(S(t)

x = 1|G(t))

=
ρxG

(t)
x
∏
j A

G
(t)
j

xj (1−Axj)1−G
(t)
j∑n

i=1 ρiG
(t)
i

∏
j A

G
(t)
j

ij (1−Aij)1−G
(t)
j

. (4.1)

M-Step

The M-Step replaces P(S
(t)
x = 1|G(t)) on the right hand side of (3.5) and

(3.6) with E{S(t)
x |G(t)} from (4.1).

Algorithm

Several standard techniques are used to improve the performance of the

EM algorithm. We first run the EM algorithm ten times with different starting

points and choose the solution with the highest likelihood. We limit the number

of iterations applied to a starting point on the grounds that with a bad starting

point, it takes a long time to converge to a point not close to the maximum. As

a final step, we treat any Âxy ≤ 10−4 as Âxy = 0. We apply this finishing step

to remove clutter from the returned solutions.

5. Simulation

To perform simulations, we generated parameters {A, ρ} as follows.

For ρ, we selected n random numbers, Xi, uniformly and divided each ran-

dom number by the sum of all Xi’s, ρi = Xi/(
∑

iXi).

We used a two-step process to generate the adjacency matrix. First, we

created a symmetric unweighted undirected random graph on n nodes using the

configuration model (Jackson (2010)) with the power law distribution P(k) ∝
k−η, where k is the possible value of the node degree. We assumed a power law

degree distribution because it is commonly believed that many social networks

have such a property (Newman (2011)). In all simulations, we chose η = 2;

many networks are reported to have a power between 2 and 3 and a power of 2

generates the densest of them. We refer to this unweighted graph as the structure

of the network.
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Data: G
Result: Â, ρ̂
Initialize:
L(G|Â) = −∞
for rep=1 to 10 do

Initialize:
Â

(0)
ij = unif(0, 1) ∀{i, j}

Xi = unif(0, 1) ∀i
ρ̂

(0)
i = Xi∑

k Xk

∆L(G|A(0)) = 104

counter=1
while |∆L(G|A(m+1))

L(G|A(m))
| > 10−4and counter < 100 do

E-Step

Update P(S
(t)
k = 1|G(t)) by Equation (4.1)

M-Step
Update A(m+1) by Equation S2.10
Update ρ(m+1) by Equation S2.13

∆L(G|A(m+1)) = L(G|A(m+1))− L(G|A(m))
counter=counter+1

end

if L(G|A(m+1)) > L(G|Â) then

if Âij ≤ 10−4 then

Âij = 0
else

Âij = A
(m+1)
ij

end

end

end

Algorithm 1: Expectation Maximization Algorithm for the Hub Model.

Each edge in the graph was assigned a relationship strength with a beta

distribution,

Aij =

{
Beta(α, β) if there is an edge between vi and vj ,

0 otherwise.

We let Aji = Aij to ensure symmetry. We set α = 1 and β = 4 in the beta

distribution so that the average relationship strength is less than 0.5, which we

believe is realistic.

In Tables 2 and 3, we consider five different network sizes n = 10, 20, 50, 100, 150.

For the first two cases, we set the minimum node degree to be 1 in the power law

distribution; for the last three cases, we set the minimum degree to be 5 in order to
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make sure the networks were not too sparse. For each size, we generated 100 sets

of parameters {A, ρ} using the setup described above. For each {A, ρ}, we gen-

erated a dataset with T groups. Each average and standard deviation was calcu-

lated over this 100 datasets. We took T = 100, 200, 500, 1,000, 2,000, 5,000, 10,000,

20,000, 50,000.

We first measured the ability of the estimated adjacency matrix Â to cor-

rectly identify the structure. To do this we defined true positives and true nega-

tives as

TP =
∑
i<j

1(Aij>0)1(Âij>10−4),

TN =
∑
i<j

1(Aij=0)1(Âij≤10−4).

Here, vi and vj were considered to have no relationship if the estimated link

strength was below 10−4. False positives and false negatives were calculated

similarly. We used the Matthews correlation coefficient (MCC) to measure the

identification of the structure because it is a binary classification measure that

accounts for situations where the number of ones is significantly different than the

number of zeros (Liu et al. (2015)). Based on our setup, our simulated structures

had many more zeros than ones.

