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Abstract: The paper studies the quasi-maximum exponential likelihood estimator

(QMELE) for the double AR(p) (DAR(p)) model:

yt =

p∑
i=1

ϕiyt−i + ηt

√√√√w +

p∑
i=1

αiy2
t−i,

where {ηt} is a white noise sequence. Under a fractional moment of yt with

Eη2
t < ∞, strong consistency and asymptotic normality of the global QMELE

are established. A formal comparison is given with the QMLE in Ling (2007) and

WLADE in Chan and Peng (2005). A simulation study is carried out to compare

the performance of these estimators in finite samples. An example on the exchange

rate is given.

Key words and phrases: Asymptotic normality, double AR(p) model, QMELE and

strong consistency.

1. Introduction

Consider the autoregressive (AR) model with conditional heterosce-dasticity:

yt =

p∑
i=1

ϕiyt−i + ηt

√√√√w +

p∑
i=1

αiy2t−i, (1.1)

where w > 0, αi > 0 (i = 1, . . . , p), {ηt} are independent and identically dis-

tributed random variables with E|ηt| = 1, and ys is independent of {ηt : t ≥ 1}
for s ≤ 0. Let Ft be the σ-field generated by {ηt, . . . , η1, y0, . . . , y1−p}. The con-

ditional variance of yt is var(yt|Ft−1) = Eη2t
(
w +

∑p
i=1 αiy

2
t−i

)
when Eη2t < ∞,

which is changing over time. We call (1.1) the p-th order double AR(p) (DAR(p))

model. It is a special case of the ARMA-ARCH models in Weiss (1986) and an

example of the weak ARMA models in Francq and Zaköıan (1998, 2000). Model

(1.1) reduces to Engle’s (1982) ARCH(p) model when ϕi ≡ 0, but they are differ-

ent when ϕi ̸≡ 0. For some important results on Engle’s ARCH models, we refer
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to Bollerslev, Chou, and Kroner (1992), Bollerslev, Engel, Nelson (1994), Berkes,

Horváth, and Kokoszka (2003), Hall and Yao (2003), Francq and Zaköıan (2004,

2010), Jensen and Rahbek (2004), and Lang, Rahbek, and Jensen (2011).

The quasi-maximum likelihood estimator (QMLE) was studied by Ling (2004)

and Ling and Li (2008) for the DAR(1) models, and by Ling (2007) for the

DAR(p) models. That Eη4t < ∞ is necessary for its asymptotic normality; in

practice, this may fail; and the standard QMLE procedure may not be reliable.

The least absolute deviation (LAD) approach can be used to reduce the mo-

ment condition of ηt and provide a robust estimator; see Knight (1987, 1998),

Davis and Dunsmuir (1997), Ling (2005), Pan, Wang, and Yao (2007), and Zhu

and Ling (2012) for the ARMA models with i.i.d. errors, and Horváth and Liese

(2004), Peng and Yao (2003), Berkes and Horváth (2004), Li and Li (2005, 2008),

and Zhu and Ling (2011) for the ARMA-GARCH/GARCH models. Chan and

Peng (2005) proposed a local weighted LAD estimator (WLADE) for the DAR(1)

models, and established its asymptotic theory. Unlike QMLE, the WLADE only

requires Eη2t < ∞ and shares a property of robust estimators. However, contrary

to the LAD estimators for the regression or AR models, the WLADE is not an

efficient estimator when ηt follows a double exponential distribution.

In this paper, we investigate the global quasi-maximum exponential likeli-

hood estimator (QMELE) for model (1.1), which is a LAD-type estimator. If

E|yt|ι < ∞ for some ι > 0, with Eη2t < ∞, strong consistency and asymptotic

normality of the QMELE are obtained. A comparison is given with the QMLE

in Ling (2007) and WLADE in Chan and Peng (2005). A simulation study is

carried out to compare the performance of these estimators in finite samples. An

example on the exchange rate is given to illustrate the advantage of our QMELE

procedure.

This paper is organized as follows. Section 2 gives our main results. Simu-

lation results are reported in Section 3. An example is given in Section 4. All of

the proofs are in the Appendix.

2. Main Results

Let θ = (γ′, δ′)′ be the unknown parameter of model (1.1) with true value

θ0 = (γ′0, δ
′
0)

′, where γ = (ϕ1, . . . , ϕp)
′ and δ = (w,α1, . . . , αp)

′. Denote the

parameter space by Θ = Θγ×Θδ, where Θγ ⊂ Rp,Θδ ⊂ Rp+1
0 , R = (−∞,∞), and

R0 = (0,∞). Assume that {y1, . . . , yn} are generated by model (1.1). When ηt
follows the standard double exponential distribution, the log-likelihood function

(ignoring a constant) can be written as

Ln(θ) =
1

n

n∑
t=p+1

lt(θ) and lt(θ) = log
√

ht(δ) +
|εt(γ)|√
ht(δ)

, (2.1)
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where

εt(γ) = yt −
p∑

i=1

ϕiyt−i and ht(δ) = w +

p∑
i=1

αiy
2
t−i.

Let θ̂n = argminΘ Ln(θ). Since we do not assume that ηt follows the standard

double exponential distribution, θ̂n is called the global quasi-maximum exponen-

tial likelihood estimator (QMELE) of θ0.

Assumption 1. Θ is compact with w ≤ w ≤ w̄ and αi ≤ αi ≤ ᾱi (i = 1, . . . , p),

where w, w̄, αi and ᾱi (i = 1, . . . , p) are some positive constants, and θ0 is an

interior point in Θ.

