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Abstract: This paper studies the invariant structure of the one-sided testing prob-
lem =0 vs g > 0in Ny(u,XT) and it is shown that the requirement of scale invari-
ance, symmetry in coordinates and similarity (transitivity) inevitably leads to the
Hotelling T2 test. We regard this as a negative result in the following sense: Since
we cannot recommend Hotelling T2 test for this one-sided problem it is fruitless to
seek an invariant-similar test for this problem.

In addition to the above result, a noncentral bivariate t-distribution is derived,
a different invariance approach is proposed when similarity is not obtained though
the usual invariance approach, and the non-Bayes property of the Hotelling T2 test
is shown.
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1. Introduction

In this paper, from an invariance viewpoint, the well known one-sided test-
ing problem

H: n=0 vs K: n2>0,7#0 | (1.1)
is studied in the p-dimensional normal model
zy,...,zn 1id Ny(n,Z), T € S(p) (1.2)

where 7 > O means n; > 0,7 = 1,2,... ,p for n = (;) and S(p) denotes the set of
p X p positive definite matrices. This problem has been analyzed by various au-
thors. Among others, Perlman (1969) studied it with a focus on some properties
of the likelihood ratio test (LRT) and Eaton (1970) and Marden (1982) described
essentially complete classes. See Perlman (1969) for many additional references.
The LRT is not similar as shown in Perlman (1969). Tang (1990) gives similar
tests more powerful than the likeliiood ratio test. However his tests are not scale
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invariant. One of his tests is permutation invariant. The Hotelling T? test is an
optimal invariant test for the two-sided problem H : p=0vs K’ : 9 # 0. In this
paper, we question, via invariance, whether there exists a nontrivial permutation
invariant and scale invariant similar test except for the Hotelling T? statistic.
The answer will be negative.

In general, a similar test is not necessarily invariant (under some group).
However, similarity is often implied by invariance, and, most important, sim-
ilar tests in practice are often invariant. That is, in most practical problems,
the groups leaving the problems invariant act transitively on the null parameter
space, which implies invariant tests are similar. From the traditional invariance
viewpoint, transitivity will be the only way to deal with similarity at present,
since no structural relationship between similarity and invariance has been es-
tablished. Hence, in this paper similarity is viewed as the transitivity of a group
action on the null parameter space by invariance; and we call a test invariantly
similar if the similarity is guaranteed by the transitivity of the group action. It
is shown that the Hotelling T test is the unique nontrivial, coordinatewise scale
invariant, permutation invariant and invariantly similar test for problem (1.1).

We regard our finding as a negative result in the following sense: We cannot
seriously recommend Hotelling’s T'? test for this one-sided problem since it is very
counter intuitive. It would reject, for example, when all of the p-sample means are
very negative or even moderately negative, and, to boot, if the sample covariance
matrix is near diagonal, with small diagonal elements! This is upsetting to any
practical statistician. Furthermore, the power of Hotelling’s T % test must suffer,
relative to other tests, because of such rejections. Our result, then, implies it
is fruitless to seek a test which simultaneously has the desirable properties of
invariance and similarity. Further work needs to be done to determine which of
the desirable properties should be sacrificed. Based on Tang’s (1990) finding it
appears that the LRT should not be used either.

In Section 2 the problem for the case p = 2 is studied. There, the nonnull
distribution of a maximal invariant is derived, through which a noncentral bivari-
ate t distribution is obtained as a by-product. In Section 3, we obtain a maximal
group G3 leaving the problem (1.1) invariant and including the group P(p) of
permutations and the group A(p) of scale transformations. In general it is shown
that a G5 invariant test is not similar. Therefore, there is no group which leaves
the problem (1.1) invariant that includes P(p) and A(p) and provides a class
of similar tests as the class of invariant tests. For such a case, an alternative
invariance approach, which we call an H-K invariance approach, is proposed in
Section 4. In that approach we first choose a (maximal) group K leaving the
nonnull model invariant, then choose a minimal group H containing K and act-
ing tTansitively on the null parametér space, and finally choose an appropriate
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H invariant test. In Section 5, this H—K invariance approach is applied to the
problem. First, the minimal group which acts transitively on ©p (null space)
and includes the group A(p) of scale changes is shown to be the group T'(p) of
p X p lower triangular matrices with positive diagonal elements. Second, the
minimal group which acts transitively on @y and includes the maximal group
G5 is shown to be the general linear group G{(p) consisting of p X p nonsingular
matrices. This result implies that the Hotelling 7 test is the unique test which
is permutation invariant, scale invariant and invariantly similar. In Section 6, it
is shown that Hotelling T? test is not a proper Bayes test.