For the non-zero elements Aij , we further evaluated the difference between

the numerical values of Aij and Âij by calculating the mean absolute error (MAE)

of non-zero Aij ,

MAE(A) =

∑
i<j |Âij −Aij |1(Aij>0)∑

i<j 1(Aij>0)
.

We also report the average run time and the average number of iterations for

the EM algorithm when the simulation is run on an Intel Pentium CPU G2030

at 3.00 GHz with 4.00GB of RAM.

The first observation from Tables 2 and 3 is that for a fixed value of n

the average error of both the MCC and the MAE decline as the number of

observations increases. For a fixed number of observations, the average error

increases as the number of nodes increases.

The standard deviation of estimates generally improves once the number of

observations exceeds the number of parameters in the model. For example, with

100 nodes there are roughly 10,000 parameters to estimate, thus samples of only

2,000 or 5,000 observations demonstrate high standard deviations.

Average run time generally increases as the number of observations and the
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Table 2. Average and standard deviation of mean absolute error as observations increase.

n = 10
Avg StDev Avg StDev Avg Run Avg

Obs MCC MCC MAE(A) MAE(A) Time (sec) Iterations
100 0.8010 0.0977 0.0533 0.0219 0.0472 20.258
200 0.8929 0.0903 0.0349 0.0128 0.0431 16.670
500 0.9487 0.0530 0.0212 0.0071 0.0411 13.618

1,000 0.9770 0.0364 0.0147 0.0047 0.0369 12.011
2,000 0.9865 0.0279 0.0102 0.0030 0.0353 10.613
5,000 0.9984 0.0115 0.0067 0.0019 0.0298 9.604

10,000 0.9988 0.0086 0.0045 0.0014 0.0295 9.416
20,000 0.9994 0.0060 0.0035 0.0009 0.0305 9.327
50,000 1 0 0.0020 0.0006 0.0316 9.210

n = 20
100 0.6727 0.0972 0.0833 0.0210 0.1005 21.007
200 0.7984 0.0756 0.0599 0.0154 0.0992 19.961
500 0.8781 0.0576 0.0340 0.0079 0.1039 17.793

1,000 0.9147 0.0594 0.0225 0.0056 0.1131 15.418
2,000 0.9360 0.0612 0.0150 0.0033 0.1473 13.803
5,000 0.9734 0.0367 0.0099 0.0024 0.1653 11.571

10,000 0.9842 0.0393 0.0069 0.0019 0.1806 10.662
20,000 0.9937 0.0187 0.0048 0.0013 0.2052 10.260
50,000 0.9989 0.0070 0.0031 0.0006 0.2320 9.888

number of nodes increase. An important factor affecting the run time is the

number of iterations the EM algorithm performs before converging. In Table

2 the number of iterations declines as observations increase until it appears to

approach a minimum number. Table 3 provides further insight as the number of

iterations generally increases until the number of observations is roughly equal

to the number of parameters in the model, after which the iterations declines.

Up to that point, the algorithm quickly converges to an adjacency matrix which

is sparser than the true adjacency matrix due to insufficient sample size. The

implication of these declining iterations is that run time is not strictly a function

of the size of the dataset, but the relationship between the number of nodes and

the number of observations.

6. Data Analysis

We performed data analysis on the 18th century Chinese novel, Dream of the

Red Chamber. The observed groups in this dataset do not necessarily conform

to the Hub Model assumption, but we found that, even without this assump-
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Table 3. Average and standard deviation of mean absolute error as observations increase
(continued).

n = 50
Avg StDev Avg StDev Avg Run Avg

Obs MCC MCC MAE(A) MAE(A) Time (sec) Iterations
100 0.3454 0.0503 0.1680 0.0139 0.2272 5.261
200 0.3987 0.0622 0.1368 0.0081 0.9216 16.237
500 0.5815 0.0668 0.0936 0.0085 2.7233 36.148

1,000 0.8499 0.0302 0.0526 0.0049 2.6903 38.222
2,000 0.9013 0.0176 0.0345 0.0030 2.3761 24.713
5,000 0.9127 0.0193 0.0212 0.0017 2.8953 17.802