Assumption 2. {yt : t = 1− p, . . . , 0, 1, 2, . . .} is strictly stationary and ergodic

with E|yt|ι < ∞ for some ι > 0.

Assumption 3. ηt has zero median with Eη2t < ∞ and a continuous density

f(x) in R satisfying f(0) > 0 and supx f(x) < ∞.

When ηt ∼ N(0, 1), a necessary and sufficient condition for Assumption 2 is

given in Ling (2007). When p = 1, Borkovec and Klüppelberg (2001) obtained a

strict stationarity condition for the DAR(1) models, E(ln |ϕ+ ηt
√
α|) < 0. This

condition implies that E|yt|ι < ∞ for some ι > 0; see Ling (2005). Figure 1 shows

the stationary region of (ϕ, α) for the DAR(1) models when ηt is N(0, π/2) and

(π/(2
√
3))t3, respectively, with t3 the student’s t distribution with three degrees

of freedom. From the figure, we can see that |ϕ| can be 1 or slightly larger than

1, and the stationary region when ηt ∼ (π/(2
√
3))t3 is larger than that when

ηt ∼ N(0, π/2); this is quite different from the stationarity condition, |ϕ| < 1, of

the AR(1) models with i.i.d. errors.

Our basic results on strong convergence and asymptotic normality are as

follows:

Theorem 1. Suppose that ηt has zero median with E|ηt| = 1. If Assumptions

1−2 hold, then θ̂n → θ0 almost surely (a.s.) as n → ∞.

Theorem 2. If Assumptions 1−3 hold with E|ηt| = 1, then

√
n(θ̂n − θ0) →d N

(
0,

1

4
Σ−1
0 Ω0Σ

−1
0

)
as n → ∞,

where →d denotes the convergence in distribution and

Σ0 = diag

{
f(0)E

(
Y1tY

′
1t

)
,
1

8
E
(
Y2tY

′
2t

)}
,
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Figure 1. The stationary regions bounded by solid line and dashed line
are {(ϕ, α) : E ln |ϕ + ηt

√
α| < 0} for ηt ∼ N(0, π/2) and (π/(2

√
3))t3,

respectively.

Ω0 =

(
E (Y1tY

′
1t)

Eηt
2 E (Y1tY

′
2t)

Eηt
2 E (Y2tY

′
1t)

Eη2t−1
4 E (Y2tY

′
2t)

)
,

with

Y1t =
1√

ht(δ0)

(
yt−1, . . . , yt−p

)′
and Y2t =

1

ht(δ0)

(
1, y2t−1, . . . , y

2
t−p

)′
.

Remark 1. When Eηt = 0, the asymptotic variance in Theorem 2 reduces to

the block diagonal matrix:

Γ0 = diag

{
4f(0)2E

(
Y1tY

′
1t

)
,

1

4
(
Eη2t − 1

)E (Y2tY ′
2t

)}−1

.

The asymptotic normality of our QMELE only needs a fractional moment of

yt. It is well known that the asymptotic normality of the classical LAD estimator

requires Ey2t < ∞ for the AR models with i.i.d. errors or GARCH errors; see

Knight (1987), Davis, Knight, and Liu (1992), Davis (1996), Davis and Dun-

smuir (1997), and Li and Li (2008). Recently, the weighted LAD estimator was

investigated for the AR models with i.i.d. errors or GARCH errors and shown to

be asymptotically normal under a fractional moment of yt; see Ling (2005), Pan,

Wang, and Yao (2007), and Zhu and Ling (2011, 2012). However, the weighted
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LAD estimator may not be efficient in general. Since the conditional variance

ht(δ) can control the log-likelihood function at (2.1), the weight is not needed

for the DAR(p) models. This advantage motivates us to consider the QMELE

procedure in practice, especially when yt is heavy-tailed with Ey2t = ∞.

Given the data set {yt}, the matrixes Σ0 and Ω0 in Theorem 2 can be esti-

mated via

Σ̂0n = diag

{
f̂(0)∆̂1n,

1

8
∆̂2n

}
and Ω̂0n =

(
∆̂1n

1
2Υ̂1n∆̂3n

1
2Υ̂1n∆̂

′
3n

1
4

(
Υ̂2n − 1

)
∆̂2n

)
,

(2.2)

respectively, where η̂t = εt(γ̂n)/

√
ht(δ̂n) is the residual, and

f̂(0) =
1

nbn

n∑
t=p+1

K

(
η̂t
bn

)
, Υ̂1n =

1

n

n∑
t=p+1

η̂t, Υ̂2n =
1

n

n∑
t=p+1

η̂2t ,

∆̂1n =
1

n

n∑
t=p+1

1

ht(δ̂n)

(
yt−1, . . . , yt−p

)′(
yt−1, . . . , yt−p

)
,

∆̂2n =
1

n

n∑
t=p+1

1

h2t (δ̂n)

(
1, y2t−1, . . . , y

2
t−p

)′(
1, y2t−1, . . . , y

2
t−p

)
,

∆̂3n =
1

n

n∑
t=p+1

1

h
3/2
t (δ̂n)

(
yt−1, . . . , yt−p

)′(
1, y2t−1, . . . , y

2
t−p

)
.

Here K(x), with
∫∞
−∞K(x)dx = 1 and

∫∞
−∞ |x|K(x)dx < ∞, is a kernel function

and bn > 0 is the bandwidth.