2. Testing H:n=0vs K:n2>0

In this section, to gain insight into the invariance structure of the problem,
we directly analyze problem (1.1) when p = 2. By sufficiency, problem (1.1) is
reduced to the problem of testing H : u = 0 vs K : p > 0 with u = vV N7 in the

(o= - (Al -+((2)

S = (S,‘j) ~ Wy (Z,n) with n =N ~1

(2.1)

where y and S are independent and W,(XZ, n) represents a Wishart distribution.
The problem is clearly left invariant under the scale group

G = {A|A = diag{a;, a2}, a; >0 (i=1,2)},. (2.2)
under which a maximal invariant is
T = (t1,t2,7) with t; = y,-/s}i/2 and 7 = s12/(s11512 )1/2 (2.3)
(i = 1,2), and a maximal invariant parameter is
I =(7,72,p) Wwith 7= #5/03,'/2 and p = 012/(011022)'/? (2.4)
(i = 1,2). For notation, let

{v; =t:/(1+ )2, (i=1,2), b= (tty +7)/[(1+ )1+ )/

2.5
T=v -2y +7%, 61 =71 —py2 and & =72 — p71- (25)

The following lemma is a generalization of Miller (1968) and Siddiqui (1967) and
gives the distribution of (t1,t2,7).

Lemma 2.1. The pdf of T'(1,13,7) is given by
F(TIT) = h(T|T)g1 (t2)92(t2)93(7) (26)

——
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where, with dp4; = 2‘/2P(n+;+ 1)/I‘<n; 1),

T n 181 ) (v26,)%(bp)*
WD) = exp(~ 5 ) 1-pry e 5 S0 3~ (B PCab S ORFy g

j=0 k=0 £=0 27)
o) = [[(M=)/r (3)7 )+ )02 =12)  (28)
ga(r) = [I‘(-Q—)/I‘( )7r1'/2](1 — r?)(n=3)/2 (2.9)

Proof. Let PF be the distribution of T under I'. Then by Wijsman’s Theorem
(1967), the pdf of T with respect to PJ, evaluated at T = T(y, S), is given by
dPF /dPT = Qr/Qo, where

Qr = /G f1(Ayli, £) F2(ASA'|S)x(A)w(dA) (2.10)

where f1(y|p, L) and f(S|X) are respectively the pdf’s of y and S in (2.1), x(A)
is the inverse of the Jacobian of (y,5) — (Ay,ASA'), i.e., x(A) = ala} and
v(dA) = (a1a;)"'dayda, is an invariant measure on G. First using the invariance
of v and replacing a; by a,/.sl/2 12 (1 =1,2) in (2.10), Qr is evaluated as

Qr occ(0)/ exp - —trAA(tt + R)A'] exp[trAAty']a}t? ”HV(dA) (2.11)

where ¢(6) = |2~/ 2 exp(—1u'S71h) = [o13022(1 — p?)]~ D/ exp(—3),
t= (t1,t), R = (,1,’1") and A = ( lp "1”). The constants, such as IS[(”_3)/2,
which are cancelled out with those of the denominator )¢, are absorbed into the

notation oc. Next again replacing a; by a;/(1 + t?)}/? in (2.11) yields

o0 pOO 1
Q@r « c(l9)/O /o ajay exp(a;v;6;+azv:62) exp(ayazbp)exp <—§(a%+a§)) dayda,

(2.12)
with v;’s, 6;’s and b from (2.5). Here, on expanding exp(a;v;8;)’s and exp(aj azbp),
(2.12) becomes

161 ) (v262)*(bp) it 1
Qrocc(ﬂ)zzz( 191) ;'I:‘Z‘ p) // itttk exp (—§(a§+a§)) daidas.
i k¢ :

(2.13)
Hence, using Jo_ a™exp(—(1/2)a?)da = s(m=D/27((m + 1)/2) and taking the
ratio of Qr and Qo, the expression R(T|T) in (2.7) is obtained. On the
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other hand, t;, t; and r are independent when I' = (71,72,p) = 0 and the
pdf’s of these variables are given by (2.8) and (2.9) respectively. This implies
dPT = g1(t1)g2(t2)gs(r)dt1dt2dr, and so [Qr/QoldPY = f(TIT)dt1dtadr, which
completes the proof.