10,000 0.9074 0.0259 0.0145 0.0012 5.1788 15.343
20,000 0.9080 0.0327 0.0104 0.0008 7.1548 13.932
50,000 0.9142 0.0383 0.0065 0.0006 12.190 12.866

n = 100
100 0.2620 0.0352 0.1955 0.0096 0.2058 2.040
200 0.3187 0.0346 0.1756 0.0109 0.2922 2.533
500 0.3495 0.0519 0.1359 0.0070 1.8683 9.151

1,000 0.3857 0.0498 0.1109 0.0074 6.9431 25.852
2,000 0.5343 0.1055 0.0748 0.0100 14.6644 44.035
5,000 0.8236 0.1469 0.0351 0.0080 17.5031 34.544

10,000 0.9128 0.0826 0.0219 0.0028 19.4031 23.370
20,000 0.9355 0.0579 0.0148 0.0015 22.4366 17.494
50,000 0.9484 0.0282 0.0092 0.0006 33.8123 13.905

n = 150
100 0.2247 0.0366 0.1994 0.0105 0.3373 1.536
200 0.2674 0.0316 0.1909 0.0081 0.3705 1.547
500 0.2965 0.0431 0.1632 0.0091 0.8822 2.623

1,000 0.2625 0.0600 0.1363 0.0067 7.4969 11.65
2,000 0.2354 0.0628 0.1247 0.0089 42.4597 47.525
5,000 0.2700 0.1402 0.1075 0.0144 98.8080 75.973

10,000 0.4276 0.2247 0.0822 0.0252 150.6061 72.416
20,000 0.6025 0.2601 0.0532 0.0280 184.3534 60.144
50,000 0.7602 0.2441 0.0275 0.0230 217.9005 41.975

tion being explicitly valid, important information about the relationships can be

estimated.

The Supplemental Materials S3 include two additional data sets estimating

co-sponsorship of legislation in the Senate of the 110th United States Congress

and the dispersion of plant species across North America.

As noted by Kolaczyk (2009), a significant challenge with estimating the

parameters of implicit networks is that for a given dataset there is usually no

way to verify the extent to which the estimate matches reality. Hence, there is no
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“ground truth” or “golden standard” to compare the estimated results against.

Therefore, it is useful to analyze data about which there is some qualitative

knowledge of the relationships between nodes. To this end, we constructed a

dataset of characters from Dream of the Red Chamber. Since novels contain a

qualitative social structure that is familiar to readers, the results of quantitative

analysis can be compared to this standard.

This novel was chosen for two reasons: the relationships between the charac-

ters are subtle and complex, and the novel has been carefully studied by scholars.

The story then presents a challenge to estimating relationships and without a

body of knowledge to compare the estimates against.

Traditionally datasets are built from novels by carefully reading the text and

identifying dyadic interactions between characters based on criteria established

by the researchers, e.g., characters A and B have a conversation (MacCarron

and Kenna (2013)). This method may construct high quality datasets, but to

identify interactions requires readers who have time to build them. Since Dream

of the Red Chamber is written in classical Chinese and the English translation

runs over 2,600 pages, directly generating the dataset would be excessively time

consuming.

We built our dataset using text mining and defining a group as characters

who co-occur in the same paragraph. Paragraphs with no characters named in

them were ignored. For a complete description of the text mining protocol, see

Supplemental Materials S5.

We analyzed the relationships of 29 important characters. The character

names presented here are based on the original pinyin pronunciations and the

David Hawkes translation (Hawkes (1974)). A Chinese version of the novel was

used for text-mining. The complete novel contains 120 chapters, but we focused

on the first 80 because it is commonly believed that the last 40 chapters are

written by a different author and may not reflect the original themes of the novel

(Hsueh-Chin (2016)). The resulting dataset had 1,389 observations of groups

containing at least one of the 29 characters.

In Figure 3, the adjacency matrix is represented as an n× n grid where the

ith×jth cell represents the relationship between nodes vi and vj . The relationship

strength is represented by the cell’s color: nodes with weak relationships have

light cells while nodes with strong relationships have dark cells. Cells representing

relationships of intermediate strength are shaded along the gray scale.