Corollary 1. Suppose that the conditions in Theorem 2 hold and supx |f ′(x)| <
∞. If there exists a positive number L > 0 such that |K(x) −K(y)| ≤ L|x − y|
for any x, y, and bn → 0, nb4n → ∞ as n → ∞, then

Σ̂0n → Σ0 and Ω̂0n → Ω0, as n → ∞.

Remark 2. The kernel function K(x) in Corollary 1 could be normal, Epanech-

nikov, triangular, or one of many others. We use the normal kernel function and

the bandwidth bopt,n for the numerical studies in Sections 3-4, where

bopt,n = b∗n

(
1 +

35

48
γ̂4 +

35

32
γ̂23 +

385

1024
γ̂24

)−1/5

,

b∗n = 1.06sn−1/5 is the reference bandwidth selector, and s, γ̂3, and γ̂4 are the

sample standard deviation, skewness, and kurtosis of the residuals {η̂t}, respec-
tively. See Fan and Yao (2003, p.201)
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To compare the asymptotic efficiency of our QMELE and the QMLE in Ling

(2007), we assume that Eη3t = 0 and Eη4t < ∞, and reparametrize (1.1) as

yt =

p∑
i=1

ϕiyt−i + η∗t

√√√√w∗ +

p∑
i=1

α∗
i y

2
t−i, (2.3)

where η∗t = ηt/
√

Eη2t and δ∗ = (Eη2t )δ. Let θ̄∗n = (γ̄′n, δ̄
∗′
n )′ be the QMLE of the

true parameter θ∗0 = (γ′0, δ
∗′
0 )′ in model (2.3), Then, θ̄n = (γ̄′n, δ̄

′
n)

′ is the QMLE

of θ0 = (γ′0, δ
′
0)

′, where δ̄n = δ̄∗n/Eη2t . Thus, by Theorem 3.1 in Ling (2007), the

asymptotic covariance of θ̄n is Γ1, where

Γ1 =

(
Eη2t J

−1
1 0

0 κJ−1
2

)
,

with J1 = E (Y1tY
′
1t), J2 = E (Y2tY

′
2t), and κ = Eη4t /(Eη2t )

2 − 1.

We now compare Γ0 with Γ1 for some specific cases. First, consider the case

when ηt = η̃t/E|η̃t|, with η̃t having the mixing normal density

f(x) = (1− ε)ϕ(x) +
ε

τ
ϕ
(x
τ

)
,

for 0 ≤ ε ≤ 1 and τ > 0. Here, ϕ(x) is the pdf of standard normal. After a

simple calculation, we can show that, when ε = 1, τ =
√

π/2,

Γ0 =

(
π2

4 J−1
1 0

0 (2π − 4)J−1
2

)
and Γ1 =

(
π
2J

−1
1 0

0 2J−1
2

)
.

Thus, Γ0 > Γ1, and the QMLE is asymptotically more efficient than the QMELE.

When ε = 1/2, τ = 5/2, we have

Γ0 =

(
1.64J−1

1 0

0 3.44J−1
2

)
and Γ1 =

(
1.86J−1

1 0

0 3.60J−1
2

)
.

Here, Γ1 > Γ0, and hence the QMELE is asymptotically more efficient than the

QMLE.

We next consider the case when ηt ∼ Laplace(0, 1). In this case,

Γ0 =

(
J−1
1 0

0 4J−1
2

)
and Γ1 =

(
2J−1

1 0

0 5J−1
2

)
.

Thus, Γ1 > Γ0, and the QMELE is asymptotically more efficient than the QMLE.

It is not surprising because QMELE is the MLE when ηt ∼ Laplace(0, 1).

Finally, we compare the asymptotic efficiency of the WLADE in Chan and

Peng (2005) and the QMELE for the DAR(1) models. To make it simple, we only
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consider θ0 = (0, 1, 1)′, in which case the asymptotic covariance of the WLADE

is  Eη2t
4mf2(

√
m)

(
E

y2t−1

S2 + E
y4t−1

S2

)
J−2
1 0

0 1
f2(

√
m)m

J−1
2

 ,

where m = median{η2t } and S = 1 + y2t−1. When ηt ∼ Laplace(0, 1), m = 0.48

and f(
√
m) = 0.25. We can see that the QMELE is asymptotically more efficient

than the WLADE for parameters (w,α). For the parameter ϕ, it is hard to

compare them with each other in theory, since the asymptotic covariance of

WLADE is quite complicated; simulation comparison is given in the next section.

3. Simulation

In this section, we compare the performance of the QMELE with those of the

QMLE and the WLADE in finite samples. The DAR(1) model used to generate

data samples was

yt = ϕyt−1 + ηt

√
w + αy2t−1. (3.1)

We set the sample size n = 400 and use 1000 replications. The true parameters

were (ϕ0, w0, α0) = (1.0, 1.0, 0.5), (0.5, 1.0, 0.5), (0.0, 1.0, 1.0), and (0.0, 1.0, 0.5).