For the case u = 0, Siddiqui (1967) derived the exact and approximate pdf
of (t1,t2,7). The pdf of T = (t1,t2,7) with p = 0 is f(t1,t2,7]0,0,p) since p =0

is equivalent to 6, = &, = 0. The distribution of (t1,t2) in the following lemma
is regarded as a two-dimensional noncentral t distribution since t; = ¥; /s},/ 2

(i=1,2).

Lemma 2.2. The pdf of (t1,t2) is given by

fo(ty,t2|71,72,0) = ho(t1,t2]71, 72, £)91(t1)g2(t2) (2.14)
where, with e, = I‘(#)I‘(%)/?T(%—E)wlﬂ,

ho(t1,t2171, 72, P)

= exp (- L) (1= p2) 0L i i i CUVICT )N,
3=0 k=0 £=0

£

xS leg + (~1)7e,] (ﬁ) (0302)=7[(1 = v})(1 = ). (2.15)

g=0

Proof. Expanding b¢ = [r(1 — v3)1/%(1 — v3)}/? 4 v1v,]¢ as a binomial series
and integrating it with respect to gs(r) yields the result.

Miller (1968) treated the multivariate t-distribution of (#,%2) with p = 0
and some other associated distributions. It seems that the above two dimensional
noncentral t-distribution has not been derived.

Lemma 2.2 implies that a scale invariant test is not similar in general since
the distribution of the maximal invariant under H depends on the nuisance
parameter p. Of course, such an invariant test as a test based on only is
similar. A question to be posed here is whether the problem admits a group
structure under which the class of invariant tests forms a ciass of similar tests.
In particular, is there a nontrivial permutation invariant and invariantly similar
test? This question is treated in the next section.

3. Invariance Analysis of the Problem

. By the traditional invariance approach we study here, the invariant structure
of the problem.
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The problem stated in Section 1 may be viewed as the problem of testing
H: p=0 vs K: p>0, pu#0 with p=vVNn (3.1)

in the transformed model

X=(g):nxp~Npr((’6l),IN®E). (3.2)

In terms of the sufficient statistic (y,5) with S = Z’'Z, the model is
y~N(p,X) and S~ W(E,N - 1) (3.3)

where W(X, m) denotes the Wishart distribution with mean mX and degrees of
freedom m. Let O = {(0,X)|Z € S(p)} = {0} x S(p) and O = {(1, Z)|u >
0,2 € S(p)} = (RE — {0}) x S(p) where Ry = [0,00). As has been seen in
Section 2, the problem is left invariant under the group

Gy = A(p) (3.4)
which acts on the sufficient statistic (y, .5) by
go(y,S)=(Ay,ASA") with g=A€ G, (3.5)

where A(p) is the group of px p diagonal matrices with positive diagonal elements.
On the other hand, the problem is also left invariant under the group

G, = P(p), . (3.6)

which acts on (y,5) by go (y,5) = (Qy,@SQ’) where ¢ = Q € G,. The group
defined by

Gs = AP(p) with (3.7)

AP(p)={B|B = B1B;:--Bn,,B; € A(p) or B;€ P(p),i=1,... ,m,meN}(3.8)
leaves the problem (3.1) invariant, where G3 acts on (y,S5) by g o (y,5) =
(By,BSB') with g = B € AP(p) and it acts on £ by go X = BEB’. Clearly G;
contains G; and G as subgroups, and hence neither G; nor G2 is maximal as a

group leaving the problem (3.1) invariant.
Now define

{ T = T(y,S) = (t(l),... st(p) tT12,y. .. ’;(p-l)p) (3.9)
F=T(Z) = (v, V) 112+ s B(p—1)p) .

where t(1) 2 -+- 2 (), i.e. (1), .- yi(p)) = Qu(ta,-.. ,1p) (for Q¢ € P(p)) (or _
Ya) 2 -+ 2 Y(p)) are the ordered t;’s (or 7;’s) with t; = y;/\/Sii (o1 vi = pi/\/T3)
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and ri; = ;j/(s:85;)1% (o1 pij = 045 /(siis;3)/?) (i # §) with § = (s5) = 2'Z,
(7i;) = Q:RQ} and R = (ry;).

