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Abstract: This paper considers hypothesis testing problems for a low-dimensional

coefficient vector in a high-dimensional linear model with heteroscedastic variance.

Heteroscedasticity is a commonly observed phenomenon in many applications, in-

cluding finance and genomic studies. Several statistical inference procedures have

been proposed for low-dimensional coefficients in a high-dimensional linear model

with homoscedastic variance, which are not applicable for models with heteroscedas-

tic variance. The heterscedasticity issue has been rarely investigated and studied.

We propose a simple inference procedure based on empirical likelihood to overcome

the heteroscedasticity issue. The proposed method is able to make valid inference

even when the conditional variance of random error is an unknown function of

high-dimensional predictors. We apply our inference procedure to three recently

proposed estimating equations and establish the asymptotic distributions of the

proposed methods. Simulation studies and real data applications are conducted to

demonstrate the proposed methods.

Key words and phrases: Empirical likelihood, heteroscedastic linear models, high-

dimensional data, low-dimensional coefficients.

1. Introduction

In the last two decades, rapid progress has been made in high-dimensional

statistics. In particular, high-dimensional linear regression models have received

much attention. Many regularization methods have been proposed for simul-

taneous estimation and variable selection in linear models, including LASSO

(Tibshirani (1996)), SCAD (Fan and Li (2001)), MCP (Zhang (2010)), among

others. Most of this literature has focused on the estimation for coefficients in

linear models with homoscedastic random errors. An excellent review can be

found in Bühlmann and Van De Geer (2011).

The issue of heteroscedasticity is commonly seen in practice, but it has not re-

ceived much attention in high-dimensional statistics literature. Wang, Wu and Li
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(2012) analyzed the heteroscedasticity in a high-dimensional case using quantile

regression. Daye, Chen and Li (2012) proposed a method that allows noncon-

stant error variances for high-dimensional estimation but with a parametric form

of the variance function. More recently, Belloni, Chernozhukov and Wang (2014)

came up with a self-tuning square root Lasso estimation method that solved the

heteroscedasticity issue in high-dimensional regression analysis.

There is not much literature concerning statistical inference for regression

coefficients in a high-dimensional model. Progress has been achieved for the in-

ference about low-dimensional parameters in a high-dimensional model, including

Zhang and Zhang (2014), Bühlmann (2013), Javanmard and Montanari (2013),

van de Geer, Bühlmann and Ritov (2013), Lan et al. (2016), and Ning and Liu

(2014). These procedures assume homoscedasticity for the error term, but this

seldom holds in practice and there is rarely sufficient information to accurately

specify a correct variance function. Moreover, the variances of these estimators

are complex and difficult to estimate under the heteroscedasticity case. Incor-

rect variance models will lead to inferences that are not asymptotically valid

(Belsley (2002)). Wagener and Dette (2012) generalized the asymptotic results

of Knight and Fu (2000) for the case of a fixed dimension under heteroscedasitic

errors, but there is little such work in the high-dimensional setting, aside from

Dezeure, Bühlmann and Zhang (2016) who recently proposed bootstrap methods

for inference under high-dimensional linear models with heteroscedastic errors.

This paper proposes to use Empirical Likelihood (EL) to test statistical hy-

potheses and construct confidence regions for low-dimensional components in

high-dimensional liner models with heteroscedastic noise. EL (Owen (2001)) is a

nonparametric approach for deriving estimations and confidence regions for un-

known parameters (Owen (1990, 2001)). Professor Peter Hall made fundamental

contributions to it. He showed that EL is Bartlett correctable (Hall (1990); Di-

Ciccio, Hall and Romano (1991)) and produces confidence regions with natural

shape and orientation (Hall and La Scala (1990)). As EL is a data-driven non-

parametric method, it does not need distribution assumptions except for some

moment conditions. EL-based methods have been used for statistical inferences

with heteroscedasiticity in the low-dimensional case. Tsao and Wu (2006) con-

ducted EL inference for a common mean in the presence of heteroscedasticity.

Chen and Qin (2003) considered the EL-based point-wise confidence intervals for

a nonparametric regression function with heteroscedastic errors. Lu (2009) and

Zhou, Kim and Bathke (2012) discussed EL analysis for heteroscedastic partially

linear models and heteroscedastic accelerated failure time models, respectively.
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However, the EL-based method has not been used for the problem considered

in this paper. A comprehensive overview of EL methods can be found in Owen

(2001) and a survey of recent developments is in Chen and Van Keilegom (2009).

Different from existing methods, our proposed procedure does not need to

estimate the variance explicitly due to the internal studentizing ability of EL. This

makes our procedure attractive especially under the heteroscedasticity setting,

even when the conditional variance of the error term is an unknown function of

high-dimensional predictors. The proposed EL-based method is a general unified

framework suitable for various estimating equations as long as they satisfy some

conditions specified later.

The paper is organized as follows. In Section 3, we study the asymptotic

normality of Wald-type statistic for the existing methods under heteroscedastic

noise. In Section 4, we introduce a general EL-based method for the problems

considered here. In addition, we provide explicit examples of the general EL-

based method. Section 5 provides numerical results and Section 6 shows some

real data analysis, followed by discussions in Section 7. We relegate technical

proofs to the Appendix.

2. Basic Setup and Notations

Consider the following linear regression model,

Y = Xβ0 + ε, (2.1)

where Y = (Y1, Y2, . . . , Yn)ᵀ ∈ Rn is the response vector, ε = (ε1, ε2, . . . , εn)ᵀ ∈
Rn is the vector of noise, and X = ((Xij)) ∈ Rn×p is the random design matrix

with p columns {Xj ∈ Rn×1}pj=1 and n rows {Xᵀ
i ∈ R1×p}ni=1. The row vectors are

assumed to be independent and identically distributed (IID) with E(Xi) = 0 and

Var(Xi) = Σ = ((σjl))1≤j,l≤p, and β0 ∈ Rp is a vector of unknown true regression

coefficients. The independent error terms satisfy E(εi|Xi) = 0, and Var(εi) = σ2i .

This is the usual heteroscedastic model (White (1980); Li and Yao (2015); Daye,

Chen and Li (2012); Bai, Pan and Yin (2016); Dezeure, Bühlmann and Zhang

(2016)). Let Zi = εiXi be a random vector. With these assumptions, Xi and εi
are uncorrelated, E(Zi) = 0. In addition, marginally we assume Var(ε2i ) = κi.

We denote the covariance matrix of Zi by Θi = ((θi;jk)).

In practice, among thousands of regressors, investigators may wish to test

whether some target coefficients are significant or not. For example, one may

want to know if treatment effects are significant after accounting for the effects of

many other variables. This paper focuses on assessing the significance of a single
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coefficient. We test the following hypothesis for any given j ∈ {1, 2, . . . , p},

H0 : β0j = 0 vs. H1 : β0j 6= 0, (2.2)

in (2.1) with p� n, assuming heteroscedastic errors.