We took ηt as Laplace(0, 1), N(0, 1), and t3 distribution, respectively. Since

these three estimation methods require different conditions for model (3.1), the

QMELE (θ̂∗n), QMLE (θ̄∗n), and WLADE (θ̃∗n) are estimators of (ϕ0, rw0, rα0)

with r = (E|ηt|)2, Eη2t , and median{η2t }, respectively. In order to make our

comparison feasible, we let

θ̂n =

(
ϕ̂∗
n,

ŵ∗
n

(E|ηt|)2
,

α̂∗
n

(E|ηt|)2

)
, θ̄n =

(
ϕ̄∗
n,

w̄∗
n

Eη2t
,
ᾱ∗
n

Eη2t

)
,

and

θ̃n =

(
ϕ̃∗
n,

w̃∗
n

median{η2t }
,

α̃∗
n

median{η2t }

)
be the QMELE, QMLE, and WLADE of (ϕ0, w0, α0), respectively. The estimated

asymptotic standard deviations of θ̂n, θ̄n, and θ̃n were derived in a similar way.

In all calculations, we chose the kernel function and the bandwidth as in Remark

2, and used the true values of E|ηt|, Eη2t , and median{η2t }.
Tables 1−3 list the sample biases, the sample standard deviations (SD), and

the average estimated asymptotic standard deviations (AD) of θ̂n, θ̄n, and θ̃n.

From them, we can see that all three estimators have very small biases. When

ηt ∼ Laplace(0, 1), the QMELE has smaller AD and SD than those of both the

QMLE and the WLADE, while the QMLE is better than the WLADE. When
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Table 1. ηt ∼ Laplace(0,1).

QMELE(θ̂n) QMLE(θ̄n) WLADE(θ̃n)

ϕ0 w0 α0 ϕ̂n ŵn α̂n ϕ̄n w̄n ᾱn ϕ̃n w̃n α̃n

1.0 1.0 0.5 Bias -0.0040 0.0518 -0.0034 -0.0045 0.0391 -0.0061 -0.0043 0.1082 0.0075

SD 0.0437 0.3051 0.0622 0.0576 0.3370 0.0678 0.0818 0.4376 0.0928

AD 0.0475 0.3038 0.0621 0.0569 0.3254 0.0671 0.0801 0.4571 0.0894

0.5 1.0 0.5 Bias -0.0040 0.0195 -0.0098 -0.0033 0.0099 -0.0102 -0.0029 0.0337 0.0132

SD 0.0547 0.1701 0.0941 0.0729 0.1857 0.1040 0.1063 0.2545 0.1406

AD 0.0606 0.1734 0.0930 0.0729 0.1873 0.1013 0.1046 0.2524 0.1366

0.0 1.0 1.0 Bias -0.0042 0.0253 -0.0151 -0.0029 0.0169 -0.0129 0.0005 0.0457 0.0172

SD 0.0689 0.1984 0.1529 0.0924 0.2125 0.1700 0.1348 0.2953 0.2261

AD 0.0765 0.1968 0.1542 0.0926 0.2134 0.1692 0.1311 0.2855 0.2227

0.0 1.0 0.5 Bias 0.0004 0.0124 -0.0083 -0.0011 0.0044 -0.0099 -0.0016 0.0303 0.0231

SD 0.0591 0.1590 0.1052 0.0816 0.1764 0.1181 0.1199 0.2365 0.1598

AD 0.0660 0.1579 0.1048 0.0793 0.1710 0.1145 0.1145 0.2310 0.1566

ηt ∼ N(0, 1), in Table 2 we can see that the QMLE has smaller AD and SD than

those of both the QMELE and the WLADE, and the SD and AD of the WLADE

of ϕ0 is slightly smaller than those of the QMELE, while the SD and AD of the

WLADE of ω0 and α0 are larger than those of the QMELE. From Table 3, we

can see that the QMELE has the smallest SD and AD, and the SD and AD of

the QMLE of ϕ0 are smaller than those of the WLADE, while the SD and AD

of the WLADE of ω0 and α0 are smaller than those of the QMLE. We also note

that the SD and AD of the QMLE of ω0 and α0 are not close to each other since

the asymptotic variance of the QMLE is infinite in this case. These results are

consistent with our theory in Section 2. The simulation results indicate that the

QMELE has a good performance in finite samples.

4. A Data Example

In this section, we consider the daily exchange rate of United States Dollars

(USD) to New Taiwan Dollars (TWD) (Interbank rate) from January 1, 2010

to January 1, 2011, which has in total 366 observations; see Figure 2 (a). Here,

100 times log return (after mean adjustment), denoted by {yt}365t=1, is plotted in

Figure 2 (b). To begin with, we first estimate the tail index of {yt} by Hill’s

estimator Ĥy(k) with the largest k data of {y2t },

Ĥy(k) =
k∑k

j=1(log ỹ365−j − log ỹ365−k)
,

where ỹj is the j-th order statistic of y2t . The plot of {Ĥy(k)}180k=10 is given in

Figure 3 (a), from which we can see that the tail of y2t is most likely less than
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Table 2. ηt ∼ N(0,1).