Lemma 3.1. (1) T is mazimal invariant under G3. (2) T is a mazimal invariant
parameter under G3.

Proof. The proof is straightforward and therefore omitted.

This lemma shows that a G3 invariant test is not similar in general and that
there is no further dimensional reduction on the space of a maximal invariant
parameter under Gj. In fact, since y;) = 0 (¢ = 1,...,p) under H, the null
distribution of T depends on p;;’s by (2) of Lemma 3.1 and dim G3 = dim G;.
Further, even the test based on the critical region #(;y > c is not similar, though
the test based on t; > c is similar. To see this, consider the case p = 2. Then
from Lemma 2.2, the pdf of (t(),%(2)) is obtained as 2fo(t(1),%(2)|7(1)> Y(2)> P)
with t(1) > t3), where fo(t1,t2|v1,72,p) is given in (2.4). From this pdf, it can
be directly observed that the marginal pdf of ¢(;) under H : y(;) = 7¥(2) = 0 does
depend on p.

To summarize, neither G; nor G; nor Gz provide similar tests through
invariance only. This is because the groups are too small to act on Oy transitively
under H. In Section 2, we observed this for G; by deriving the pdf of a maximal
invariant. For Gg, it is easy to see since the invariance under P(p) does not
reduce the dimension of the original parameter space. For G3, it was discussed
above. '

A question we may ask here is whether G3 is a maximal group as a group
leaving the problem invariant. The following lemma answers it positively.

-

Lemma 3.2. The group G3 is a mazimal group leaving the model M(Og) =
{N(p, Z)|(p, ) € Ok} invariant.

Proof. By Nabeya and Kariya (1986), any measurable transformation h(y,S)
which preserves the model M(Og) = {N(u,Z) x W(E,N - 1)|(p,Z) € Ok}
must be of the form h(y,S) = (Cy,CSC’) a.e. for some C € G{(p). Hence the
group of transformations preserving M(Og) is regarded as

Jp = {C € G¢(p)|Cu > 0and C~ x>0 for all 4 > 0}.

We shall show J, = G3, where the suffix p denotes the dimension of u. Since
G3p C Jp, we show J, C G3p, by mathematical induction on p. It is clear for the
case p = 1. Assuming it for the case p, consider the case p+1. Let Cels= Jpt1-_
Since C € Jp+1 is equivalent to QCQ' € Jp+1 for any given Q € P(p + 1), take
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Q € P(p + 1) such that Cy; # 0. Here,

=t = = [ Cn1 Cl?) —1_(D11 D12> d ___(#p)
QC'Q._C--(C21 Con ) €=\ Dy D) @K s

where C1; : pX p, D11 : p X p and p, € RP. Note Cay # 0 implies [Ci12| #0
with C112 = C11 — 01202'21(]21. Now the statement that Cu > 0 and C~1u >0
for all 4 > 0 is equivalent to the statement

Criptp + Crapips1 20, Coapp + Co2pipt1 20 (3.10)
Duipp + Diapip1 20, Doaptp + Dazpips1 20 (3.11)

for all 4 > 0. It follows from (3.10) that

C122>0,Cy 20,Cz >0and Crypp 20 forall p, >0
and it follows from (3.11) that

Dy, >0, Dyy >0, D3y > 0and Dy, > 0 for all pp, > 0.
Also from CC~! = I, it follows that

Dy = Cip' 4+ C53' C1CyCi2Cyy' > 0, Diz = =C,CraCy' > 0,
D1 = (C11 — C12C5'Ca1) 7Y, Dy = —C3'CaCt, > 0.

Hence D31 D11pp = —02_21021;1.,, > 0 for all u,, implying Cz; < 0 by Cay > 0.
Therefore Cy; = 0, and so Dy; = Cﬁl. Thus, it follows that Ci1pp, > 0 and
Cii'mp > 0 for all p, > 0. This implies C1; € G3, by the assumption of
induction. Hence the elements of C'1; and C'l'l1 are nonnegative, and so C;2 <0
from D5 > 0, implying Cy3 = 0. Consequently we have proved that C=Q'CQ
with C12 = 0, C21 = 0, C32 > 0 and Cy; € G3p. Therefore C e G3(p+1) by the
definition of G3 in (3.7), completing the proof.

