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Abstract: In this paper, we study the Nonparametric Maximum Likelihood Esti-

mator (NPMLE) of univariate “Mixed Case” interval-censored data in which the

number of observation times, and the observation times themselves are random

variables. We provide a characterization of the NPMLE, then use the ICM algo-

rithm to compute the NPMLE. We also study the asymptotic properties of the

NPMLE: consistency, global rates of convergence with and without a separation

condition, and an asymptotic minimax lower bound.
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1. Introduction and Formulation of the Problem

Univariate interval censoring problem arises when a random variable, such as
failure time or onset of disease, cannot be directly observed, but is only known to
be in an interval determined by several observation times. Interval censored data
and the corresponding application of statistical methods can be found in animal
carcinogenicity, epidemiology, HIV and AIDS studies, see Finkelstein and Wolfe
(1985), Finkelstein (1986), Self and Grossman (1986), Becker and Melbye (1991)
and Aragón and Eberly (1992). There are three types of univariate interval
censorship models: “Case 1” interval censoring or current status data; “Case 2”
and “Case k” interval censoring; “Mixed Case” interval censoring.

Suppose that Y is a random variable with distribution function F ∈ F ≡ { all
distribution functions on R+}. Unfortunately, we are unable to directly observe
Y itself, but we can observe a random vector (δ, T ), where T is the observation
time independent of Y , δ = 1[Y ≤T ]. So the only knowledge about the event of
Y is whether it occurred before T or after T . This model is called the “Case 1”
interval censoring model in Groeneboom and Wellner (1992). In “Case 2” interval
censoring, Y falls into one of three time intervals formed by two observation times
T1 and T2. The data observed are: (δ1, δ2, T1, T2) = (1[Y ≤T1], 1[T1<Y ≤T2], T1, T2).
The nonparametric maximum likelihood estimation (NPMLE) of “Case 1” and
“Case 2” interval censored data are summarized in Groeneboom and Wellner
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(1992), Groeneboom (1996) and Huang and Wellner (1997). Wellner (1995)
studied the NPMLE of the “Case k” interval censoring in which each subject has
exactly k examination times.

To compute the NPMLE, Turnbull (1976) derived self-consistency equations
for a very general censoring scheme and proposed solving the equations by the
EM algorithm. Groeneboom (1991) developed an iterative convex minorant algo-
rithm (ICM). The ICM algorithm is considerably faster than the EM algorithm
especially when the sample size is large; see Groeneboom and Wellner (1992).
Aragón and Eberly (1992) and Jongbloed (1995, 1998) proposed modifications
of the ICM algorithm, and Jongbloed (1995, 1998) showed that his modified
algorithm always converges.

Very often in clinical trials, each patient has several follow-ups and the num-
ber of follow-ups differs from patient to patient. This motivates the study of
the following model. Let T = Tk,j, j = 0, 1, . . . , k, k + 1, k = 1, . . ., be a trian-
gular array of “potential observation times” with Tk,0 ≡ 0 and Tk,k+1 ≡ +∞,
and let K, the number of observation times, be an integer-valued random vari-
able such that Y and (K,T ) are independent. What we can observe is a vector
X = (∆K , TK ,K), with possible value x = (δk, tk, k), where Tk is the kth row of
the triangular array T , ∆k = (∆k,1, . . . ,∆k,k) with ∆k,j = 1(Tk,j−1,Tk,j ](Y ), j =
1, . . . , k + 1. Suppose we observe n i.i.d. copies of X: X1, . . . ,Xn, where Xi =
(∆(i)

K(i), T
(i)

K(i) ,K
(i)), i = 1, . . . , n. Here (Y (i), T (i),Ki), i = 1, 2, . . ., are the under-

lying i.i.d. copies of (Y, T ,K). Schick and Yu (2000) referred to this model as
the “Mixed Case” interval censoring model. They proved strong consistency in
the L1(µ)-topology of the NPMLE for a measure µ which is derived from the
distribution of observation times.

Van der Vaart and Wellner (2000) gave a different formulation of “Mixed
Case” interval censoring. They noted that conditional on K and TK , the vector
∆K has a multinomial distribution: (∆K |K,TK) ∼ MultinomialK+1(1,∆FK),
where ∆FK ≡ (F (TK,1), F (TK,2) − F (TK,1), . . . , 1 − F (TK,K)). Suppose for the
moment that the distribution Gk of (TK |K = k) has density gk, and pk ≡ P (K =
k). Then the density of X is given by

pF (x) ≡ pF (δ, tk, k) =
k+1∑
j=1

δk,j(F (tk,j) − F (tk,j−1)) (1.1)

with respect to the dominating measure ν which is determined by the joint distri-
bution of (K,T ). Thus the normalized log-likelihood function for F of X1, . . . ,Xn

is given by

1
n

ln(F |X) =
1
n

n∑
i=1

Ki+1∑
j=1

∆Ki,j log(F (T (i)
Ki,j

) − F (T (i)
Ki,j−1)) = PnmF , (1.2)
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where mF (X) =
∑Ki+1

j=1 ∆Ki,j log(F (T (i)
Ki,j

) − F (T (i)
Ki,j−1))

≡ ∑K+1
j=1 ∆Ki,j log(∆F (T (i)

Ki,j
)).