The following notations are adopted throughout. For v = (v1, v2, . . . , vd)
ᵀ ∈

Rd, let ‖v‖q = (
∑d

i=1 |vi|q)1/q for 0 < q <∞, ‖v‖0 = |supp(v)| where supp(v) =

{j : vj 6= 0}, |A| is the cardinality of a set A, and ‖v‖∞ = max1≤j≤d |vi|. We

denote Id as a d×d identity matrix. If the dimension is obvious from the context,

we just omit the subscript d. For S ⊆ {1, 2 . . . , d}, let vS = {vj : j ∈ S} be a

subvector of v. For any k ∈ {1, 2, . . . , d}, write MjS = {Mjl, l ∈ S} for a row

vector and MSj = {Mlj : l ∈ S} for a column vector. Let \k = {1, 2, . . . , k − 1,

k + 1, . . . , d}, the (d − 1)-dim vector with the k−th component removed. For a

sequence of random variables Xn, we use Xn
d→ X to denote the convergence in

distribution, and Xn
p→ a to denote convergence in probability. Let s = ‖β0‖0

be the number of non-zeros of β0. We assume sparsity with s < n.

3. Asymptotic Properties of Some Existing Methods Under Heterosce-

dasticity

To motivate our proposed method, we first study three existing methods and

derive their asymptotic properties under the heteroscedastic linear model (2.1).

These methods were only studied under the homogeneous linear models and we

generalize these results to the heteroscedasticity case.

3.1. Low-dimensional projection method

In this subsection, we introduce the low-dimensional projection method pro-

posed by Zhang and Zhang (2014). Under model (2.1) and the low-dimensional

scenario with p < n, the ordinary least square (OLS) estimator for β0j is,

β̂j =
(X⊥j )ᵀY
(X⊥j )ᵀXj

=
(Q\jXj)ᵀY
(Q\jXj)ᵀXj

=
(Q\jXj)ᵀ(Q\jY)

(Q\jXj)ᵀ(Q\jXj)
=

Xᵀ
jQ\jY

Xᵀ
jQ\jXj

, (3.1)

where X⊥j is the projection of Xj to the orthogonal complement of the column

space spanned by {X\j}, where, with S⊆{1, 2, . . . , p} and |S| < n, QS = I−PS =

I− XS(Xᵀ
SXS)−Xᵀ

S ∈ Rn×n, with (Xᵀ
SXS)− a generalized inverse of Xᵀ

SXS .

In the high-dimensional linear model with p > n, the OLS estimator in (3.1)

is no longer valid because Q\jY and Q\jXj are always 0. To resolve this in the

high-dimensional case, Zhang and Zhang (2014) proposed a de-biased estimator:

if Zj be an n× 1 projection vector, an estimate of β0j is
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β̂
(lin)
j =

Zᵀ
jY

Zᵀ
jXj

= β0j +
Zᵀ
j ε

Zᵀ
jXj

+ Bias
(
β̂
(lin)
j

)
, (3.2)

where Bias(β̂
(lin)
j ) =

∑
k 6=j Z

ᵀ
jXkβ0k/Z

ᵀ
jXj is the bias term. The second term in

(3.2) has mean zero and is of order 1/
√
n. Because the bias term is not ignorable,

β̂
(lin)
j is not directly useful for inference. To make it so, we need to reduce the

order of the bias term Bias(β̂
(lin)
j ) to op(1/

√
n). Here Zhang and Zhang (2014)

proposed the de-biased estimator,

β̂
(de)
j =

Zᵀ
jY−

∑
k 6=j Z

ᵀ
jXkβ̂

(0)
k

Zᵀ
jXj

, (3.3)

where β̂(0) is some initial regularized estimator of β0 so that ‖β̂(0)−β0‖1 = o(an)

for some an → 0. Then the bias of β̂
(de)
j is controlled by∣∣∣∣∣∑

k 6=j

Zᵀ
jXk(β0k − β̂

(0)
k )

Zᵀ
jXj

∣∣∣∣∣ ≤ ‖β̂(0) − β0‖1 max
k 6=j

∣∣∣∣Zᵀ
jXk

Zᵀ
jXj

∣∣∣∣.
To make the right hand side of this inequality of order op(1/

√
n), removing the

bias using β̂(0) − β0 is not enough, because ‖β̂0 − β0‖1 is typically of order

Op(s
√

log p/n) (Belloni, Chernozhukov and Wang (2014)). Therefore, we need

to make maxk 6=j |Zᵀ
jXk| small enough. Ideally, if Zj is orthogonal to all Xk, k 6= j,

then maxk 6=j |Zᵀ
jXk| is 0. However, this cannot hold if p > n. Therefore, a key

problem is the selection of projection vector Zj .
In Zhang and Zhang (2014), van de Geer, Bühlmann and Ritov (2013),

and Ning and Liu (2014), the linear sparse regularized regression procedure, say

LASSO, is used to select the projection vector. Define ηij := Xij−Xᵀ
i,\jΣ

−1
\j,\jΣ\j,j ,

so

Xij = Xᵀ
i,\jw

0
j + ηij , with w0

j = Σ−1\j,\jΣ\j,j , for i = 1, 2, . . . , n.

This leads to a de-biased version of (3.3) with Zj = Xj − X\jŵj and with ŵj as

a regularized estimator of w0
j .

Under the homoscedastic case, the inference procedure can be built on the

asymptotic normality of β̂
(de)
j , which requires one to estimate the asymptotic

variance σ2ε /(σjj − Σj,\jΣ
−1
\j,\jΣ\j,j). Zhang and Zhang (2014) and Dezeure,

Bühlmann and Zhang (2016) used σ̂2ε ‖Zj‖22/|Z
ᵀ
jXj |2 with σ̂2ε estimated from the

scaled LASSO-LSE (Zhang and Zhang (2014)) or the method recommended in

Reid, Tibshirani and Friedman (2016). Under heteroscedastic noise, we can also

establish the asymptotic normality but with a much more complicated asymp-

totic variance than in the homoscedastic case. Take the asymptotic variance of
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β̂
(de)
j as

σ2n,lasso =
1

n

n∑
i=1

θi;jj − 2Σj,\jΣ
−1
\j,\jΘi;j,\j + Σj,\jΣ

−1
\j,\jΘi;\j,\jΣ

−1
\j,\jΣ\j,j

(σjj −Σj,\jΣ
−1
\j,\jΣ\j,j)

2
. (3.4)

As a special case, if εi and Xi are independent and the error term is homoscedas-

tic, then σ2n,lasso can be simplified to σ2ε /{σjj −Σj,\jΣ
−1
\j,\jΣ\j,j}, agrees with the

result obtained by Zhang and Zhang (2014).