QMELE(θ̂n) QMLE(θ̄n) WLADE(θ̃n)

ϕ0 w0 α0 ϕ̂n ŵn α̂n ϕ̄n w̄n ᾱn ϕ̃n w̃n α̃n

1.0 1.0 0.5 Bias -0.0029 0.0094 -0.0030 -0.0009 0.0055 -0.0033 0.0003 0.0183 0.0040

SD 0.0574 0.1568 0.0583 0.0448 0.1451 0.0533 0.0530 0.2470 0.0932

AD 0.0599 0.1553 0.0575 0.0455 0.1435 0.0532 0.0554 0.2522 0.0930

0.5 1.0 0.5 Bias -0.0009 0.0115 -0.0124 -0.0036 0.0067 -0.0109 -0.0044 0.0185 0.0002

SD 0.0762 0.1258 0.0940 0.0605 0.1175 0.0883 0.0723 0.1950 0.1458

AD 0.0772 0.1228 0.0917 0.0586 0.1134 0.0852 0.0718 0.1993 0.1498

0.0 1.0 1.0 Bias 0.0015 0.0187 -0.0260 0.0027 0.0142 -0.0227 0.0034 0.0224 -0.0131

SD 0.0893 0.1457 0.1383 0.0693 0.1351 0.1298 0.0811 0.2249 0.2105

AD 0.0921 0.1427 0.1372 0.0701 0.1318 0.1276 0.0844 0.2278 0.2188

0.0 1.0 0.5 Bias -0.0026 0.0101 -0.0101 -0.0002 0.0088 -0.0087 0.0014 0.0069 0.0084

SD 0.0769 0.1219 0.1108 0.0605 0.1134 0.1040 0.0733 0.1892 0.1679

AD 0.0823 0.1197 0.1051 0.0627 0.1109 0.0978 0.0773 0.1929 0.1723

Table 3. ηt ∼ t3.

QMELE(θ̂n) QMLE(θ̄n) WLADE(θ̃n)

ϕ0 w0 α0 ϕ̂n ŵn α̂n ϕ̄n w̄n ᾱn ϕ̃n w̃n α̃n

1.0 1.0 0.5 Bias -0.0021 0.0400 -0.0042 -0.0019 -0.0922 -0.0537 -0.0002 0.0760 0.0114

SD 0.0550 0.3516 0.0751 0.0668 0.5706 0.2172 0.0860 0.3786 0.0849

AD 0.0552 0.3510 0.0727 0.0677 0.6113 0.1759 0.0911 0.3977 0.0804

0.5 1.0 0.5 Bias -0.0032 0.0218 -0.0175 -0.0024 -0.0989 -0.0746 -0.0023 0.0332 0.0061

SD 0.0684 0.2155 0.1005 0.0846 0.4201 0.2108 0.1116 0.2310 0.1107

AD 0.0691 0.2114 0.1026 0.0831 0.4434 0.2055 0.1077 0.2313 0.1149

0.0 1.0 1.0 Bias 0.0039 0.0230 -0.0128 0.0052 -0.0996 -0.1276 0.0067 0.0424 0.0241

SD 0.0833 0.2657 0.1778 0.1031 0.4808 0.3412 0.1365 0.2895 0.1982

AD 0.0857 0.2594 0.1688 0.1040 0.5572 0.4155 0.1317 0.2804 0.1848

0.0 1.0 0.5 Bias 0.0016 0.0223 -0.0089 -0.0010 -0.0956 -0.0542 -0.0037 0.0297 0.0153

SD 0.0714 0.2095 0.1213 0.0924 0.4151 0.2835 0.1224 0.2144 0.1302

AD 0.0730 0.2009 0.1178 0.0899 0.4010 0.2850 0.1168 0.2145 0.1297

1, i.e, Ey2t = ∞. Moreover, the estimated kurtosis of {yt} is 13.9, indicating

that the tail distribution of {yt} is much heavier than for the normal distribution.

Thus, the classical LAD or QMLE procedure is not reliable for the ARMA models

with i.i.d. errors or GARCH errors. Therefore, we used a DAR(p) (p≤ 4) model

to fit the data set {yt}. According to Akaike’s information criterion (AIC), the

fitted model is

yt = −0.2358yt−1 − 0.1457yt−2 + ηt

√
0.0437 + 0.1232y2t−1 + 0.0712y2t−2.

(0.0293) (0.0313) (0.1361) (0.0087) (0.0109)
(4.1)

Model (4.1) is estimated using the QMELE procedure. The standard errors,

reported in parentheses, are calculated via (2.2), with the kernel function and
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(a) (b)

Figure 2. (a) the daily exchange rate of USD/TWD from January 1, 2010 to
January 1, 2011 and (b) its 100 times log return (after mean adjustment).

bandwidth being chosen as in Remark 2. The value of the log-likelihood is -

120.46, and the estimated value of E|ηt| is 0.9998, close to 1. The first 25 au-

tocorrelations or partial autocorrelations of the residuals {η̂t} are not significant

at the 5% level; see Figure 4 (a)−(b). Similar results hold for the autocorrela-

tions or partial autocorrelations of {η̂2t }; see Figure 4 (c)−(d). With bandwidth

bn = 0.3022, the normal kernel density estimator of ηt, based on {η̂t}, is plotted
in Figure 3 (b). Apart from a small neighborhood of origin, this kernel density is

very close to the density of the standard double exponential distribution. These

results suggest that model (4.1) is adequate for the data set {yt}.
Next, by using the QMLE procedure in Ling (2007), we get an alternative

fitted model for the data set {yt} as

yt = −0.3511yt−1 − 0.2583yt−2 + ηt

√
0.1207 + 0.1562y2t−1 + 0.1180y2t−2.

(0.0424) (0.0443) (0.1456) (0.0339) (0.0396)
(4.2)

Again, model (4.2) is selected by AIC, with the standard errors in parentheses.