Van der Vaart and Wellner (2000) proved the consistency of the NPMLE
of the “Mixed Case” interval censoring in Hellinger distance, and also recovered
the results of Schick and Yu (2000) by using preservation theorems for Glivenko-
Cantelli classes. Here, we use the above formulation of the “Mixed Case” interval
censoring problem. In Section 2, we give a characterization of the NPMLE. We
then use the ICM algorithm to compute the NPMLE. In Section 3, we state
the main asymptotic properties of the NPMLE: consistency, global rates of con-
vergence with and without a separation condition, and an asymptotic minimax
lower bound. The results in Section 3 are proved in Section 5 by using empirical
process theory. There are other two estimators for the univariate “mixed case”
interval censored data that are based on the non-homogeneous Poisson process
model: nonparametric maximum likelihood estimator and nonparametric max-
imum pseudo-likelihood estimator (NPMPLE), see Wellner and Zhang (2000).
We denote these two estimators as NPMLEWZ and NPMPLEWZ . In Section 4,
we present simulation studies to compare the asymptotic relative efficiency of the
above three estimators.

2. Characterization and Computation of the NPMLE

Let t1 < · · · < tm denote the ordered distinct observation time points in the
set of all observation time points: {TKi,j, j = 1, . . . ,Ki, i = 1, . . . , n}. Define
the rank function R: {TKi,j, j = 1, . . . ,Ki, i = 1, . . . , n} → {1, . . . ,m} such that
R(TKi,j) = s, if TKi,j = ts for s = 1, . . . ,m. Let Ω = {(F (t1), . . . , F (tm)) : 0 ≤
F (t1) ≤ · · · ≤ F (tm), for all F ∈ F}, and F = (F (t1), . . . , F (tm)). Then the
normalized log-likelihood (1.2) can be rewritten as:

1
n

ln(F |X) =
1
n

n∑
i=1

Ki+1∑
j=1

∆Ki,j log(F (t
R(T

(i)
Ki,j)

) − F (t
R(T

(i)
Ki,j−1)

)),

where ∆Ki,j = 1(tR(TKi,j−1), tR(TKi,j )](Yi).

Note that Ω is a convex set, ln(F |X) is a concave function due to the linear
combination of the concave function “log”. Let lk(F |X) ≡ ∂ln(F |X)/∂F (tk) =∑n

i=1 li,k(F |X), where

li,k(F |X)=
Ki∑
j=1

[
∆Ki,j

F (tR(TKi,j))−F (tR(TKi,j−1))
− ∆Ki,j+1

F (tR(TKi,j+1))−F (tR(TKi,j))

]
δKi,j(k)

(2.1)
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and δKi,j(k) = 1[R(TKi,j)=k]. The following characterization of the NPMLE F̂n

follows from Fenchel duality theorem.

Theorem 2.1. The unique NPMLE F̂n maximizes ln(F |X) over all F ∈ F if
and only if

m∑
k=l

n∑
i=1

li,k(F̂n|X) ≤ 0, for l = 1, . . . ,m, (2.2)

m∑
k=1

[
n∑

i=1

li,k(F̂n|X)

]
F̂n(tk) = 0. (2.3)

Denote lkk(F |X) ≡ ∂2ln(F |X)/∂F 2(tk) =
∑n

i=1 li,kk(F |X), where

li,kk(F |X)

=−
Ki∑
j=1

{
∆Ki,j

[F (tR(TKi,j))−F (tR(TKi,j−1))]2
+

∆Ki,j+1

[F (tR(TKi,j+1))−F (tR(TKi,j))]
2

}
δKi,j(k).

Then define the G(F , ·) and V (F , ·) processes by

G(F , 0) = 0, V (F, 0) = 0,

G(F , p) =
p∑

k=1

(−lkk(F |X)) = −
p∑

k=1

n∑
i=1

li,kk(F |X),

V (F, p) =
p∑

k=1

(lk(F |X) + F (tk)(−lkk(F |X)))

=
p∑

k=1

n∑
i=1

[ li,k(F |X) − F (tk) li,kk(F |X)] ,

where p = 1, . . . ,m. Since

G(F , p|X) =
p∑

k=1

−∂2ln(F |X)
∂F 2(tk)

,

V (F, p|X) =
p∑

k=1

[
F (tk)(−∂2ln(F |X)

∂F 2(tk)
) +

∂ln(F |X)
∂F (tk)

]
,

by using Theorem 4.3 of Wellner and Zhan (1997), we can also characterize the
NPMLE F̂n as the slope of the convex minorant of a self-induced cumulative
diagram.

Theorem 2.2. F̂n is the NPMLE of F0 if and only if F̂n is the left derivative of
the convex minorant of the cumulative sum diagram consisting the points Pp =
(G(F̂ n, p), V (F̂n, p)), where P0 = (0, 0), p = 1, . . . ,m.
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The above left derivative of the convex minorant of the cumulative sum
diagram can be calculated by the “max-min” formula

F̂ l+1
n (tp) = max

j≤p
min
i≥p

V (F̂
l
n, i) − V (F̂

l
n, j)

G(F̂
l
n, i) − G(F̂

l
n, j)

,

where p = 1, . . . ,m, and l is the index of iteration. Only one ∆Ki,j, for j =
1, . . . ,Ki, is equal to one for each subject, so Theorem 2.1 and Theorem 2.2 can
be reduced to Proposition 1.3 and Proposition 1.4 of Groeneboom and Wellner
(1992). Thus, the computation of the NPMLE of “Mixed Case” interval censoring
can be reduced to the“Case 2” interval censoring as noted by Huang and Wellner
(1997) and Van der Vaart and Wellner (2000).