Proposition 1. Under (2.1) with heteroscedastic noise, if Assumption 1 in the

Appendix holds, then
√
n(β̂

(de)
j − β0j )

d→ N(0, σ2lasso), (3.5)

where σ2lasso is the asymptotic variance and σ2lasso = limn→∞ σ
2
n,lasso.

The complex asymptotic variance (3.4) makes it hard to use the Wald-type

inference procedure in practice since it is difficult to get a good estimate for the

asymptotic variance. Then using the Wald type test procedure of Zhang and

Zhang (2014) in the heteroscedastic case leads to invalid results, as will be seen

in the simulation study in Section 5.

3.2. KFC projection

Lan et al. (2016) proposed another way to construct an asymptotically un-

biased estimator. The idea is similar to the low-dimensional projection method

proposed by Zhang and Zhang (2014). In the estimator considered in (3.1), one

projects Xj to all the variables except the j-th variable. Lan et al. (2016) projects

Xj onto the so-called KFC set S = {l 6= j : |σjl| > c} for some pre-specified

threshold value c > 0, essentially the set of all key confounders associated with

Xj . Assume |S| ≤ m for some m depending on the sample size n. After excluding

the covariates that are highly correlated with Xj , an approximate estimate of βj
can be obtained by the marginal regression of the profiled response Ỹ = QSY on

the profiled covariates X̃j = QSXj , namely

β̂
(kfc)
j =

X̃ᵀ
j Ỹ

X̃ᵀ
j X̃j

=
Xᵀ
jQSY

Xᵀ
jQSXj

. (3.6)

Based on this, we propose the de-biased KFC estimator

β̂
(kfc-de)
j =

Xᵀ
jQSY−

∑
k∈S∗ X

ᵀ
jQSXkβ̂k

Xᵀ
jQSXj

, (3.7)

where S∗ = S+c, the complement of S+ := {j}∪S, and β̂S∗ is an initial estimator.

The key difference between β̂
(kfc-de)
j and β̂

(de)
j is the selection approach of the low-
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dimensional projection space spanned by the subsets of covariates. β̂
(de)
j is based

on the lasso approach while β̂
(kfc-de)
j is based on the screening approach to find

it.

If we assume εi and Xi are independent, the simple asymptotic variance of

β̂
(kfc-de)
j is σ2ε /(σjj −ΣjSΣ

−1
SSΣSj), as discussed in Lan et al. (2016). Under (2.1)

with heteroscedastic errors, Proposition 2 proves the asymptotic normality of the

de-biased estimator β̂
(kfc-de)
j ,

Proposition 2. Under the Assumption 3 in the Appendix, we have
√
n(β̂

(kfc-de)
j − β0j )

d→ N(0, σ2kfc), (3.8)

where the asymptotic variance is

σ2kfc = lim
n→∞

1

n

n∑
i=1

θi;jj − 2ΣjSΣ
−1
SSΘi;jS + ΣjSΣ

−1
SSΘi;SSΣ

−1
SSΣSj

(σjj −ΣjSΣ
−1
SSΣSj)

2
. (3.9)

If we assume independence between εi and Xi and homoscedasticity for the

error terms, we have σ2kfc = limn→∞ σ
2
ε /(σjj − ΣjSΣ

−1
SSΣSj), whose consistent

estimator is discussed in Lan et al. (2016). However, based on Proposition 2, we

can see that the adjusted KFC estimator is not easy to be implemented under

heteroscedastic linear models.

3.3. Inverse projection

In the last two subsections, the test statistics were constructed based on

the asymptotically unbiased estimator for β0j . To conduct the hypothesis testing

problem (2.2), Liu and Luo (2014) proposed an equivalent test based on the

projection of Xij onto (Yi,X
ᵀ
i,\j)

ᵀ,

Xij = (Yi,X
ᵀ
i,\j)γ

0
j + ηij,y, (3.10)

where ηij,y satisfies Eηij,y = 0,Cov(ηij,y, (Yi,X
ᵀ
i,\j)) = 0. Under (2.1) with het-

eroscedastic noise, as long as Cov(Xi, ε) = 0, we can still show that the vector

γ0
j satisfies γ0

j = −σ2ηj,y
(
− β0j /σ2ε , β0jβ

0ᵀ
\j /σ

2
ε + Ω\j,j

)ᵀ
, where σ2ηj,y = Var(ηij,y) =

{(β0j )2 + wjj}−1 with Ω = Σ−1 = ((wjk)). Because Cov(εi,Xi) = 0, with γ0j1 as

the first element of γ0
j , we have

Cov(εi, ηij,y) = γ0j1Cov(εi,−Yi) = −σ2ηj,yβ
0
j := −b0j . (3.11)

Hence to test (2.2) is equivalent to test H0 : b0j = 0 because σ2ηj,y > 0. Based on

Liu and Luo (2014), we can estimate b0j using
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b̂j = − 1

n

n∑
i=1

(
Yi −Xᵀ

i β̂
){
Xij − (Yi,X

ᵀ
i,\j)γ̂j

}
, (3.12)

where β̂ and γ̂j are some initial regularized estimators of β0 and γ0
j .

Let

σ2i;n,inv = θi;jj + (γ0j1)
2β0ᵀΘiβ

0 + (γ0j1)
2κi + γ0ᵀ

j,\1Θi;\j,\jγ
0
j,\1 − 2γ0j1β

0ᵀΘi;·,j

− 2γ0j1$i;j − 2γ0ᵀ
j,\1Θi;\j,j + 2(γ0j1)

2β0ᵀ$i + 2γ0j1β
0ᵀΘi;·,\jγ

0
j,\1

+ 2γ0j1γ
0ᵀ
j,\1$i;\j ,

where $i = Cov(ε2i ,Zi) with Zi = εiXi.

Proposition 3. Under Assumption 2 in the Appendix, we have
√
n(b̂j − b0j )

d→ N(0, σ2inv), (3.13)

where σ2inv = limn→∞(1/n)
∑n

i=1 σ
2
i;n,inv.

4. EL-based Approaches

The key of our proposed method is the fact that all the estimators in Section

3 can be considered as the solution of estimating equations
∑n

i=1mni(βj) = 0.

In addition, mni(β
0
j ) admits an asymptotic decomposition when it is evaluated

at the true value β0j :

mni(β
0
j ) := mn(Xi, Yi, β

0
j , β̂\j , θ̂) := Wni +Rni, (4.1)

where the nuisance parameters β\j and the other nuisance parameters denoted

as θ are replaced by their estimators β̂\j and θ̂. Moreover, the {Wni}ni=1 are

independent random variables, and the {Rni}ni=1 satisfy the following.

(C0) P
(

min1≤i≤nmni < 0 < max1≤i≤nmni

)
→ 1;

(C1) Wni’s are independent with mean 0 and finite variance σ2i;n such that s2n/n→
σ2w, where s2n =

∑n
i=1 σ

2
i;n;

(C2) n−1/2
∑n

i=1Rni = op(1) and max1≤i≤n |Rni| = op(n
1/2).