However, the log-likelihood value is -178.89 for model (4.2). From this, model

(4.1) is clearly superior to model (4.2). A DAR(2) model, based on the QMELE

procedure, seems be more reasonable and suitable choice to fit the data set {yt}.
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Appendix

Lemma A.1. For any θ∗ ∈ Θ, let Bη(θ
∗) = {θ ∈ Θ : ∥θ − θ∗∥ < η} be an open

neighborhood of θ∗ with radius η > 0. If Assumptions 1−2 hold, then

(i) E

[
sup
θ∈Θ

lt(θ)

]
< ∞,

(ii) E [lt(θ)] has a unique minimum at θ0,

(iii) E

[
sup

θ∈Bη(θ∗)
|lt(θ)− lt(θ

∗)|

]
→ 0 as η → 0.

Proof. First, by Assumptions 1−2 and Lemma B.2 in Ling (2007), it is straight-
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forward to see that (i) holds. Next, by a direct calculation, we have

E[lt(θ)] = E

log√ht(δ) +

∣∣∣εt(γ0) +√ht(δ0)(γ0 − γ)′Y1t

∣∣∣√
ht(δ)


= E

[
log
√

ht(δ) +

√
ht(δ0)

ht(δ)
E
{∣∣ηt(θ0) + (γ0 − γ)′Y1t

∣∣ ∣∣∣Ft−1

}]

≥ E

[
log
√

ht(δ) +

√
ht(δ0)

ht(δ)
E (|ηt||Ft−1)

]

= E

[
log
√

ht(δ) +

√
ht(δ0)

ht(δ)

]
,

where the last inequality holds since ηt has zero median, and the minimum is

attained if and only if γ = γ0 a.s.; see Ling (2007). Here, ξ∗ lies between γ and

γ0. The function f(x) = log x+a/x, a ≥ 0, reaches its minimum at x = a. Thus,

E[lt(θ)] reaches its minimum if and only if
√

ht(δ) =
√

ht(δ0) a.s., and hence

θ = θ0. Thus, we can claim that E[lt(θ)] is uniformly minimized at θ0, i.e., (ii)

holds.

Let θ∗ = (γ∗′, δ∗′)′ ∈ Θ. For any θ ∈ Bη(θ
∗), by using Taylor’s expansion,

we can see that

log
√

ht(δ)− log
√

ht(δ∗) =
(δ − δ∗)

2ht(ζ∗)

′(
1, y2t−1, . . . , y

2
t−p

)′
,

where ζ∗ lies between δ and δ∗. Then, by Assumption 2, we have

E

[
sup

θ∈Bη(θ∗)

∣∣∣log√ht(δ)− log
√

ht(δ∗)
∣∣∣] ≤ η

2
E

[
1 +

∑p
i=1 y

2
t−i

w +
∑p

i=1 αiy
2
t−i

]
≤ O(1)η → 0

as η → 0. Similarly,

E

[
sup

θ∈Bη(θ∗)

1√
ht(δ)

∣∣|εt(γ)| − |εt(γ∗)|
∣∣]→ 0 as η → 0,

E

[
sup

θ∈Bη(θ∗)
|εt(γ∗)|

∣∣∣∣∣ 1√
ht(δ)

− 1√
ht(δ∗)

∣∣∣∣∣
]
→ 0 as η → 0.

Thus it follows that (iii) holds.

Proof of Theorem 1. We use the method in Huber (1967). Let V be any open

neighborhood of θ0 ∈ Θ. By Lemma A.1 (iii), for any θ∗ ∈ V c = Θ/V and ε > 0,
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there exists an η0 > 0 such that

E

[
inf

θ∈Bη0 (θ
∗)
lt(θ)

]
≥ E[lt(θ

∗)]− ε. (A.1)

From Lemma A.1 (i), by the Ergodic Theorem, it follows that

1

n

n∑
t=p+1

inf
θ∈Bη0 (θ

∗)
lt(θ) ≥ E

[
inf

θ∈Bη0 (θ
∗)
lt(θ)

]
− ε (A.2)

if n is large enough. Since V c is compact, we can choose {Bη0(θi) : θi ∈ V c, i =

1, 2, . . . , k} to be a finite covering of V c. Thus, from (A.1)−(A.2), we have

inf
θ∈V c

Ln(θ) = min
1≤i≤k

inf
θ∈Bη0 (θi)

Ln(θ)

≥ min
1≤i≤k

1

n

n∑
t=p+1

inf
θ∈Bη0 (θi)

lt(θ)

≥ min
1≤i≤k

E

[
inf

θ∈Bη0 (θi)
lt(θ)

]
− ε (A.3)

if n is large enough. Note that the infimum on the compact set V c is attained.

For each θi ∈ V c, from Lemma A.1 (ii), there exists an ε0 > 0 such that

E

[
inf

θ∈Bη0 (θi)
lt(θ)

]
≥ E[lt(θ0)] + 3ε0. (A.4)

Thus, from (A.3)−(A.4), taking ε = ε0, it follows that

inf
θ∈V c

Ln(θ) ≥ E[lt(θ0)] + 2ε0 (A.5)

if n is large enough. On the other hand, by the Ergodic Theorem, it follows that

inf
θ∈V

Ln(θ) ≤ Ln(θ0) =
1

n

n∑
t=p+1

lt(θ0) ≤ E[lt(θ0)] + ε0 (A.6)

if n is large enough. Hence, combining (A.5) and (A.6),

inf
θ∈V c

Ln(θ) ≥ E[lt(θ0)] + 2ε0 > E[lt(θ0)] + ε0 ≥ inf
θ∈V

Ln(θ),

which implies that θ̂n ∈ V , a.s. for ∀V , if n is large enough. By the arbitrariness

of V , it yields θ̂n → θ0 a.s. This completes the proof.