This lemma implies that no larger group including G3 leaves the problem
invariant, and hence no invariantly similar tests will be provided through the tra-
ditional invariance approach. In other words, the traditional invariance approach
does not lead us to conclude that a class of similar tests is the class of invariant
tests in this problem. An alternative approach to overcome such a situation will
be discussed in the next section.

4. H-K Invariance Approach

In Section 3, it has been observed that the traditional invariance approach
provides no nontrivial similar tests because the group leaving the problem in-_
variant is too small. The fact that the group G3 in (3.9) is maximal, implies
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that there is no way to obtain nontrivial similar tests through the traditional
invariance approach. Therefore, if similarity is considered as an important prop-
erty for a test, the traditional invariance approach should be modified to provide
invariantly similar tests. An attempt to do so is presented in this section.

To describe our modification of the traditional invariance approach, consider
a general testing problem:

H: 00y vs K: 00O (OgnOg =0) (4.1)

where X is a sample space in R™ and M(0) = {P; : 6 € 0} (@ = O U
©x C R™) is a set of probability measures on X indexed by 6 € ©. As is well
known, the model M(O) is said to be invariant under a group G of measurable
transformations of X if gM (@) = M(0) i.e. for any measurable set A, gPs(A) =
Ps(g~1(A)) and gP; € M(O) for all g € G. The testing problem (4.1) is said
to be invariant under G if both the null model M(Op) and the nonnull model
M(Ox) are invariant under G. Hence in the traditional invariance approach, we
are required to find a (maximal) group leaving both models invariant. Sometimes
we face a case where the group found becomes too small to provide invariantly
similar tests. An approach for such a case is to deal separately with the groups
leaving each model invariant. To state it, let

H = {H € C|H leaves M(Og) invariant} (4.2)

Hs = {H € H|H acts transitively on Oy} (4.3)
and

K = {K € C|K leaves M(Ok) invariant}, (4.4)

where C is the set of groups acting (measurably) on X. Here we assume that
Oy C Ok, i.e., O is in the boundary of O and that H O Hs D K, which
is often the case in applications, especially in nested problems. Our approach
here is to first choose a group K from X which may be maximal (though it is
not necessarily required), and, secondly, to choose a minimal group H,, from Hg
that includes K as a subgroup (if any). Thirdly, in the class of H,, invariant
tests, an optimal or appropriate test is to be chosen. Of course, the transitivity
of H (€ Hs) on Oy guarantees the similarity of an H invariant test. Here it is
noted that though an H,, invariant test is K s invariant, it is supposedly a test
for the problem

H:0e0y vs K: 0€0g={h8l0€Ok,he H,)}. (4.5)

Hence, the minimality required in our approach means that Ox should be close

to @}(r ) -
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The minimality of a group H in Hg is checked as follows. Since H acts on
Oy as an induced group, let Hg = {h € H|h8 = 6} be the isotropy group of 6.

When Hy = {e} for all § € Oy with e the identity of H, H is said to act freely
on Og.

Lemma 4.1. If the action of H is free as well as transitive, then H is minimal
n Hs.

Proof. Suppose that there exists a subgroup Hy C H such that the action of
Hp on Of is transitive. Then to claim Hy = H, take any h € H and 6 € Oy.
Since Hy is transitive, there exists an hg € Hy such that hgf = hf. Hence,
h=lhy € Hg, but Hy = {e} which implies h = hg € Hy. This completes the
proof.

Finally, we shall define a measure for the nonsimilarity of the invariant
problem (4.1) by the difference of the dimensions of the minimal group H,, and
the (maximal) group K:

d=dimH, -dimK (>0) (4.6)

where H,, is assumed to be a matrix group. If H,, = K, the problem is invariant
in the traditional sense, in which case d = 0. Though d = 0 does not necessarily
imply H,, = K in general, the “extra” part H,, — K in case of d = 0 does
not contribute to the reduction of the dimension of a maximal invariant under
K. In most applications, d = 0 implies H,, = K. When 0 < d < oo, then d
corresponds to the difference of the dimensions of the maximal invariants under
H,, and K, and it also corresponds to the difference of dimensions of maximal
invartant parameters when H,, and K are the induced groups.

It is noted that we do not necessarily require the maximality of K in K. The
reason will be made clear later.