Condition (C0) implies that 0 is inside of the convex hull of “data points”

mni’s, which ensures EL can be appropriately defined and computed. Condition

(C1) and (C2), respectively, impose some conditions on the leading order term

Wni and small order term Rni in the decomposition of mni(β
0
j ) so that the Wilks’

theorem can be established for the EL ratio statistic based on mni’s. In partic-

ular, the condition (C2) implies that the errors due to the plug-in estimators of

nuisance parameters β̂\j , θ̂ are ignorable.
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According to Owen (2001), with estimating equations, we can construct an

EL statistic to make inference. Define the EL ratio function for the target pa-

rameter βj as

ELn(βj) = max

{
n∏
i=1

npi : pi > 0,

n∑
i=1

pi = 1,

n∑
i=1

pimni(βj) = 0

}
. (4.2)

Under this unified framework, we have the following.

Theorem 1. If (C0)-(C2) hold, then −2 log ELn(β0j )
d→ χ2

1.

Based on Theorem 1, an asymptotic α level test is given by rejecting H0 if

−2 log ELn(β0j ) > χ2
1,α where χ2

1,α is the upper α quantile of χ2
1. We can also con-

struct a (1− α)100% confidence interval for βj as CIα = {βj : −2 log ELn(βj) <

χ2
1,α}. Based on Propositions 1, 2, and 3, we see that the Wald-type inference

procedure is hard to implement due to the complex asymptotic variance. Since

the asymptotic distribution is chi-square, we do not need to estimate any addi-

tional parameters, such as the asymptotic variance. This is a great advantage,

especially under the heteroscedastic linear regression models.

To apply Theorem 1 in practice, we need to find estimating equationsmni(β
0
j )

for β0j that admit decompositions that satisfy the conditions in Theorem 1. The

following subsections outline three EL methods based on the estimators proposed

in Sections 3.1, 3.2, and 3.3.

4.1. EL method based on low dimensional projection

The de-biased estimator (3.3) can be regarded as the solution to the esti-

mating equation
n∑
i=1

m
(lasso)
ni (βj) :=

n∑
i=1

(
Xij −Xᵀ

i,\jŵj

)(
Yi −Xijβj −Xᵀ

i,\jβ̂\j
)

= 0. (4.3)

Here β̂0\j is the estimation of a p−1 dimensional vector with all its elements from

the initial estimator β̂ except the j-th. The corresponding population counterpart

of (4.3) is ηijεi =
{
Xij −E(Xij |Xi,\j)

}(
Yi−Xᵀ

i β
0
)
. Simple algebra implies that

m
(lasso)
ni (βj) has the decomposition

m
(lasso)
ni (β0j )

= εiηij︸︷︷︸
W

(lasso)
ni

+ ηij(β
0
\j − β̂\j)

ᵀXi,\j + (w0
j − ŵj)

ᵀXi,\j
(
Yi −Xijβ

0
j −Xi\jβ̂\j

)︸ ︷︷ ︸
R

(lasso)
ni

.

For a fully understanding of the effect of heteroscedasticity, we study the

asymptotics of m
(lasso)
ni (β0j ) in the following.
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Proposition 4. Under model (2.1), W
(lasso)
ni has mean 0 and variance

E{(W (lasso)
ni )2} = θi;jj − 2Σj,\jΣ

−1
\j,\jΘi;j,\j + Σj,\jΣ

−1
\j,\jΘi;\j,\jΣ

−1
\j,\jΣ\j,j . (4.4)

Here θi;jj, Θi;j,\j and Θi;\j,\j are from the covariance matrix Θi = ((θi;jk)) of

Zi = εiXi. Furthermore, if εi and Xi are independent and the error term is

homoscedastic, then E{(W (lasso)
ni )2} = σ2ε (σjj −Σj,\jΣ

−1
\j,\jΣ\j,j).

The comparison of the variances in Proposition 4 shows the difference be-

tween our heteroscedastic case and the homoscedastic case.

Let EL
(lasso)
n (βj) be the EL-ratio test statistic defined by (4.2) usingm

(lasso)
ni (βj)

to replace mni(βj). The following Theorem demonstrates that the EL ratio

test statistic EL
(lasso)
n (βj) constructed based on the estimating equations (4.3)

is asymptotically chi-square distributed.

Theorem 2. Under some regularity conditions for the initial estimators as in

Assumption 1 in the Appendix, assume that Xi and εi are both sub-Gaussian. As

long as s log p/
√
n = o(1), the conditions (C0)-(C2) are satisfied. If σ2n,lasso →

σ2lasso for some σ2lasso <∞, then −2 log EL
(lasso)
n (β0j )

d→ χ2
1.

Remark 1. Assumption 1 is needed to control the order of the remainder term

R
(lasso)
ni so that it satisfies the condition (C2). By applying appropriate inequali-

ties, the order of remainder term is dominated by the orders of estimation errors

of the initial estimators, and some quantities related to εi and Xi, that can be, re-

spectively, controlled by choosing appropriate initial regularized estimators (such

as LASSO, SCAD and MCP) for β0 and w0
j , and the sub-Gaussian assumptions

for εi and Xi. For details, refer to the proof of Theorem 2.

Under the homoscedastic noise case, Zhang and Zhang (2014) and van de

Geer, Bühlmann and Ritov (2013) used the Wald-type test statistic for testing

H0 based on the de-biased estimator β̂
(de)
j . Ning and Liu (2014) considered the

Score test statistic for testing H0 based on the estimating equation (4.3). The

Score test statistic and the Wald type test statistics are asymptotically equivalent.

There still exist some differences between the two methods, as pointed out by

Ning and Liu (2014). Our method constructs likelihood ratio tests based on the

same estimating equation, thus it enjoys the nice properties of likelihood-based

methods. Since we are using empirical likelihood, it not only enjoys the Wilk’s

phenomenon, but has other nice properties: the shape of the confidence interval

is data driven, and our procedure is more robust to the distribution assumption

for the error term since it only requires moment assumptions. Our method can

be easily implemented under heteroscedasticity linear models due to the self
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studentization property of EL. Refer to the empirical studies in the simulation

section for performance comparisons of our method with the Wald type test and

the Score test.

4.2. EL method based on KFC method

The de-biased KFC estimator can be also represented as the solution to the

estimating equation based on the population subject ηij,Sεi :=
{
Xij−E(Xij |XiS)

}(
Yi −Xᵀ

i β
0
)
,

n∑
i=1

m
(kfc)
ni (βj) :=

n∑
i=1

(Ỹi − X̃ijβj − X̃ᵀ
iS∗β̂S∗)X̃ij = 0, (4.5)

where m
(kfc)
n (β0j ) can be decomposed as, asymptotically,

m
(kfc)
ni (β0j ) = εiηij,S +

(
ΣjSΣ

−1
SSXiS −Xij

)
Xᵀ
iS(Xᵀ

SXS)−1Xᵀ
Sε

+
{
εi −Xᵀ

iS(Xᵀ
SXS)−1Xᵀ

Sε
}{

ΣjSΣ
−1
SSXiS − Xᵀ

jXS(Xᵀ
SXS)−1XiS

}
+
{
Xij − Xᵀ

jXS(Xᵀ
SXS)−1XiS

}{
Xᵀ
iS∗ −Xᵀ

iS(Xᵀ
SXS)−1Xᵀ

SXS∗
}

(β0
S∗

− β̂S∗).