To prove Theorem 2, we use the technique in Zhu and Ling (2011). We first

re-parameterize the objective function (2.1) as

Hn(u) = nLn(θ0 + u)− nLn(θ0),
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where u ∈ Λ ≡ {u = (u′1, u
′
2)

′ : u + θ0 ∈ Θ}. Let ûn = θ̂n − θ0. Then, ûn is the
minimizer of Hn(u) in Λ. Furthermore, we have

Hn(u) =
n∑

t=p+1

At(u) +
n∑

t=p+1

Bt(u) +
n∑

t=p+1

Ct(u), (A.7)

where

At(u) =
1√

ht(δ0)
[|εt(γ0 + u1)| − |εt(γ0)|],

Bt(u) = log
√

ht(δ0 + u2)− log
√

ht(δ0) +
|εt(γ0)|√
ht(δ0 + u2)

− |εt(γ0)|√
ht(δ0)

,

Ct(u) =

[
1√

ht(δ0 + u2)
− 1√

ht(δ0)

]
[|εt(γ0 + u1)| − |εt(γ0)|] .

Let I(·) be the indicator function. Using the identity

|x− y| − |x| = −y[I(x > 0)− I(x < 0)] + 2

∫ y

0
[I(x ≤ s)− I(x ≤ 0)]ds

for x ̸= 0, we can show that

At(u) = u′K1t[I(ηt < 0)− I(ηt > 0)] + 2

∫ u′K1t

0
Xt(s)ds, (A.8)

where Xt(s) = I(ηt ≤ s) − I(ηt ≤ 0) and K1t =
(
Y ′
1t, 01×(p+1)

)′
. Then, from

(A.8), we have

n∑
t=p+1

At(u) = u′T1n +Π1n(u) + Π2n(u), (A.9)

where

T1n =

n∑
t=p+1

K1t[I(ηt < 0)− I(ηt > 0)],

Π1n(u) = 2

n∑
t=p+1

∫ u′K1t

0
{Xt(s)− E[Xt(s)|Ft−1]} ds,

Π2n(u) = 2

n∑
t=p+1

∫ u′K1t

0
E[Xt(s)|Ft−1]ds.

Let K2t =
(
01×p, Y

′
2t

)′
. By Taylor’s expansion, we can see that

n∑
t=p+1

Bt(u) = u′T2n +Π3n(u), (A.10)
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where

T2n =
1

2

n∑
t=p+1

K2t(1− |ηt|),

Π3n(u) = u′
n∑

t=p+1

(
3

8

∣∣∣∣∣ εt(γ0)√
ht(ξ∗)

∣∣∣∣∣− 1

4

)
1

h2t (ξ
∗)

∂ht(ξ
∗)

∂θ

∂ht(ξ
∗)

∂θ′
u,

and ξ∗ lies between δ0 and δ0 + u2.

We need two lemmas. The first is directly from the Central Limit Theorem;

the second gives the expansions of Πin(u) for i = 1, 2, 3 and
∑n

t=1Ct(u), and its

proof is analogous to those of Lemmas 2.2 and 2.3 in Zhu and Ling (2011).

Lemma A.2. Let Tn = T1n + T2n. If Assumptions 1−3 hold, then

1√
n
Tn →d N(0,Ω0) as n → ∞,

where

Ω0 =

(
E (Y1tY

′
1t)

Eηt
2 E (Y1tY

′
2t)

Eηt
2 E (Y2tY

′
1t)

Eη2t−1
4 E (Y2tY

′
2t)

)
.

Lemma A.3. If Assumptions 1−3 hold, then for any sequence of random vari-

ables un such that un = op(1), it follows that

(i) Π1n(un) = op(
√
n∥un∥+ n∥un∥2),

(ii) Π2n(un) = (
√
nun)

′Σ1(
√
nun) + op(n∥un∥2),

(iii) Π3n(un) = (
√
nun)

′Σ2(
√
nun) + op(n∥un∥2),

(iv)

n∑
t=1

Ct(un) = op(n∥un∥2),

where

Σ1 = diag
{
f(0)E

(
Y1tY

′
1t

)
, 0(p+1)×(p+1)

}
and Σ2 = diag

{
0p×p,

1

8
E
(
Y2tY

′
2t

)}
.

Proof of Theorem 2. We have ûn = op(1) by Theorem 1. Furthermore, by

(A.7), (A.9)−(A.10) and Lemma A.3, we have

Hn(ûn) = û′nTn + (
√
nûn)

′Σ0(
√
nûn) + op(

√
n∥ûn∥+ n∥ûn∥2), (A.11)

where Σ0 = Σ1 +Σ2. Let λmin > 0 be the minimum eigenvalue of Σ0. Then

Hn(ûn) ≥ −∥
√
nûn∥

[∥∥∥∥ 1√
n
Tn

∥∥∥∥+ op(1)

]
+ n∥ûn∥2 [λmin + op(1)] .
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Note that Hn(ûn) ≤ 0. By the previous inequality, it follows that

√
n∥ûn∥ ≤ [λmin + op(1)]

−1

[∥∥∥∥ 1√
n
Tn

∥∥∥∥+ op(1)

]
= Op(1), (A.12)

where the last step holds by Lemma A.2. Next, let u∗n = −Σ−1
0 Tn/2n. Then, by

Lemma A.2, we have

√
nu∗n →d N

(
0,

1

4
Σ−1
0 Ω0Σ

−1
0

)
as n → ∞.