5. The H-K Approach to the Problem

We apply the formulation made in Section 4 to the problem (3.1) with
K = G; and K = G3 as a group leaving the problem invariant, where K € K in
(4.4). First consider the group G; in (3.3) as a group K, in K of (4.4) leaving
the nonnull model M(Og) invariant. As has been seen in Section 2, this group
K; = G; does not act transitively on Oy and a class of similar tests is not
provided as the class of invariant tests under K;. Hence to find a minimal group
H, in Hg of (4.3) which includes K; as a subgroup, let

— Hy =T(p) (5.1)
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where T(p) is the group of p X p nonsingular lower triangular matrices with
positive diagonal elements. H; acts on (y,S5) by ho(y,5) = (Uy,USU’') and on
Y by hoX = USU’' where h = U € T(p).

Lemma 5.1. H;p is a minimal group H,, in H of (4.3) which includes K1 = Gj.

Proof. Since K; C Hy, by Lemma 4.1, it suffices to show that H; acts tran-
sitively and freely on Op. The transitivity is clear since £ € S(p) is uniquely
decomposed as £ = ¥V’ with ¥ € T(p). The freeness also follows. In fact,
ULU' = ¥ implies U¥ = ¥ by the uniqueness of the decomposition, which in
turn implies U = I i.e., the isotropy group Hiz equals {I} for any ¥ € 5(p).
This completes the proof.

The degree of the nonsimilarity of the invariant problem (3.1), defined by
(4.6) is

d=[p(p+1)/2] -p=p(p-1)/2, (5.2)

which corresponds to the dimension of the nuisance parameter of a maximal
invariant parameter under K; when H holds. When p = 2, d = 1 as has been
observed in Section 2.

As in (4.5), an H;-invariant test presumably tests H : § € Oy vs

K:6€0k={UnUZU)p20,Z € S(p),U € T(p)}
= {z € R”|z1 > 0} x S(p) = (R+ x R"') x S(p),  (5.3)

which is different from ©@x = RE x S(p).
A maximal invariant under H; is

~w=(w) =Wy with W=2'Z+yy and W12eT(p) (54)
and a maximal invariant parameter is

B=(8;)=2"Y?y with T2 e T(p). (5.5)

Theorem 5.1. (1) The pdf of w under H is fo(w) = co(1 — w'w)N-P=2)/2,
(2) The pdf of w under K is

f(wlB) = exp ( - %ﬁ'ﬂ) exp (% > ij 8?) [ﬁF;(wiﬂi)} folw)  (5.6)

ij=1 i=5+1 i=1

where

‘, B_Lw‘ﬁ,) = E(\/iﬂ,-w,-)"r((a; +k)/2)/k'I‘(a,) with a; =N =1+ 1. (57_)_
k=0
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Proof. (1) The pdf of (y,8) with § = Z'Z is ¢|Z|N/? exp[- 2 t1Z7 (S + yy')] x
|S|*dydS where a = (N —p—2)/2. In this pdf, transforming S into W and then
y into w yields the pdf of (w, W):

c|=|~M? exp ( - %trE_1W)|W|°’+1/2|I — wuw'|*dwdW  (w'w < 1).

Integrating W out gives the result. (2) Let f(X|u,X) be the pdf of X in (3.2) and
let Py be the distribution of w under 5. Then by Wijsman’s Theorem (1967),
dPy [dFy’ = H(X|p,X)/H(X|0,X) with

H(X|u, %) = /H #(g 0 X1, £)x(0)v(dg)

where x(g) = |[UU'|V/? for g = (R,U) € Hp,, v(dg) = v1(dR)v2(dU), v1(dR) is

the invariant probability measure on O(N — 1) and v,(dU) = [J%_, u;*dU is an

invariant measure on T'(p). Since H(X|u,X) is proportional to

exp (— %#’E'lu) /T(

transforming U into S~2UW /2 yields

1
exp(u' 7 Uy) exp ( - 51;rU'E"1 UW) |UU'|N %0y (dU),

)

H(X|p,Z) o exp (— %,@'ﬁ) / exp(f'Uw) exp ( - %trUU')lUU’lNﬁuz(dU).

T(p)
Therefore dPy/dFy’ = exp(—30'B)EY[exp(8'Uw)]. Since u;;’s are indepen-
dently distributed with u;; ~ N(0,1) for 7 # j and v} ~ Gamma((N —i+
1)/2) with pdf v®~!exp(—a/2)/T(a)2® where a = (N — i + 1)/2, and since
EV[exp(f'Uw)] = Elexp(3°%., 20 ;41 wiBiui;) exp(XF; uiiwifBi)], the result
follows from Efexp(w;fiui;)] = exp(—3w?8?) and Elexp(uiiw;f;)] = Fi(wif;).