We denote the first term as W
(kfc)
ni and the others by R

(kfc)
ni . For simplicity, we

assume the normality of Xi ∼ N(0,Σ) for the KFC projection section. Now,

the W
(kfc)
ni = {εi(Xij − ΣjSΣ

−1
SSXiS)}ni=1 are independent with EW

(kfc)
ni = 0,

and as in Proposition 4, it follows that E{(W (kfc)
ni )2} = θi;jj − 2ΣjSΣ

−1
SSΘi;jS +

ΣjSΣ
−1
SSΘi;SSΣ

−1
SSΣSj . If we assume independence between εi and Xi and ho-

moscedasticity for the error terms, we have E{(W (kfc)
ni )2} = σ2ε (σjj−ΣjSΣ

−1
SSΣSj).

Let EL
(kfc)
n (βj) be the empirical likelihood ratio test statistic defined by (4.2)

with m
(kfc)
ni (βj) replaced by mni(βj).

Theorem 3. Under Assumption 3 in the Appendix, the conditions (C0)-(C2)

hold. If σ2n,kfc → σ2kfc for some σ2kfc <∞, then −2 log EL
(kfc)
n (β0j )

d→ χ2
1.

Remark 2. For the remainder term R
(kfc)
ni to satisfy (C2), we need to control the

error due to the initial estimators. We assume ε and X are sub-Gaussianian. In

addition, for the KFC method, we need to control the partial correlation between

Xj and any covariates that are not in the KFC set.

One of the key steps in our procedure is the selection of the KFC set. We

propose the following. Based on the normality assumption of the predictors, we

have the conditional distribution result for any give subset S,

ρjk(S) := Corr(Xij , Xik|XiS) = σjk −Σᵀ
SjΣ

−1
SSΣSk.
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The sample partial correlation can be evaluated as, ρ̂jk(S) = X̃ᵀ
j X̃k/n. For

testing whether a partial correlation is zero or not, we can apply Fisher’s z-

transformation

F̂jk =
1

2
log

{
1 + ρ̂jk(S)

1− ρ̂jk(S)

}
.

Classical decision theory then yields the following rule when using the signifi-

cance level α: reject the null hypothesis H0 : ρjk(S) = 0 against the two-sided

alternative Ha : ρjk(S) 6= 0 if√
n− |S| − 3|F̂jk| > zα/2.

We can then select the smallest size of S such that

max
k∈S∗

√
n− |S| − 3|F̂jk| < zα/2.

To make this KFC set selection more stable, we adopt the stability selection

proposed by Meinshausen and Bühlmann (2010) and Shah and Samworth (2013).

According to Shah and Samworth (2013), we split the data into half B times and

select the final KFC set with variables showing in at least 50% of those 2B KFC

sets.

4.3. EL method based on the inverse method

We have b̂j as the solution to the estimating equation
n∑
i=1

m
(inv)
ni (bj) :=

n∑
i=1

(
Yi −Xᵀ

i β̂
){
Xij − (Yi,X

ᵀ
i,\j)γ̂j

}
+ nbj = 0. (4.6)

Simple algebra then immediately yields a decomposition of m
(inv)
ni (bj),

m
(inv)
ni (b0j )

= (εiηij,y + b0j )︸ ︷︷ ︸
W

(inv)
ni

+ εi(Yi,X
ᵀ
i,\j)(γ

0
j − γ̂j) + Xᵀ

i (β0 − β̂)
{
Xij − (Yi,X

ᵀ
i,\j)γ̂j

}︸ ︷︷ ︸
R

(inv)
ni

.

Proposition 5. Under model (2.1), we have that W
(inv)
ni has mean 0 and

E{(W (inv)
ni )2} = σ2i;n,inv. If εi and Xi are independent, then E{(W (inv)

ni )2} =

Var(εi) Var(ηij,y) + (γ0j1)
2{Var(ε2i )−Var2(εi)}. Under homoscedasticity and nor-

mality for εi, we have E{(W (inv)
ni )2} = σ2εσ

2
ηj ,y + (β0j )2σ4ηj ,y.

Let EL
(inv)
n (βj) be the empirical likelihood ratio test statistic defined by (4.2)

with m
(inv)
ni (βj) replaced by mni(βj).

Theorem 4. Under conditions for the initial estimators as in Assumption 2 in

the Appendix, and with (Xᵀ
i , εi)

ᵀ sub-Gaussian, if s log p/
√
n = o(1), the condi-
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tions (C0)-(C2) are satisfied. If (1/n)
∑n

i=1 σ
2
i;n,inv → σ2inv for some σ2inv < ∞,

then −2 log EL
(inv)
n (b0j )

d→ χ2
1.

5. Simulation Studies

In this section, we report on simulation studies to investigate the finite sample

performance of the proposed EL ratio tests, and we compare this performance

with methods from in the existing literature.

We generated random samples according to model (2.1). The covariates were

generated from a multivariate Gaussian distribution with mean 0 and covariance

Σ. We considered three covariance matrices for Σ = ((σjk)): a banded matrix

with σjk = ρ|j−k|1(|j − k| < 2), a Toeplitz matrix with σjk = ρ|j−k|, and a block

diagonal matrix with Σ = I[p/3] ⊗ B(ρ) where B(ρ) is a 3 × 3 matrix with the

(i, j) component ρ|i−j|. We set ρ = 0.2 and 0.5 in our simulation.

We also considered five scenarios for the error distribution: standard nor-

mal N(0, 1), mixture normal distribution 0.7N(0, 1) + 0.3N(0, 52), t distribu-

tion with degrees of freedom 3, and heteroscedastic distributions 0.7X1Z and

X1Z
∑p

j=2Xj−1Xj/(p − 1) where Z ∼ N(0, 1) independent of X. For the het-

eroscedastic distributions, ε is not independent of X. For the first heteroscedastic

case the conditional variance only depends on a low-dimensional covariate (the

first component of the covariates X), for the second, it depends on the the entire

vector of covariates. Our goal is to test if the first coefficient is zero or not.

H0 : β01 = 0, v.s. H1 : β01 6= 0.

The first component of the true coefficients β0
1 was set to 0, 0.1, 0.2, 0.3, 0.4 and

0.5. Here 0 was used to evaluate the empirical size and the non-zero values were

used to evaluate the power of the proposed methods. In addition, we set β04 =

1.5, β07 = 2 and all others to be 0. We chose p = 100, 200, 500 and n = 200, 400.