Hence, it is sufficient to show that
√
nûn−

√
nu∗n = op(1). By (A.11) and (A.12),

we have

Hn(ûn) = (
√
nûn)

′ 1√
n
Tn + (

√
nûn)

′Σ0(
√
nûn) + op(1)

= (
√
nûn)

′Σ0(
√
nûn)− 2(

√
nûn)

′Σ0(
√
nu∗n) + op(1).

Note that (A.11) still holds when ûn is replaced by u∗n. Thus,

Hn(u
∗
n) = (

√
nu∗n)

′ 1√
n
Tn + (

√
nu∗n)

′Σ0(
√
nu∗n) + op(1)

= −(
√
nu∗n)

′Σ0(
√
nu∗n) + op(1).

By the previous two equations, it follows that

Hn(ûn)−Hn(u
∗
n) = (

√
nûn −

√
nu∗n)

′Σ0(
√
nûn −

√
nu∗n) + op(1)

≥ λmin∥
√
nûn −

√
nu∗n∥2 + op(1). (A.13)

Since Hn(ûn) −Hn(u
∗
n) = n [Ln(θ0 + ûn)− Ln(θ0 + u∗n)] ≤ 0 a.s., by (A.13) we

have ∥
√
nûn −

√
nu∗n∥ = op(1).

Proof of Corollary 1. First, since |K(x) −K(y)| ≤ L|x − y| for some L > 0,

by Taylor’s expansion we have∣∣∣∣∣∣f̂(0)− 1

nbn

n∑
t=p+1

K

(
ηt
bn

)∣∣∣∣∣∣ ≤ L

nb2n

n∑
t=p+1

|η̂t − ηt|

=
L
∣∣∣θ̂n − θ0

∣∣∣
nb2n

n∑
t=p+1

∣∣∣∣∂ηt(ξn)∂θ

∣∣∣∣ , (A.14)

where ξn lies between θ0 and θ̂n. Note that

∂ηt(θ)

∂θ
=

∂εt(γ)

∂θ

1√
ht(δ)

− εt(γ)

2h
3/2
t (δ)

∂ht(δ)

∂θ
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and εt(γ) = εt +
∑p

i=1(ϕi0 − ϕi)yt−i. By Assumption 1, we can show that

E

[
sup
θ

∥∥∥∥∂ηt(θ)∂θ

∥∥∥∥] ≤ E


√∑p

i=1 y
2
t−i√

w +
∑p

i=1 αiy
2
t−i

+ E

sup
θ

|εt(γ)|
√

1 +
∑p

i=1 y
4
t−i

2
(
w +

∑p
i=1 αiy

2
t−i

)3/2


≤ O(1) +O(1)E


√

w0 +
∑p

i=1 αi0y2t−i√
w +

∑p
i=1 αiy

2
t−i


+O(1)E

 ∑p
i=1 |yt−i|√

w +
∑p

i=1 αiy
2
t−i

 < ∞.

Thus, by Theorem 3.1 in Ling and McAleer (2003) and the Dominated Conver-

gence Theorem, we have

1

n

n∑
t=p+1

∣∣∣∣∂ηt(ξn)∂θ

∣∣∣∣ = E

∣∣∣∣∂ηt(ξn)∂θ

∣∣∣∣+ op(1) = E

∣∣∣∣∂ηt(θ0)∂θ

∣∣∣∣+ op(1) = Op(1). (A.15)

Since
√
n(θ̂n − θ0) = Op(1) and nb4n → ∞ as n → ∞, by (A.14) and (A.15), it

follows that ∣∣∣∣∣∣f̂(0)− 1

nbn

n∑
t=p+1

K

(
ηt
bn

)∣∣∣∣∣∣ ≤ Op

(
1√
nb2n

)
= op(1). (A.16)

Next, by a direct calculation we have

E

[
1

bn
K

(
ηt
bn

)]
=

∫ ∞

−∞
K(x)f(bnx)dx < ∞,

where the last inequality holds since supx f(x) < ∞ by Assumption 2.2 and∫∞
−∞K(x)dx = 1. Then, by Theorem 3.1 in Ling and McAleer (2003), it follows

that

1

nbn

n∑
t=p+1

K

(
ηt
bn

)
= E

[
1

bn
K

(
ηt
bn

)]
+ op(1). (A.17)

Furthermore, since
∫∞
−∞ |x|K(x)dx < ∞ and bn → 0 as n → ∞, we have∣∣∣∣E [ 1

bn
K

(
ηt
bn

)]
− f(0)

∣∣∣∣ = ∣∣∣∣∫ ∞

−∞
K(x) [f(bnx)− f(0)] dx

∣∣∣∣
≤ bn sup

x
|f ′(x)|

∫ ∞

−∞
|x|K(x)dx → 0 (A.18)
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as n → ∞. By (A.16)−(A.18), we know that f̂(0) = f(0) + op(1). Finally, by

a similar argument as for (A.15), we can show that ∆̂1n = E(Y1tY
′
1t) + op(1),

∆̂2n = E(Y2tY
′
2t) + op(1), ∆̂3n = E(Y1tY

′
2t) + op(1), Υ̂1n = Eηt + op(1), and

Υ̂2n = Eη2t + op(1). This completes the proof.
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Francq, C. and Zaköıan, J. M. (1998). Estimating linear representations of nonlinear processes.

J. Statist. Plann. Inference 68, 145-165.
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