The ICM algorithm has been applied in many problems: see Groeneboom
and Wellner (1992), Jongbloed (1995, 1998), Wellner and Zhan (1997), Wellner
and Zhang (2000). To prove global convergence, Jongbloed (1995) designed a
modified iterative convex minorant algorithm (MICM) by inserting a binary line
search procedure. In this case, the NPMLE of the “Mixed Case” interval cen-
soring can be calculated by the MICM algorithm as for the “Case 2” interval
censoring.

3. Asymptotic Properties of the NPMLE: Results

In this section, we study the asymptotic properties of the NPMLE: consis-
tency, global rate of convergence in Hellinger distance, and a local asymptotic
minimax lower bound. The following regularity conditions are needed.
A. EK < ∞.
B. Separation condition: there exists a δ > 0 such that P (TK,j−TK,j−1 ≥ δ) = 1,

for every j = 1, . . . ,K,K = 1, 2, . . ..
C. For 0 ≡ tk,0 < tk,1 < · · · < tk,k < tk,k+1 ≡ ∞, there exists a η > 0 such that

the underlying distribution function F0 satisfies F0(tk,j)−F0(tk,j−1) > η, for
all j = 1, . . . , k + 1.

D. If qk,j,j−1 is the density of the joint distribution Q(tk,j, tk,j−1|K = k), and
f0 is the density of F0 with respect to Lebesgue measure on R, there exist
pointwise constants c0 and c1 such that qk,j,j−1(s, t) ≤ c0 for all t, s and
j = 1, . . . , k + 1, k = 1, 2, . . ., and 1/c1 ≤ f0(y) ≤ c1 for y ∈ R.

3.1. Consistency

Van der Vaart and Wellner (2000) have proved the consistency of the NPMLE
F̂n by using preservation theorems for Glivenko-Cantelli classes. Here we give
another approach to the proof. Then, following this approach, we study the rate
of convergence of the NPMLE.
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In the probability space (Ω,A, PF ), where Ω is ∪∞
k=1{0, 1}k+1 × Rk

+ × {k};
A is a σ-field generated by Ak1 × Bk × Ak3, Ak1 is the class of all subsets of
{ek

j ≡ (0, . . . , 1︸︷︷︸
jth

, 0, . . . , 0) : j = 1, . . . , k + 1}, Bk is a σ-field generated by the

set of all k-dimensional rectangles on Rk
+, Ak3 = σ{∅, {k}}; PF is a probability

measure with density defined in (1.1) and dominating measure ν defined as

ν({ek
j }×Bk×{k}) = counting measure on {ek

j }×P (K = k)×P (T ∈ Bk|K = k).

Let Q(tk,1, . . . , tk,k|K = k) be the conditional distribution function of T k.
Let Qk,j denote the marginal distribution of Tk,j, for j = 1, . . . , k, k = 1, 2 . . .,
conditional on K = k. Then the Hellinger distance is

h2(pF , pF0)

=
1
2

∞∑
k=1

P (K =k)
k+1∑
j=1

∫ {
[F (tk,j)−F (tk,j−1)]

1/2−[F0(tk,j)−F0(tk,j−1)]
1/2

}2
dQ(tk).

Note that
∫

pF dν = 1. For fixed F0 ∈ F and pF as defined in (1.1), let P = {pF :
F ∈ F}, mF = (pF −pF0)/(pF +pF0) = 2pF /(pF +pF0)−1, M ≡ {mF : F ∈ F},
Mδ ≡ {mF − mF0 : h(pF , pF0) < δ,F ∈ F}. Then P is convex. As shown by
Van der Vaart and Wellner (2000, p.123), the Hellinger distance h(pF̂n

, pF0) is
less than or equal to ‖Pn − P‖M for a density pF with respect to a dominating
measure ν. To show that h(pF̂n

, pF0) →a.s 0, we need only prove that the class
M is a Glivenko-Cantelli class by showing that its bracketing numbers are finite
for each ε > 0, see Theorem 2.4.1 in Van der Vaart and Wellner (1996). It follows
from Lemma 3.1 below that the bracketing number N[ ](ε,M, Lr(P )) is bounded
by N[ ](ε,P, Lr(Qσ)), where dQσ = 1[pF0

>σ]p
1−r
F0

dν for σ > 0.

Lemma 3.1. For any integer r≥1, let σ0(ε)≡ sup{σ≥0 :
∫

pF01[pF0
≤σ]dν≤ εr},

Gσ ≡ {2pF 1[pF0
>σ]/(pF + pF0) : pF ∈ P}. Then N[ ]((2r + 1)1/r ε, M, Lr(P )) ≤

N[ ](ε, Gσ0(ε), Lr(P )) and N[ ](2ε, Gσ0(ε), Lr(P )) ≤ N[ ](ε, P, Lr(Qσ)), where dQσ

= 1[pF0
>σ]p

1−r
F0

dν.