Next we consider the case where a group K leaving the problem (3.1) in-
variant is chosen to be the maximal group G3 = AP(p). As a group H which
acts transitively on Oy and includes K, we choose

H3 = G{(p) (5.8)

which acts on (y, 5) by go(y,S)=(Cy,CSC’) and on © by go(p, )= (Cu,CEC’)
where ¢ = C € Hj.

Lemma 5.2. Hj; is a minimal group H,, which acts transitively on Oy and
includes K3 = G3 as a subgroup.

Proof. Clearly Hj acts transitively on Oy and it includes K3. To show the
minifrality note that K3 = G5 contains K; = G; = A(p) and that H, is the
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minimal group which acts transitively on @z and includes K. This implies that
the minimal group H,, contains H; = T(p). Further, since K3 cqntajns P(p),Hy,
contains P(p) as well as T(p), which implies that H,, contains U(p), the group
of p X p upper triangular matrices with positive diagonal elements. On the other
hand, any matrix C € G{(p) is expressed as a product elementary matrices,
C = EyE;---E,,, where E;’s are elementary matrices. Since an elementary
matrix belongs to one of T(p), U(p) and P(p) (see, e.g., Rao (1973)), and since
H,, contains T(p), U(p) and P(p), Hn, = H3 follows. This completes the proof.

As is well known, a maximal invariant under Hs = G{(p) is the well known

Hotelling T? statistic;
u=y' Sy |
which when multiplied by [(N — p)/(N — 1)p] is distributed as F' with degrees of
freedom (p, N — p). An Hs-invariant test presumably tests H : 6 € Oy vs
K*: 8 € 0% = {(Cu,CEC")|C € Gt(p), # 0, € 5(p)}
= (R? — {0}) x S(p),

which is known as the Hotelling 7% problem, and the test with critical region

u > ¢ is UMPI (uniformly most powerful invariant) for H vs K*. Therefore, by
Lemma 5.1 and Lemma 5.2 we conclude

Theorem 5.1. The Hotelling T? test statistic is the unique invariantly similar
statistic which is coodinatewise scale invariant and permutation invariant.

6. Non-Bayes Property of Hotelling 7? Test

- In Section 5, we observed that the requirement for a test to be scale invariant
coordinatewise, symmetric coordinatewise and similar eventually leads us to the
Hotelling T? statistic as a maximal invariant under G3 = G{(p), because G; =
U(p) and G, = P(p) generate G3. In this section, we study a property of the
Hotelling T2 test in the problem.

Theorem 6.1. The Hotelling T? test cannot be a proper Bayes test.

Proof. Let 6§ = 7'y and ® = £~!. Then any Bayes test is of the form; reject

H if

b, W) = Is exp(—-%tr;I)W + y'8)dn
[, exp(—3tr®@W)dn

(6.1)

with respect to some finite measure © over 8 where

— 9= {(6,®)27'6>0,® € S(p)} (6.2

|

p
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and W = S+ yy' (> yy') with § = Z'Z (see (3.2)). Note that b(y, W) is a
continuous function on R? x S(p). In fact it is analytic. Now suppose that the
T? test is Bayes. Then for some finite measure 7 and for some increasing function
f, the following condition must be satisfied

by, W) = f(y W y). (6.3)

This is because the set of analytic sets {{(y, W)|b(y, W) < ¢}, ¢ € R} must
generate the set {{(y,W)|yYW~ly < d}, d € R}. Note that yW~1y is in one-
one correspondence with 7% = y'S§~1y. It follows from (6.3) that b(Ay, AW A") =
b(y, W) for all A € G{(p). Hence taking A = W~1/2

_ 1 : 1 o
by, W) = /;exp ( - 2tr¢1> +z 5)d7r/ /aexp (— 2tr<1>)d7r = f(2'2) (6.4)
where z = W~1/2y. Define a probability measure on 8 by
1 1
dv = exp (— §tr<1>) d7r//aexp (— Etré) dr. (6.5)
Then (6.4) implies

E,[exp(2'8)] = f('2z) (z € RP). (6.6)

The left hand side of (6.6) is the moment generating function of §, while the
right hand side shows that the distribution of 6 must be spherical. However,
the domain of § is restricted to & = {§|®~'6 > 0, & € S(p)}. Since R? - 9, is
shown to contain an open set, the distribution of § cannot be spherical, giving a
contradiction. This completes the proof.