The number of simulation replicates was 500.

We considered three EL-based methods proposed in Section 4, “EL-LASSO”,

“EL-KFC”, and “EL-INV”, respectively, corresponds to the proposed method

introduced in Section 4.1, 4.2, and 4.3. We compared them with two existing

methods: the Wald type test proposed in Zhang and Zhang (2014) and and van

de Geer, Bühlmann and Ritov (2013) (denoted by “Wald”) and the Score type

test (denoted by “Score”) proposed in Ning and Liu (2014), with Lasso estimation

for ŵ1. For initial estimators such as β̂, γ̂1 and ŵ1, we applied the scaled Lasso

of Sun and Zhang (2012), that has the advantage of being tuning insensitive. For

the “EL-KFC”, to stabilize the KFC set selection, we used the stability selection
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procedure through sub-sampling proposed by Meinshausen and Bühlmann (2010)

and Shah and Samworth (2013). According to the latter, we split the data into

half 10 times, and selected the final KFC set with variables showing in at least

10 of those 20 KFC sets.

For the scenarios with normally distributed random errors, we observed that

all the procedures were able to control type I error around the nominal level of

5%. The proposed EL-based approach with different estimating equations had

very similar power. In general, the EL-based tests had better power performance

than the existing methods, especially in the low sample size situations. Refer to

the Supplemental Material for the simulation results in these cases.

Our main interest was to evaluate the performance of the proposed methods

and some existing methods under the heteroscedastic linear regression model.

Table 1 summarizes the results for the scenario with X generated as multivariate

normal with the Toeplitz covariance matrix (ρ = 0.2) and the heteroscedastic

error distribution 0.7X1N(0, 1). Under this case, the EL-based inference pro-

cedures, “EL- KFC”, “EL- INV” and “EL-LASSO”, were asymptotically valid

because they can control the type I errors reasonably well. For the ‘Wald” and

“Score” methods, type I errors were largely inflated, not surprising as these pro-

cedures were designed for linear models with homogeneous variance. In Table

2, we summarize the empirical size and power under another scenario with het-

eroscedastic error whose conditional error variance depends on high dimensional

covariates generated according to X1
∑p

j=2Xj−1XjN(0, 1)/(p−1). Although the

error variance depends on a high-dimensional covariates, our methods were still

able to control the type I error well under the null hypothesis. The “Wald” and

“Score” methods had size distortion under the heteroscedastic error distribution.

6. An Empirical Study

We applied the proposed methods to study the association between gene

expression and copy number alternation using a data set collected at multiple

cancer centers (Feng, Fu and Sun (2010)). The data set contains gene expression

and copy number alternation measured through primary breast tumor specimens

in a few recent breast cancer cohort studies. In cells with cancer, mutations can

cause a gene to be either deleted or duplicated on a chromosome, which leads

to loss or gain of DNA copies of a gene. Comparative Genomic Hybridization

(CGH) is a technique for measuring DNA copy numbers of genes of interest on

the genome. The CGH array experiments return log2 ratio between the number
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Table 1. Empirical size and power of the proposed EL-based test procedures and two
existing procedures under the heteroscedastic error case. In this table, covariates are
generated by a multivariate normal distribution with covariance given by a Toeplitz
matrix with ρ = 0.2, and the random error are generated according to 0.7X1N(0, 1).

β0
1

Method p n 0 0.1 0.2 0.3 0.4 0.5
EL-KFC 100 200 0.062 0.244 0.624 0.924 0.986 1.000

400 0.040 0.366 0.916 0.998 1.000 1.000
200 200 0.070 0.230 0.652 0.920 0.990 1.000

400 0.076 0.350 0.890 0.990 1.000 1.000
500 200 0.060 0.254 0.636 0.900 0.986 0.996

400 0.058 0.402 0.902 0.992 1.000 1.000
EL-INV 100 200 0.058 0.230 0.620 0.910 0.986 1.000

400 0.040 0.356 0.918 0.998 1.000 1.000
200 200 0.058 0.222 0.652 0.910 0.988 1.000

400 0.066 0.342 0.880 0.990 1.000 1.000
500 200 0.060 0.236 0.624 0.898 0.980 0.996

400 0.050 0.402 0.902 0.992 1.000 1.000
EL-LASSO 100 200 0.056 0.244 0.634 0.922 0.988 1.000

400 0.046 0.376 0.926 1.000 1.000 1.000
200 200 0.062 0.232 0.668 0.926 0.990 1.000

400 0.072 0.356 0.890 0.988 1.000 1.000
500 200 0.068 0.250 0.640 0.912 0.986 0.996

400 0.052 0.412 0.902 0.992 1.000 1.000
Wald 100 200 0.256 0.496 0.860 0.986 1.000 1.000

400 0.210 0.706 0.986 1.000 1.000 1.000
200 200 0.234 0.464 0.848 0.980 1.000 1.000

400 0.236 0.680 0.968 1.000 1.000 1.000
500 200 0.208 0.516 0.874 0.978 1.000 1.000

400 0.234 0.736 0.986 1.000 1.000 1.000
Score 100 200 0.256 0.490 0.860 0.986 1.000 1.000

400 0.218 0.700 0.986 1.000 1.000 1.000
200 200 0.234 0.470 0.846 0.980 1.000 1.000

400 0.234 0.672 0.968 1.000 1.000 1.000
500 200 0.204 0.518 0.870 0.978 1.000 1.000

400 0.230 0.728 0.984 1.000 1.000 1.000

of DNA copies of a gene in the tumor cells and that in the reference cells. A

positive (negative) measurement suggests a possible copy number gain (loss).

After proper normalization, cghFLasso (Tibshirani and Wang (2008)) was used

to estimate the underlying DNA copy numbers based on array outputs. Then the

copy number alteration intervals (CNAIs), defined as basic CNA units (genome

regions) in which all genes tend to be duplicated or deleted simultaneously, were
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Table 2. Empirical size and power of the proposed EL-based test procedures and
two existing procedures under the heteroscedastic error case. In this table, covari-
ates are generated by a multivariate normal distribution with covariance given by
a Toeplitz matrix with ρ = 0.2, and the random error are generated according to
X1

∑p
j=2Xj−1XjN(0, 1)/(p− 1).