Using Theorem 2.7.5 in Van der Vaart and Wellner (1996), it is not hard
to show that if EK < ∞, then log N[ ](ε,P, L1(P )) = O(1/ε) and consequently
log N[ ](ε,M, L1(P )) = O(1/ε) for univariate “mixed case” interval censored data.
Thus we conclude that the NPMLE F̂n of the univariate “mixed case” interval
censored data is consistent in Hellinger distance when EK < ∞. Consistency
of the NPMLE in L1-norm can also be derived; see Van der Vaart and Well-
ner (2000). Under additional hypotheses, Schick and Yu (2000) proved that F̂n

converges pointwise and even uniformly.
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3.2. A local asymptotic minimax lower bound

Let G be a set of probability densities on a measurable space (Ω,A) with
respect to a σ-finite dominating measure µ, T be a real-valued functional on
G, and let Tn, n ≥ 1, be a sequence of estimators of Tg based on samples of
size n from a density g known to be contained in G. The minimax risk of the
estimator Tn, which measures the difficulty of the problem of estimating Tg, is
infTn maxg∈G En,g l(|Tn − Tg|), where l is an increasing convex loss function on
[0,+∞) with l(0) = 0. As n → +∞, the asymptotic lower bound for the minimax
risk follows from an inequality in Lemma 4.1 of Groeneboom (1996):

inf
Tn

max
g∈G

{En,g1l(|Tn−Tg1|), En,g2 l(|Tn−Tg2|)}≥ l(
1
4
|Tg1−Tg2|{1−h2(g1, g2)}2n),

(3.1)
where h(g1, g2) is the Hellinger distance, g1, g2 ∈ G. If we consider a subset of
G, a perturbed sequence of one fixed g ∈ G, then the asymptotic lower bound for
the corresponding minimax risk, called local minimax risk, gives the best possible
local convergence rate.

The local rates of convergence for “Case 1” and “Case 2” of univariate in-
terval censored data have been well studied; see Groeneboom (1996). Here we
follow the same approach to extend the minimax results to univariate “mixed
case” interval-censored data. Consider the following perturbations Fn of the
underlying distribution function F0:

Fn(t) =




F0(t) + θ f0(t0) (t − t0 + cn−1/3), if t ∈ [t0 − cn−1/3, t0),

F0(t) + θ f0(t0) (t0 + cn−1/3 − t), if t ∈ [t0, t0 + cn−1/3],

F0(t), otherwise,

(3.2)

where 0 < θ < 1 is a constant, c is a constant to be determined by F0 and Q.
Then the density function fn of Fn is positive on [t0, t0 + cn−1/3] for 0 < θ < 1
and large n.

For “Mixed Case” univariate interval-censored data, an asymptotic minimax
result is given by the following theorem.

Theorem 3.1. Let F0(t) be a function with density f0(t), let Fn be the sequence
of perturbations of F0 given by (3.2), let qk0 ≡ 0, qk,k+1 ≡ 0, qk,j(t) be the density
of the distribution function Q(tk,j|K = k), and let qk,j,j−1 be the joint density of
Q(tk,j, tk,j−1|K = k), for j = 1, . . . , k, k = 1, . . . . Suppose that condition B holds
and

∑∞
k=1 P (K = k)

∑k+1
j=1(qk,j(t0) + qk,j−1(t0)) < ∞. Then

lim inf
n→∞ n1/3 max {En,pFn

|Tn − Fn(t0)|, En,pF0
|Tn − F0(t0)|} ≥ c0

{f0(t0)
a(t0)

}1/3
,
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where c0 ≡ (1/4)(2θ/3)−1/3 e−1/3 is a constant depending on θ, and

a(t0) ≡
∞∑

k=1

P (K = k)


qk,1(t0)

F0(t0)
+

k∑
j=2

∫
0≤tk,j−1<t0

qk,j−1,j(tk,j−1, t0)
F0(t0) − F0(tk,j−1)

dtk,j−1

+
k−1∑
j=1

∫
t0≤tk,j+1<∞

qk,j,j+1(t0, tk,j+1)
F0(tk,j+1) − F0(t0)

dtk,j+1 +
qk,k(t0)

1 − F0(t0)


 .

Note that in the cases of P (K = 1) = 1 and P (K = 2) = 1, a(t0) reduces to
the known lower bound for univariate current status data and univariate interval
censored data, case 2; see pp.137-138 in Groeneboom (1996).

3.3. Global rate of convergence in Hellinger distance

We apply empirical processes theory to study the rate of convergence of
the NPMLE with univariate “mixed case” interval censored data. Consider a
deterministic function M : Θ �→ R, and stochastic processes Mn indexed by a
semimetric space Θ. Let θ0 be a point of maximum of the map θ �→ M(θ).
Let θ̂n be estimators that (nearly) maximize the maps θ �→ Mn(θ). An upper
bound for the rate of convergence of θ̂n can be obtained from the continuity
modulus of the difference Mn − M, see Theorem 3.2.5 in Van der Vaart and
Wellner (1996). In the case of i.i.d. data, Mn(θ) = Pn(θ) and M(θ) = P (θ), the
centered process

√
n(Mn − M) = Gn(mθ) is an empirical process at mθ. Define

Mδ = {mθ − mθ0 : d(θ, θ0) < δ}. Corollary 3.2.6 in Van der Vaart and Wellner
(1996) is used to derive the rates of convergence in this section.

The key step to apply Corollary 3.2.6 in Van der Vaart and Wellner
(1996) is to derive sharp bounds on the modulus of continuity of the em-
pirical process. Define the bracketing integral J[ ](η, Mδ , L2(P )) =

∫ η
0 {1 +

log N[ ](ε‖Mδ‖P,2, Mδ , L2(P ))}1/2dε, where Mδ is an envelope function of the class
Mδ. Then the bounds can be obtained using Lemma 3.4.2 in Van der Vaart and
Wellner (1996), E∗

P ‖Gn‖Mδ
� J[ ](δ, Mδ , L2(P ))(1 + M J[ ](δ, Mδ , L2(P ))/(δ2√n)),

where each element in Mδ is uniformly bounded by M . The rates are obtained
with and without a separation condition. We first obtain the entropy with brack-
eting for the class M with density defined in (1.1).