This visualization demonstrates another difference in the performance of the

techniques. The co-occurrence matrix estimates all relationships as being very
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Figure 3. Comparison of results for Dream of the Red Chamber.

Table 4. Percentiles of standard deviation in Â estimated by HM for Dream of the Red
Chamber.

Percentile Max 95 % 75 % Med 25 % 5 % Min
StDev 0.2696 0.1025 0.0374 0.0100 0.0000 0.0000 0.0000

weak and it is difficult to differentiate strong relationships from the absence of a

relationship. The half-weight index presents a much stronger set of relationships

but there is evidence of relationships which have been imputed transitively. In

general, HM returns a much sparser network where relationship strengths demon-

strate higher contrast. This tendency towards sparsity is discussed in more detail

in the Supplemental Materials S4.2.

The EM algorithm of HM provides stable solutions. By selecting multiple

starting points, we find that the adjacency matrix (Figure 3c) is repeatedly re-

turned as the most likely parameter of the observed data.

The Hub Model parameter’s standard deviation was estimated using the

bootstrap technique. In general, the standard deviation was low. This was

particularly true for ρ̂ where the maximum standard deviation was 0.0173. Table

4 presents the standard deviation of the estimated adjacency matrix at different

percentiles.

One of the main themes of Dream of the Red Chamber is the love story sur-

rounding the protagonist Jia Baoyu (1st character in Figure 3c) and two potential

fiances, the sickly Lin Daiyu (2nd character) and the “ideal” Xue Baochai (3rd

character). Although Jia Baoyu shares a special bond with Lin Daiyu and has

no significant emotional connection to Xue Baochai, he is ultimately tricked into

marrying Xue Baochai (Hsueh-Chin (2016)). In Table 5, we present the
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Table 5. Relationships of Lin Daiyu and Xue Baochai to other characters in Dream of
the Red Chamber.

Co-Occurrence Matrix (O) Half Weight Index (H) Hub (Â)
Lin Xue Lin Xue Lin Xue

Daiyu Baochai Daiyu Baochai Daiyu Baochai
Jia Baoyu 0.1728 0.1274 0.4563 0.3587 0.3113 0.2258
Lin Daiyu 1.0000 0.1109 1.0000 0.4866 1.0000 0.4072
Xue Baochai 0.1109 1.0000 0.4866 1.0000 0.4072 1.0000
Jia Yuanchun 0.0072 0.0050 0.0531 0.0449 0.0156 0.0228
Jia Tanchun 0.0439 0.0533 0.2490 0.3482 0.0915 0.4848
Shi Xiangyun 0.0590 0.0490 0.3273 0.3119 0.2194 0.2365
Miaoyu 0.0072 0.0036 0.0552 0.0337 0.0597 0
Jia Yingchun 0.0252 0.0274 0.1667 0.2141 0 0.2846
Jia Xichun 0.0187 0.0202 0.1313 0.1692 0.0102 0.2461
Wang Xifeng 0.0497 0.0526 0.1840 0.2131 0.0317 0.0697
Jia Qiaojie 0.0022 0.0022 0.0170 0.0208 0 0.0348
Li Wan 0.0367 0.0482 0.2086 0.3160 0.0580 0.3384
Qin Keqing 0.0007 0.0007 0.0052 0.0062 0 0
Grandmother Jia 0.0655 0.0648 0.2725 0.2985 0.1925 0.2820
Jia She 0.0065 0.0043 0.0449 0.0357 0 0
Jia Zheng 0.0122 0.0144 0.0701 0.0952 0.0143 0.0174
Jia Lian 0.0072 0.0036 0.0423 0.0245 0.0002 0.0073
Xiangling 0.0180 0.0252 0.1185 0.1961 0.0741 0.2344
Ping’er 0.0122 0.0209 0.0668 0.1306 0.0016 0.1643
Xue Pan 0.0043 0.0101 0.0292 0.0809 0 0
Granny Liu 0.0072 0.0050 0.0493 0.0411 0.0101 0.0113
Lady Wang 0.0490 0.0590 0.2248 0.3037 0.0224 0.2065
Aunt Xue 0.0302 0.0396 0.1806 0.2750 0.0479 0.1657
Hua Xiren 0.0403 0.0389 0.1938 0.2105 0.0283 0.1469
Qingwen 0.0166 0.0115 0.1020 0.0829 0.0155 0.0886
Yuanyang 0.0086 0.0101 0.0556 0.0763 0 0.0430
Mingyan 0.0007 0.0007 0.0053 0.0064 0 0
Zijuan 0.0317 0.0108 0.2184 0.0888 0.1775 0.0376
Concubine Zhao 0.0050 0.0058 0.0361 0.0495 0 0.0338