β0
1

Method p n 0 0.1 0.2 0.3 0.4 0.5
EL-KFC 100 200 0.066 0.886 0.998 1.000 1.000 1.000

400 0.048 0.988 1.000 1.000 1.000 1.000
200 200 0.076 0.932 1.000 1.000 1.000 1.000

400 0.068 0.988 1.000 1.000 1.000 1.000
500 200 0.060 0.942 1.000 1.000 1.000 1.000

400 0.054 1.000 1.000 1.000 1.000 1.000
EL-INV 100 200 0.062 0.872 0.998 1.000 1.000 1.000

400 0.038 0.988 1.000 1.000 1.000 1.000
200 200 0.074 0.936 1.000 1.000 1.000 1.000

400 0.064 0.988 1.000 1.000 1.000 1.000
500 200 0.056 0.938 1.000 1.000 1.000 1.000

400 0.042 1.000 1.000 1.000 1.000 1.000
EL-LASSO 100 200 0.066 0.876 0.998 1.000 1.000 1.000

400 0.046 0.988 1.000 1.000 1.000 1.000
200 200 0.078 0.934 1.000 1.000 1.000 1.000

400 0.064 0.988 1.000 1.000 1.000 1.000
500 200 0.064 0.944 1.000 1.000 1.000 1.000

400 0.046 1.000 1.000 1.000 1.000 1.000
Wald 100 200 0.222 0.982 1.000 1.000 1.000 1.000

400 0.214 1.000 1.000 1.000 1.000 1.000
200 200 0.244 0.990 1.000 1.000 1.000 1.000

400 0.214 0.998 1.000 1.000 1.000 1.000
500 200 0.260 0.990 1.000 1.000 1.000 1.000

400 0.240 1.000 1.000 1.000 1.000 1.000
Score 100 200 0.226 0.984 1.000 1.000 1.000 1.000

400 0.208 1.000 1.000 1.000 1.000 1.000
200 200 0.236 0.990 1.000 1.000 1.000 1.000

400 0.206 0.998 1.000 1.000 1.000 1.000
500 200 0.260 0.990 1.000 1.000 1.000 1.000

400 0.232 1.000 1.000 1.000 1.000 1.000

estimated by a clustering method based on the DNA copy numbers estimation.

The gene expression data were collected by microarray expression experiments.

We had 172 specimens with both cDNA expression microarray and CGH

array measurements. For each CNAI, the mean value of the estimated copy

numbers of the genes falling into this CNAI was calculated. This resulted in
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a 172 (samples) by 384 (CNAIs) numeric matrix. We focused on a set of 654

breast cancer related genes based on seven published breast cancer gene lists.

This resulted in a 172 (samples) by 654 (genes) numeric matrix. Please refer to

Peng et al. (2010) for more details about the data preprocessing.

We studied the association between gene expression and DNA copy numbers

through a high-dimensional linear regression model. Each of the 654 gene ex-

pression was used as response variable, and the DNA copy numbers were used

as predictors. We focused on the genes with heteroscedastic error variance and

first conducted a test to identify them.

We tested for the presence of heteroscedasticity for each of the 654 genes us-

ing test procedures proposed by Li and Yao (2015): the approximate likelihood-

ratio test (ALRT) and the coefficient-of-variation test (CVT). They were con-

structed using the residuals obtained as Y−Xβ̂0, where β̂0 is the ordinary least

squares (OLS) estimate of β0. Although both the dimension of covariates and

the sample size are allowed to grow to infinity simultaneously in their proposed

test procedures, the covariates dimension needs to be less than the sample size,

their proposed procedures were not directly applicable.

In order to apply them, for each of the 654 gene expressions we first selected

variables by feature screening via distance correlation learning approach proposed

by Li, Zhong and Zhu (2012), implemented in package grpss. This procedure has

decent performance under heteroscedastic setting (Li, Zhong and Zhu (2012)).

The p-values obtained by the two test procedures are summarized, respectively,

in Figure 1 (a) and (b). To adjust for multiplicity, we applied the Bonferroni

method to control the family-wise error rate. After the Bonferroni correction,

33 genes were declared to have significant heteroscedasticity based on the ALRT

procedure, and 155 genes had significant heteroscedasticity based on the CVT

procedure. Thus, heteroscedasticity exists for many genes in this data set.

We selected the top four genes with significant heteroscedasticity from the

ALRT procedure among the common genes selected by both of ALRT and CVT

for further analysis. The reason we chose ALRT is due to its robustness seen in Li

and Yao (2015). The four selected genes are the 279-th gene named “SEMA3C”

on Chr7, the 433-th gene named “POLR2F” on Chr22, the 493-th gene named

“C18orf21” on Chr18, and the 610-th gene called “FOXA1” on Chr14.

We applied the proposed EL-based approaches to the four selected genes, and

compared them with the “Wald” and “Score” tests described in the simulation

studies. The results are showed in Figure 2. For each test procedure (EL-bassed

approaches, “Wald” and “Score”), we obtained a sequence of p-values {pj}pj=1,
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(a) ALRT (b) CVT

Figure 1. p values for testing heteroscedasticity. From ALRT, we got 33 genes with
significant heteroscedasticity; from CVT, we got 155 genes with significant heteroscedas-
ticity. The horizontal red line represents the Bonferoni threshold.

where pj is the p-value for testing H0j : β0j = 0 vs H1j : β0j 6= 0 for j = 1, . . . , p.

Then we ordered p-values in an increasing order, p(1) ≤ p(2) ≤ · · · ≤ p(j) ≤
· · · ≤ p(p), and applied the Benjamini-Hochberg (BH) to identify the significant

hypotheses. Rejecting the null hypotheses H0j : β0j = 0 means here that the j-th

CNAI are significantly associated with the gene expression.

As shown in Figure 2(d), for the gene “FOXA1” on chromosome 14, the

114-th and 258-th CNAIs were significant using the EL-based test procedures

and the existing “Wald” and “Score” test procedures. For the gene “C18orf21”

on chromosome 18, the 161-th CNAI was detected by the EL based methods as

illustrated in Figure 2(c), but not detected by the “Score” and “Wald” tests.

The 161-th CNAI corresponds to Cytoband 8p22. In the studies conducted by

Tsuneizumi et al. (2002) and Voeghtly et al. (2012), it was found that the allelic

loss in Cytoband 8p22 is closely related to the risk of breast cancer. Specifi-

cally, patients with tumors lost an allele at 8p22 had significantly higher risks

of mortality than those with tumors retaining both alleles at those loci. In

another study on the Human Protein Atlas (http://www.proteinatlas.org/

ENSG00000141428-C18orf21/cancer), it was found that several cases of breast

cancers exhibited moderate nuclear/nucleolar positivity of the gene “C18orf21”.

Finding the significant association between the expression of gene “C18orf21”

and the CNA in Cytoband 8p22 can improve our understanding of the relation-

ship between the discoveries in these studies. More importantly, it provided us

some insight about the underlying disease mechanism of breast cancer. This

http://www.proteinatlas.org/ENSG00000141428-C18orf21/cancer
http://www.proteinatlas.org/ENSG00000141428-C18orf21/cancer
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Figure 2. P-value Manhattan plots for top four genes showed significant heteroscedas-
ticity.

shows the advantage of the EL-based proposed methods, and the necessarily of

considering heteroscedasticity in this data set.