Lemma 3.2. Under conditions A, B and C, log N[ ](ε, M, L2(P )) = O(ε−1).

Under the separation condition, the following theorem gives an n1/3 global
rate of convergence in Hellinger distance for the NPMLE of the univariate “mixed
case” interval censored data.

Theorem 3.2. Under conditions A, B and C, h(pF̂n
, pF0) = Op(n−1/3).
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Without the separation condition B, the rate result is weaker.

Theorem 3.3. Under conditions A and D, h(pF̂n
, pF0) = OP (n−1/3 log1/6 n).

4. Efficiency of the NPMLE

Let F̂n denote the NPMLE in the current model. Let Λ̂n and Λ̂ps
n denote the

NPMLEWZ and NPMPLEWZ in the non-homogeneous Poisson process model,
see Wellner and Zhang (2000). Note that the one-jump counting process N(t) =
1[Y ≤t] has mean function Λ(t) = E{N(t)} = P (Y ≤ t) = F (t); see Example
4.1, p.792, Wellner and Zhang (2000). The asymptotic distribution of the “toy
estimator” for “mixed case” interval censored data, obtained by taking one step
in the iterative convex minorant algorithm starting with the real underlying
function F0, has been established, see Theorem 3.5 in Song (2001) or Song (2002).
It is conjectured that this “toy estimator” and the NPMLE F̂n have the same
asymptotic distribution. Considering the pointwise asymptotic distribution of the
Λ̂n and Λ̂ps

n , see Theorems 4.3 and 4.4 in Wellner and Zhang (2000), we suppose
that the estimators F̂n, Λ̂n and Λ̂ps

n have the same asymptotic distribution up to
positive constants L1, L2 and L3: n1/3(F̂n(t0)−F0(t0)) →d L

2/3
1 Y, n1/3(Λ̂n(t0)−

Λ0(t0)) →d L
2/3
2 Y, and n1/3(Λ̂ps

n(t0) − Λ0(t0)) →d L
2/3
3 Y, where Y is a known

random variable. Note that Var(F̂n) ∼= n−2/3L
2/3
1 Var(Y), Var(Λ̂n) ∼= n−2/3L

2/3
2

Var(Y), and Var(Λ̂ps
n ) ∼= n−2/3L

2/3
3 Var(Y). To study the asymptotic relative

efficiency of two estimators, we ask the two estimators to have the same variance,
asymptotically. Thus, we can plot the 3/2 power of the ratio of sample variances
of the two estimators to obtain an approximation to the asymptotic relative
efficiency. Wellner and Zhang (2000) showed the asymptotic efficiency gain of
Λ̂n over Λ̂ps

n in their Figures 3 and 4. In this simulation study, we study the
efficiency gain of the F̂n over Λ̂n by plotting (Var(F̂n)/Var(Λ̂n))3/2.
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Figure 1. The asymptotic relative efficiency of F̂n versus Λ̂n. N is the
number of simulation runs; n is the number of subjects.
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Random samples of univariate “mixed case” interval censored data Xi =
(∆(i)

Ki
, T

(i)
Ki

,Ki), where i = 1, . . . , n, were generated as follows: Ki ∈ {1, 2, 3, 4, 5, 6,
7, 8} with P (Ki = k) = 1/8 for k = 1, . . . , 8; T

(i)
Ki

are ordered sequence of Ki ran-
dom variables generated from the unit exponential distribution; Each failure time
Y (i) was generated from the Weibull distribution with shape parameter equal to
2 and scale parameter equal to 2; the ∆(i)

Ki
follow from ∆ki,j = 1

(T
(i)
ki,j−1

,T
(i)
ki,j

]
(Y (i))

for j = 1, . . . , ki + 1. The panel count data
{
(N (i)

Ki
, T

(i)
Ki

,Ki) : i = 1, . . . , n
}

with

panel counts N
(i)
Ki

= (N (i)
Ki,1

, N
(i)
Ki,2

, . . . , N
(i)
Ki,Ki

) are given by N
(i)
Ki,j

= 1
[Y (i)≤T

(i)
Ki,j ]

for j = 1, . . . ,Ki. We ran Monte-Carlo simulations 1,000 times for the number
of subjects n = 100, and 200 times for n = 1, 000. The estimated efficiency gain
of F̂n over Λ̂n is plotted in Figure 1. As shown there, the NPMLE F̂n is more
efficient than the NPMLE Λ̂n: for most of the points where F̂n and Λ̂n were
estimated, the estimated asymptotic relative efficiency is above 40% for both
simulations. When time is between 0.2 and 1.6, the estimated asymptotic rela-
tive efficiency for the simulation with n = 100 is close to that for the simulation
with n = 1, 000; when the time varies from 1.8 to 3.0, the estimated asymptotic
relative efficiency for the simulation with n = 100 is generally higher than that
for the simulation case with n = 1, 000. Although Theorem 3.5 in Song (2001)
or Song (2002) and Theorem 4.4 in Wellner and Zhang (2000) show that the
asymptotic relative efficiency for the toy estimators of F̂n and Λ̂n is equal to
1 for a one jump process, the log-likelihood function for a one jump process in
Wellner and Zhang (2000) is different from that of (1.2).