The proof of Theorem 6.1 shows that T cannot be generalized Bayes either.
However it is conceivable that 7' could still be a weak limit of a sequence of Bayes
tests. The weak limits form an essentially complete class.

To complement the proof of Theorem 6.1, let

8 ={6€RPI6=3"1p, p>0, T € S(p) (6.7)
and

Q,=RP - Q; with QI ={z € R"|z <0} - {0}). (6.8)

Lemma 8.1. 0, = Q,.

Proof. To show 8, C Qp, take § = 'y € 8,. Then p'6 = p'Su > 0.
Since™ > 0, this implies § ¢ @, and hence § € Q,. To show Q, C 3,, we use
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mathematical induction on p. When p = 1, clearly Q; = 0;. Assume if for the
case p and consider the case p+ 1. Let

-1 _ A Q | H# _ ]
p+1—[a: Tp], lip+1—[ﬂp] and 5p+1-[,; : (6.9)

We want to show that for any given 6,41 € @Qp41, there exist ppy1 2 0, Ay, 0y
and 7 such that E;_'l_lup_,,l = 8p41. If 6541 = 0, by taking pp41 = 0, we note that
any choice of Ap, a, and 7 will do. Suppose 6,41 # 0. Then E;_ilppﬂ = dpt1
is equivalent to

Appp + apf =6, and ayu,+78=17. (6.10)

In §p41 of (6.9), with v > 0 and setting a, = 0 in (6.10) gives 8 = v/7 > 0 and.
Appp = 6p. But by the assumption, Apu, = 6, implies p, > 0. Hence if v > 0,
there exists pip41 > 0 such that 6,41 = E;jlup.;.l. Now suppose v < 0. This
implies 8, € Q, since 6,41 € Qpy1. Choose B = 0 so that (6.10) becomes

Appp = 6, and o pp = 1. (6.11)

We need to show that there exist A,, a,, 7 and p, satisfying (6.11) and E;il >0.
Since

-1 _ [1 —a,/r]7" Ap — apay/T 0 I 0]~}
p+1 0 1 0 T]|-a,/T 1

given any a, € R? and A, € §(p), there exists a 7 > 0 such that E;il > 0.
Hence by the assumption of induction, there exist A, € S(p) and p, > 0 such
that Apu, = 6, since 6, € @Q,. Also for such u,, choose any o, € RP such
that appp = 7 < 0. Therefore, given any 6p41 € Qpy1, we find ppyy > 0
and E;il € S(p + 1) such that E;j_lupﬂ = 6p41, implying 6p41 € Opt+1. This
completes the proof.

A cknowledgement
Professor Cohen’s research is supported by NSF grant #8822622.

References

Eaton, M. L. (1970). A complete class theorem for multidimensional one-sided alternatives.
Ann. Math. Statist. 41, 1884-1888.

Marden, J. I. (1982). Minimal complete classes of tests of hypotheses with multivariate one-
sided alternatives. Ann. Statist. 10, 962-970.

Miller, K. S. (1968). Some multivariate t-distributions. Ann. Math. Statist. 39, 1605-1609.

Perlman, M. D. (1969). One-sided testing problems in multivariate analysis. Ann. Math. Statist.
40, 549-567.



236 TAKEAKI KARIYA AND ARTHUR COHEN

Rao, C. R. (1973). Linear Statistical Inference and Its Applications, 2nd edition. John Wiley,
New York.

Siddiqui, M. M. (1967). A bivariate t distribution. Ann. Math. Statist. 38, 162-166.

Tang, Dei-In (1990). Tests which are uniformly more powerful than the likelihood ratio tests
for one-sided problems in multivariate analysis. Unpublished manuscript.

Wijsman, R. A. (1967). Cross-sections of orbits and their application to densities of maximal

invariants. Proc. 5th Berkeley Symp. Math. Statist. Probab. 1, 389-400. University of
California, Berkeley.

Institute of Economic Research, Hitotsubashi University, Kunitachi, Tokyo 186, Japan.
Department of Statistics, Hill Center, Rutgers University, New Brunswick, NJ 08903, U.S.A.

(Received May 1990; accepted June 1991)