7. Discussion

We have studied inference problem for low-dimensional parameters in a high-

dimensional heteroscedastic linear model. The asymptotic normalities of the ex-

isting estimators were established under the heteroscedastic linear model. but

they are difficult to implement in practice due to the complicated asymptotic vari-

ance. To address the issue, we have proposed three EL-based approaches that
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avoid the explicit estimation of the variance. The key advantage of our EL-based

methods is that they can allow for heteroscedastic error noise. In them, the con-

ditional variance of random error is allowed to depend on the high-dimensional

covariates so one can test statistical hypothesis and construct confidence inter-

vals that data driven shapes. We do not require independence between the error

term and the covariates, only that the error term and the covariates to be un-

correlated. The method we proposed provides a unified framework for testing

low-dimensional coefficients in high-dimensional linear models when the estimat-

ing equations can be established and satisfy the conditions of Theorem 1. The

procedure are simple to apply, where not needing to derive the asymptotic vari-

ances for estimators based on different estimating equations.

Supplementary Materials

In the supplemental file, we provide proofs to all the theoretical results pre-

sented in the paper, and some additional simulation results.
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Appendix

Technical Assumptions

For a symmetric matrix M = ((Mjk)), λmin(M) and λmax(M) are the

minimal and maximal eigenvalues of M. For any matrix M = ((Mjk)), let

‖M‖max = maxj,k |Mjk|, ‖M‖1 = maxk
∑

j |Mjk|, ‖M‖2 =
√
λmax(MᵀM), and

‖M‖∞ = maxj
∑

k |Mjk|.

Assumption A1.

(1) The initial estimator β̂ satisfies ‖β̂ − β0‖1 = Op(s
√

log p/n).

(2) The initial estimators ŵj satisfy max1≤j≤p ‖ŵj − w0
j‖1 = Op(an), where

an = o(1/
√

log p).

(3) The prediction errors satisfy ‖X(β̂−β0)‖22/n = Op(s log p/n) and max1≤j≤p
‖X\j(ŵj − w0

j )‖22/n = Op(bn), where X\j is the design matrix X with the

j-th column deleted and bn = o(1/
√
n).
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(4) Xi and εi are all sub-Gaussian.

(5) s log p/
√
n = o(1).

Remark 3. With (4), we have Xikεi sub-exponential with E(εiXik) = 0. By the

Bernstein inequality (Vershynin (2010)) and union bound inequality, we have

P

(∥∥∥∥ 1

n

n∑
i=1

Xiεi

∥∥∥∥
∞
≥ t
)
≤ C1p exp

(
− C min

(
t2

C2
,
t

C3

)
n

)
.

By taking t = C ′
√

log p/n for some positive constant C ′ such that CC
′2 > C2,

we have ∥∥∥∥ 1

n

n∑
i=1

Xiεi

∥∥∥∥
∞

= Op

(√
log p

n

)
. (A.1)

With ηij = Xij − E(Xij |Xi,\j), ηij sub-gaussian, for any k 6= j, we have

E(Xikηij) = E[Xik{Xij − E(Xij |Xi,\j)}] = E{XikXij − E(XikXij |Xi,\j)} = 0.

Similarly, we have, for any t > 0 and 1 ≤ j 6= k ≤ p,

P

(∣∣∣∣ 1n
n∑
i=1

Xikηij

∣∣∣∣ ≥ t) ≤ C1p exp

(
− C min

(
t2

C2
,
t

C3

)
n

)
,

which leads to ∥∥∥∥ 1

n

n∑
i=1

ηijXi,\j

∥∥∥∥
∞

= Op

(√
log p

n

)
. (A.2)

For the properties of the initial estimators in (1), (2) and (3) under the het-

eroscedasitic noise case, we can use the
√

Lasso estimator as in Belloni, Cher-

nozhukov and Wang (2014). According to Theorem 7 in Belloni, Chernozhukov

and Wang (2014), we have that the
√

Lasso estimators under certain conditions

have these properties satisfied.

Assumption A2.

(1) With the same assumption as in the Lasso projection case, initial estimator

‖β̂ − β0‖1 = Op(s
√

log p/n).

(2) With the same assumption as in the Lasso projection case for the initial

estimators γ̂j, max1≤j≤p ‖γ̂j − γ0
j ‖1 = Op(an), where an = o(1/

√
log p).

(3) With the same assumption as in the Lasso projection case for the predic-

tion errors, ‖X(β̂ − β0)‖22/n = Op(s log p/n) and max1≤j≤p ‖(Y,X\j)(γ̂j −
γ0
j )‖22/n = Op(bn), and bn = o(1/

√
n).

(4) (Xᵀ
i , εi)

ᵀ is sub-Gaussian.
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(5) s log p/
√
n = o(1).

Remark 4. For the condition (2), if we assume a = max1≤j≤p sj with sj =

‖γ0
j ‖0, the

√
Lasso estimators for γ0

j satisfy this condition with an = a
√

log p/n.

For the condition (3), due to Cov(β0ᵀXi, εi) = E(εiβ
0ᵀXi) = 0, we have εiβ

0ᵀXi

sub-exponential and, by the Bernstein inequality, we have for any t > 0,

P

(∣∣∣∣ 1n
n∑
i=1

Xᵀ
i β

0εi

∣∣∣∣ ≥ t) ≤ 2 exp

(
− C1nmin

(
t2

C2
2

,
t

C2

))
.

This leads to

1

n

n∑
i=1

Xᵀ
i β

0εi = Op

(√
log p

n

)
, (A.3)

as long as log p/n→ 0. With the same argument, we have

1

n

n∑
i=1

Xikηij,y = Op

(√
log p

n

)
, (A.4)

1

n

n∑
i=1

(Yi,X
ᵀ
i,\j)γ

0
j ηij,y = Op

(√
log p

n

)
. (A.5)

Assumption A3.

(1) For the eigenvalues of Σ, there exist some constants λmin and λmax such

that 0 < λmin < λmin(Σ) ≤ λmax(Σ) < λmax <∞.

(2) Xi ∼ N(0,Σ) and εi are sub-Gaussian.

(3) The initial estimator β̂ satisfies ‖β̂ − β0‖1 = Op(s
√

log p/n).

(4) s
√

(log p)2m3/n = o(1) and s
√

(log p)3m2/n2 = o(1) where m is the upper

bound of the size of KFC set |S|.

(5) s
√

log p supS:|S|≤m maxk∈S∗
∣∣σjk −ΣjSΣ

−1
SSΣSk

∣∣ = o(1).

Remark 5. Condition (1) is a mild condition that assures the asymptotic iden-

tifiability of the model (Fan and Lv (2008); Wang (2009, 2012)). Condition

(2) is a common condition used for simplification of theoretical proofs in high-

dimensional setups; see for example, Wang (2009) and Zhang and Zhang (2014).

Condition (4) is for controlling the size of the KFC set |S|, and Condition (5)

controls the partial correlation between the target covariate Xij and XiS∗ .
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