5. Asymptotic Properties of the NPMLE: Proof

In this section, we give the proofs of the asymptotic properties of the NPMLE
in Section 3. More technical details can be found in Song (2001) and Song (2002).

Proof of Lemma 3.1. Construct the following brackets for the class M: ml
i ≡

2pl
F,i/(p

l
F,i+pF0)−1, and mr

i ≡ 2pr
F,i/(p

r
F,i+pF0)−1, where [pl

F,i, p
r
F,i], i = 1, . . . , I,

are brackets for class P. Since 1/(1 + t) is decreasing in t, and pl
F,i ≤ pr

F,i, so
for all mF ∈ M, there exists i ∈ {1, . . . , I} such that ml

F,i ≤ mF ≤ mr
F,i, and

|mr
i − ml

i|/2 = |pr
F,i(p

r
F,i + pF0) − pl

F,i/(p
l
F,i + pF0)| = |pF0(p

r
F,i − pl

F,i)/[(p
r
F,i +

pF0)(p
l
F,i + pF0)]| ≤ 1. Thus, |mr

i − ml
i| ≤ 2 1[pF0

≤σ] + 2 |mr
i − ml

i| 1[pF0
>σ], and

‖mr
i −ml

i‖P,r ≡
{∫ |mr

i − ml
i|rdP

}1/r ≤ (2r εr + εr)1/r, if ‖(mr
i −ml

i)1pF0
>σ‖P,r ≤

ε. This implies that N[ ]((2r + 1)1/rε, M, Lr(P )) ≤ N[ ](ε, Gσ0 , Lr(P )). Also,
‖(mr

i − ml
i) 1[pF0

≥σ]‖r
P,r ≤ 2r

∫ |pr
F,i − pl

F,i|r 1[pF0
>σ] p

1−r
F0

dν, since pF0/(p
l
F,i +

pF0) ≤ 1, and pF0/(p
r
F,i + pF0) ≤ 1. Define dQσ = (1[pF0

>σ]/p
r−1
F0

)dν. Then
N[ ](2ε, Gσ0(ε), Lr(P )) ≤ N[ ](ε, P, Lr(Qσ)).
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Proof of Theorem 3.1. Define Jn ≡ [t0 − cn−1/3, t0 + cn−1/3], and

Hn(t) ≡




θ f0(t0) (t − t0 + cn−1/3), if t ∈ [t0 − cn−1/3, t0),

θ f0(t0) (t0 + cn−1/3 − t), if t ∈ [t0, t0 + cn−1/3],

0, otherwise.

Note that pFn(δ, t) = pF0(δ, t) + (θ f0(t0))
∑k+1

j=1 δk,j (Hn(tk,j) − Hn(tk,j−1)), and
|Fn(t0) − F0(t0)| = θ f0(t0) c n−1/3. Under the separation condition B, and
for large n, tk,j and tk,j−1 will not be in Jn at the same time. This indi-
cates that |Hn(tk,j) − Hn(tk,j−1)| = Hn(tk,j) or Hn(tk,j−1) ≤ θ f0(t0) c n−1/3.
Thus [1/(√pFn + √

pF0)]
2 = 1/(4 pF0) + O(n−1/3) 1Jn(t), and

∫
(pFn − pF0)

2dν =∑∞
k=1 P (K = k)

∑k+1
j=1

∫
(Hn(tk,j) − Hn(tk,j−1))

2 dQ(tk|K = k) = (2/3)(θf0(t0))2

c3n−1(
∑∞

k=1 P (K = k)
∑k+1

j=1(qk,j(t0) + qk,j−1(t0))) + o(n−1) = O(n−1), if
∑∞

k=1

P (K = k)
∑k+1

j=1(qk,j(t0) + qk,j−1(t0)) < ∞. The above condition is satisfied if
EK < ∞ and qk,j is bounded above for all j = 1, . . . , k, k = 1, . . .. The Hellinger
distance becomes h2(pFn , pF0) = (1/8)

∫
[(pFn − pF0)

2/pF0]dν + o(n−1). Now,

∫ (pFn − pF0)
2

pF0

dν =
∞∑

k=1

P (K = k)
k+1∑
j=1

∫ (Hn(tk,j) − Hn(tk,j−1))
2

F0(tk,j) − F0(tk,j−1)
dQ(tk|K = k)

= 2 a(t0) (θf0(t0))2c3n−1 + o(n−1).

Thus, h2(pFn , pF0) = (1/4) a(t0) (θf0(t0))2c3n−1 + o(n−1).
By (3.1), we have n1/3 infTn max{En, pFn

| Tn − Fn(t0)|, En, pF0
| Tn −

F0(t0)|} ≥ 0.25n1/3|Fn(t0) − F0(t0)|{1 − h2(pFn , pF0)}2n ≥ 0.25θcf0(t0)(1 −
0.25a(t0)(θf0(t0))2c3n−1 + o(n−1))2n → 0.25θcf0(t0)e−a(t0)(θf0(t0))2c3/2. The last
expression is maximized by c ≡ {1.5a(t0)θ2f2

0 (t0)}−1/3, and the maximum value
is 0.25 (2θ/3)1/3 e−1/3 (f0(t0)/a(t0))

1/3. Thus,

lim inf
n→∞ n1/3 max {En,pFn

|Tn − Fn(t0)|, En,pF0
|Tn − F0(t0)|} ≥ c0

{
f0(t0)
a(t0)

}1/3

,

where c0 ≡ 0.25 (2θ/3)1/3 e−1/3 is a constant depending on θ.