relationships between these two girls and the other characters as estimated by

the co-occurrence matrix, half weight index, and HM.

From the novel, Lin Daiyu is a sensitive girl who prefers to be alone. By

contrast, Xue Baochai is a social and calculating girl. She is extremely good

at interpersonal communication especially with the protagonist’s mother (Lady

Wang) and grandmother (Grandmother Jia) (Hsueh-Chin (2016)). These differ-

ent personalities are clearly represented by the HM estimator while the other

estimators do not identify this difference.
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7. Conclusion

To the best of our knowledge, Hub Models introduce an innovative approach

to the task of implicit network inference. By defining a model-based generating

mechanism to link the latent network to observed grouped data and applying an

EM algorithm, we are able to estimate the network.

Not only are the estimators easy to calculate in a reasonable amount of

time, but they have a practical interpretation. The parameter ρi measures the

probability that node vi will form a group. Aij measures the probability that a

member of the population will be included in a group formed by node vi.

The Hub Models compare favorably against existing techniques. Since the co-

occurrence matrix and half weight index lack a generating mechanism to connect

them to the observed grouped data, these measures often cannot detect important

features of a network. By applying the Hub Model to the 18th century Chinese

novel Dream of the Red Chamber, we demonstrate that the HM is able to detect

important features in the relationships between nodes in complex situations.

By the standards of statistical network analysis, the size of the adjacency

matrices presented in this paper are small. An important question is how the

Hub Model would perform with 10,000 or even 1,000,000 nodes. While it is

computationally feasible to apply the Hub Model to populations of this size,

there is a practical challenge of collecting enough observations to have sufficient

statistical power.

We observe that how “small” or “large” a dataset is depends on the rela-

tionship between the number of nodes and the number of observed groups. In

principle, if there are n nodes, the Hub Model must estimate n2 parameters. If

the number of observations is less than the number of nodes, multiple sets of

parameters have the same likelihood and parameter estimation is unstable. In

general, it is only when the number of observations exceeds the square of the

number of nodes, that we have stable estimates.

This means that to estimate the Hub Model parameters of a population with

hundreds of thousands of nodes, would require tens of billions of observations.

Therefore, applying Hub Models directly to text or even a recommender system

would be impractical.

In order to make the Hub Model useful for such large populations, some

technique must be applied to reduce the number of parameters in the model. In

this paper, we have placed no restrictions on the adjacency matrix. However,

there are a number of restrictions which could be applied to enable us to handle
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populations with “small” datasets.

One way is to make an assumption about the structure of the underlying

network. For example, one might assume that the latent network is itself the

result of a block model or exponential random graph model. Such an approach

would create a hierarchical model for group formation.

A second way that assumptions about the structure of the underlying net-

work could be applied is to change the dimensions of the adjacency matrix. In

doing this, researchers may limit the number of nodes which can act as leaders

or treat some nodes as having the same behavior.

The Hub Model can potentially be useful to model the term-document matrix

in text mining. Such a matrix describes the frequency of terms that occur in a

collection of documents, which is similar to the format of group data. Many text

mining techniques are based on a co-occurrence matrix created from the term-

document matrix. The Hub Model may provide more meaningful estimates of

the relations between terms.

Supplementary Materials

The supplemental materials contain additional details regarding the proof of

Theorem 1, calculation of the estimating equations (3.5) and (3.6). Additionally,

we provide data analysis for co-sponsorship of the 110th Congress and a dataset

of North American flora. We conclude with a discussion of identifiability, self-

sparsity, and the protocol for text mining Dream of the Red Chamber.
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