Proof of Lemma 3.2. By Theorem 2.7.5 in Van der Vaart and Wellner (1996),
for all ε > 0 and for any probability measure Q, there exists a constant L such
that log N[ ](ε, F , L2(Q)) ≤ L (1/ε). This implies that for all F ∈ F , there
exists a bracket [F l

i (t), F
r
i (t)] such that F l

i (t) ≤ F (t) ≤ F r
i (t) for all t and some

i ∈ {1, . . . , I}, and ‖F r
i (tK,j)−F l

i (tK,j)‖PK,j ,2 ≤ ε for j = 1, . . . ,K, K = 1, 2, . . ..
Then we have F l

i (tK,j)−F r
i (tK,j−1) ≤ F (tK,j)−F (tK,j−1) ≤ F r

i (tK,j)−F l
i (tK,j−1).

Note that mF = 2
∑K+1

j=1 δK,j[F (TK,j)−F (TK,j−1)]/[(F (TK,j)−F (TK,j−1))+
(F0(TK,j)− F0(TK,j−1))] − 1 ≡ 2

∑K+1
j=1 δK,j∆FK,j/(∆FK,j + ∆F0,K,j) − 1. Also,
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d
dx(x/(x + a)) = a/(x + a)2 > 0 for a > 0 and, under conditions B and C,
there exists a η > 0 such that F0(TK,j) − F0(TK,j−1) > η for all j = 1, . . . ,K,
K = 1, 2, . . .. Thus, 0 < ∆F0,K,j ≤ 1, and ∆FK,j/(∆FK,j +∆F0,K,j) is increasing
in ∆FK,j ≥ 0. Choose the brackets of M as

ml
i(X) = 2

K+1∑
j=1

δK,j
F l

i (TK,j) − F r
i (TK,j−1)[

F l
i (TK,j) − F r

i (TK,j−1)
]
+ ∆F0,K,j

− 1,

mr
i (X) = 2

K+1∑
j=1

δK,j
F r

i (TK,j) − F l
i (TK,j−1)[

F r
i (TK,j) − F l

i (TK,j−1)
]
+ ∆F0,K,j

− 1,

where i = 1, . . . , I. Then, it follows that 0.25P (|mr
i − ml

i|2) =
∑∞

k=1 P (K =
k)

∑k+1
j=1

∫ {(F r
i (tk,j)−F l

i (tk,j−1))/[(F r
i (tk,j)−F l

i (tk,j−1))+∆F0,k,j]− (F l
i (TK,j)−

F r
i (TK,j−1))/[F l

i (TK,j)−F r
i (TK,j−1)+∆F0,K,j]}2∆F0,k,j dQ(tk|K = k) � 4ε2 (EK

+1) < ∞, if EK < ∞. Here, symbol � denotes that the left term is less than the
right term up to a constant. This implies that log N[ ](ε,M, L2(P )) = O(1/ε).

Proof of Theorem 3.2. In order to apply Corollary 3.2.6 in Van der Vaart and
Wellner (1996), we need to use Lemma 3.4.2 in Van der Vaart and Wellner (1996)
to find an upper bound for E∗‖Gn‖Mδ

, where Mδ ≡ {mF : h(pF , pF0) < δ}. For
mF ∈ Mδ, P (m2

F ) ≤ √
2h(pF , pF0) <

√
2 δ. Also, for all mF ∈ Mδ, ‖m2

F ‖∞ ≤
1. Thus, by Lemma 3.4.2 in Van der Vaart and Wellner (1996), E∗‖Gn‖Mδ

≤
J̃[ ](δ, Mδ, L2(P )) (1 + J̃[ ](δ, Mδ, L2(P ))/(δ2√n)), where J̃[ ](δ,Mδ , L2(P )) ≡∫ δ
0 {1 + log N[ ](ε,Mδ , L2(P ))}1/2dε ≤ ∫ δ

o {1 + log N[ ](ε, MF , L2(P ))}1/2dε =∫ δ
0 {1 + O(1/ε)}1/2dε = O(δ1/2). Then it follows from Corollary 3.2.6 in Van

der Vaart and Wellner (1996) that E∗‖Gn‖Mδ
� δ1/2 (1 + δ1/2/(δ2√n)) =

δ1/2 + 1/(δ
√

n) ≡ φ(δ). From r2
n · φ(1/rn) = r2

n(r−1/2
n + rn/

√
n) ≤ √

n, we
have rn ≤ n1/3. Thus the rate is n1/3.

Proof of Theorem 3.3. We use Lemma 3.1 to control the bracketing en-
tropy of the class M. In this case, r = 2, so dQσ = (1[pF0

> σ]/pF0) dν. Let
[pl

i, p
r
i ] be a pair of bracket for the class P as defined as pl

F,i ≡ ΠK+1
j=1 (F l

i (tK,j) −
F r

i (tK,j−1))δK,j , pr
F,i ≡ ΠK+1

j=1 (F r
i (tK,j)−F l

i (tK,j−1))δK,j . Note that ‖pr
i−pl

i‖2
Qσ ,2 =∫

(F r
i (tk,j)−F l

i (tk,j))2 1[pF0
> σ]p

−1
F0

dν+
∫
(F r

i (tk,j−1)−F l
i (tk,j−1))2 1[pF0

> σ]p
−1
F0

dν+∫
2(F r

i (tk,j)−F l
i (tk,j)) (F r

i (tk,j−1)−F l
i (tk,j−1)) 1[pF0

> σ]p
−1
F0

dν. Define dQ̄(tk|K =
k) = (1[pF0

> σ]/ (pF0

∫
(1[pF0

> σ]/pF0) dν))dν. Then
∫
(F r

i (tk,j)−F l
i (tk,j))2dQ̄(tk|K

= k) ≤ ε2, and
∫
(F r

i (tk,j−1) − F l
i (tk,j−1))2 dQ̄(tk|K = k) ≤ ε2. By the Cauchy-

Schwarz inequality,
∫
(F r

i (tk,j)−F l
i (tk,j)) (F r

i (tk,j−1)−F l
i (tk,j−1)) dQ̄(tk|K = k) ≤

{∫ (F r
i (tk,j) − F l

i (tk,j))2 dQ̄(tk|K = k) · ∫
(F r

i (tk,j−1) − F l
i (tk,j−1))2 dQ̄(tk| K =

k)}1/2 ≤ ε · ε = ε2. Thus, we have ‖pr
i − pl

i‖Qσ ,2 ≤ 2 ε {∫ (1[pF0
> σ]/pF0) dν}1/2 =
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2 ε {∫ dQσ}1/2. This shows log N[ ](ε,P, L2(Qσ)) = O({∫ dQσ}1/2/ε). Now for
fixed k≥1 and 1≤ j≤k,

∫
1[F0(tk,j)−F0(tk,j−1)>σ]/[F0(tk,j)−F0(tk,j−1)]dQ(tk|K =

k)=
∫

1[F0(tk,j)−F0(tk,j−1)>σ]qk,j,j−1f0(tk,j)f0(tk,j−1)/[(F0(tk,j)−F0(tk,j−1))f0(tk,j)
f0(tk,j−1)]dtk,jdtk,j−1 ≤ c0c1 log(c1/σ), where c0, c do not depend on j and k by
assumption D. Hence we have

∫
dQσ ≤ ∑∞

k=1 P (K = k)
∑k

j=1 c0c1 log(c1/σ) =
c0c1(EK) log(c1/σ).

Recall that we require
∫
pF0

≤ σ pF0 dν ≤ ε2, and
∫
pF0

≤ σ pF0 dνσ(EK). Take

σ = ε2/EK. Then, if EK < ∞, log N[ ](ε,P, L2(Qσ)) � (1/ε) log1/2(1/ε). By
Lemma 3.1, log N[ ](ε,Mδ , L2(P )) � (1/ε) log1/2(1/ε). We have shown that∫

m2
F 1[h(pF ,pF0

) < δ]dP <
√

2 δ. It follows that

J̃[ ](δ, Mδ, L2(P )) =
∫ δ

0

√
1 + log N[ ](ε, Mδ, L2(P )) dε

�
∫ δ

o

√
1
ε

log1/2(
1
ε
) dε

� δ1/2 log1/4 1
δ
.

By Lemma 3.4.2 in Van der Vaart and Wellner (1996), E∗‖Gn‖Mδ
� δ1/2 log1/4

(1/δ) (1 + (δ1/2 log1/4(1/δ))/(
√

n δ2)) = δ1/2 log1/4(1/δ) + log1/2(1/δ)/(
√

n δ) ≡
φ(δ). By Corollary 3.2.6 in Van der Vaart and Wellner (1996), we have r2

nφ(1/rn)
= r2

n(r−1/2
n log1/4 rn + (rn

√
log rn)/

√
n) ≤ √

n. This yields rn ≤ n1/3 log−1/6 n.
Thus the rate is n1/3 log−1/6 n.

Acknowledgements

This paper is part of author’s Ph.D. dissertation under supervision of Pro-
fessor Jon A. Wellner. Some writing and computation was carried out while the
author was employed by the Boeing Company. The author thanks an editor, an
associate editor and an anonymous referee for their valuable suggestions. This
research was partially supported by National Science Foundation grant DMS-
9971951.

References

Aragón, J. and Eberly, D. (1992). On convergence of convex minorant algorithm for distribution

estimation with interval-censored data. J. Comput. Graph. Statist. 1, 129-140.

Becker, N. G. and Melbye, M. (1991). Use of log-linear model to compute the empirical survival

curve from interval-censored failure time data, with application to data on tests for HIV

positivity. Austral. J. Statist. 33, 125-133.

Finkelstein, D. M. (1986). A proportional hazards model for interval-censored failure time data.

Biometrics 42, 845-854.



282 SHUGUANG SONG

Finkelstein, D. M. and Wolfe, R. A. (1985). A semiparametric model for regression analysis of

interval-censored failure time data. Biometrics 41, 993-945.

Groeneboom, P. (1991). Nonparametric maximum likelihood estimators for interval censoring

and deconvolution. Technical Report 378, Department of Statistics, Stanford University.

Groeneboom, P. (1996). Lectures on inverse problems. In Lectures on Probability Theory and

Statistics 1648, Lectures Notes in Mathematics (Edited by P. Bernard), 67-136. Springer-

Verlag, Berlin.

Groeneboom, P. and Wellner, J. A. (1992). Information Bounds and Nonparametric Maximum

Likelihood Estimation, DMV Seminar Band 19, Birkhäuser, Basel.
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