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Abstract: Resolution has been the most widely used criterion for comparing regular

fractional factorials since it was introduced in 1961 by Box and Hunter. In this pa-

per, we examine how a generalized resolution criterion can be defined and used for

assessing nonregular fractional factorials, notably Plackett-Burman designs. Our

generalization is intended to capture projection properties, complementing that of

Webb (1964) whose concept of resolution concerns the estimability of lower order ef-

fects under the assumption that higher order effects are negligible. Our generalized

resolution provides a fruitful criterion for ranking different designs while Webb’s

resolution is mainly useful as a classification rule. An additional advantage of our

approach is that the idea leads to a natural generalization of minimum aberration.

Examples are given to illustrate the usefulness of the new criteria.
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1. Introduction

We consider factorial designs with two levels, denoted by + and −. Our
focus will be on orthogonal factorial designs, although most of the discussion
in the paper generalizes to nonorthogonal designs. By orthogonality we mean
that the number of +’s and −’s in each design column is the same and that
for every two design columns the four level combinations (++), (+−), (−+)
and (−−) occur with the same frequency. Orthogonal factorial designs can be
broadly classified into two categories: regular fractional factorials and nonregular
fractional factorials. A regular fractional factorial is determined by its defining
relation and has a simple aliasing structure in that any two effects are either
orthogonal or fully aliased. In contrast, a nonregular fractional factorial exhibits
some complex aliasing structure, meaning that there exist effects that are neither
orthogonal nor fully aliased. Regular factorials can be constructed for every run
size that is a power of 2. Examples of non-regular factorials include Plackett-
Burman (1946) designs, which are constructed from Hadamard matrices. If a
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Hadamard matrix exists, then its order n has to be a multiple of 4 (except when
n = 1, 2), that is, n = 4t for some integer t.

Traditionally, nonregular factorials were not advocated because of their com-
plex aliasing structure. However, in the last decade, they have received increasing
attention in the literature. Hamada and Wu (1992) showed that for data from
designs with complex aliasing, it is possible to detect interaction effects. Lin
and Draper (1992) studied the projection properties of some Plackett-Burman
designs, and this line of research was further pursued and explored from a differ-
ent angle by Wang and Wu (1995) under the term “hidden projection”. Cheng
(1995) provided some general results on the projection properties of nonregular
factorials, and these results cover as special cases some of the computer findings
given in Lin and Draper (1992) and in Wang and Wu (1995).

A basic problem in this area remains unsolved, or at least has not been
systematically attempted, despite the above important contributions. The prob-
lem is how to assess, compare and rank nonregular factorials in a systematic
fashion. We propose generalized resolution and minimum aberration criteria for
this purpose, paralleling the resolution and minimum aberration criteria tradi-
tionally used for assessing regular factorials. Our proposed criteria are natural
generalizations in that when they are applied to regular factorials, they reduce
to the traditional resolution and minimum aberration, respectively. Obviously,
our current work is motivated by the ideas explicitly and implicitly exhibited in
the aforementioned papers.

We introduce some notation to be used throughout the paper. A factorial
design, regular or nonregular, is denoted by D and is regarded as a set of m

columns D = {d1, . . . , dm} or as an n × m matrix D = (dij), depending on our
convenience. For 1 ≤ k ≤ m and any k-subset s = {dj1 , . . . , djk

} of D, define

Jk(s) = Jk(dj1 , . . . , djk
) =

∣∣∣∣∣
n∑

i=1

dij1 · · · dijk

∣∣∣∣∣ . (1)

Clearly, J1(s) = J2(s) = 0 for orthogonal designs. These Jk(s) values play an
instrumental role in our development of generalized resolution and minimum
aberration criteria.

The paper is organized as follows. In Section 2 we introduce generalized res-
olution, and its projection properties and statistical implications are discussed.
By extending the notion of word length pattern, Section 3 introduces the con-
founding frequency vector of a design, based on which a generalized minimum
aberration criterion is defined. Examples are given in Sections 2 and 3 to illus-
trate how this new set of criteria can be used to assess and compare two different
designs.
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2. Generalized Resolution for Non-regular Factorials

2.1. Motivation

The resolution of a regular fractional factorial can be interpreted in two
equivalent ways. From the projection viewpoint, a regular factorial has resolution
r if the 2r−1 possible level combinations in the projection design onto any (r−1)
factors occur with the same frequency. From the estimability viewpoint, a regular
factorial has resolution r if when r is odd, the effects involving (r− 1)/2 or fewer
factors are estimable under the assumption that those involving (r+1)/2 or more
factors are negligible, and when r is even, the effects involving (r− 2)/2 or fewer
factors are estimable under the assumption that those involving (r+2)/2 or more
factors are negligible. For a detailed discussion on the concept of resolution for
regular factorials, we refer to Box and Hunter (1961).

The interpretation of the resolution from the estimability viewpoint can be
straightforwardly generalized to any factorial design, outside the family of regular
fractional factorials. This definition of resolution was given in Webb (1964),
and used to construct many useful designs in Rechtschaffner (1967), Srivastava
and Chopra (1971), and others. We note that the resolution defined in this
way is mainly meant to be a classification rule, and does not provide a fruitful
criterion for ranking different designs. For example, when the experimental error
is substantial and warrants efficiency consideration, a resolution V design may
be less efficient for estimating the main effects than a resolution III design. Such
situations can arise when the experimenter wants to estimate all the main effects
and two factor interactions before the experiment is conducted, only to find
out that no two factor interaction is important once the data are collected and
analyzed.

We generalize the concept of resolution from the projection viewpoint so that
it can be used to rank different nonregular factorials. A naive approach would be
simply to say that a nonregular factorial has generalized resolution r if the 2r−1

possible level combinations in the projection design onto any (r−1) factors occur
with the same frequency. However, this does not yield any new concept and we
are paraphrasing the strength of orthogonal arrays. (A two level orthogonal array
of strength r′ is a matrix with entries + and − such that the 2r′ possible level
combinations occur in any submatrix with r′ columns with the same frequency.)
Our definition of generalized resolution captures the projection properties in a
more precise manner and also leads to a generalization of minimum aberration.

2.2. Assigning resolution to nonregular factorials

For a design D, regular or nonregular, let r be the smallest integer such that
max|s|=r Jr(s) > 0, where Jk(s) is defined in (1) and the maximization is over all
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the subsets of r distinct columns of D. We define its generalized resolution to be

R(D) = r + [1 − max
|s|=r

Jr(s)/n]. (2)

Clearly, r ≤ R(D) < r+1. For orthogonal designs, we have R(D) ≥ 3. According
to this criterion, a design with higher generalized resolution is preferred.

Now suppose that D is a regular factorial. Then Jk(s) for a k-subset s =
{dj1 , . . . , djk

} of D must equal either 0 or n, with 0 corresponding to orthogonality
and n to full aliasing. For example, Jk(s) = 0 implies that the main effect dj1 is
orthogonal to the (k − 1) factor interaction dj2, . . . , djk

, while Jk(s) = n implies
that these two effects are fully aliased. If Jk(s) = Jk(dj1 , . . . , djk

) = n, we say
that these k columns in s form a word of length k. For a regular factorial D,
its generalized resolution is precisely the usual resolution r, that is R(D) = r,
because in this case max|s|=r Jr(s) > 0 is equivalent to max|s|=r Jr(s) = n.

Let pk(s) = Jk(s)/n and qk(s) = 1−pk(s). Obviously, we have 0 ≤ pk(s) ≤ 1
and 0 ≤ qk(s) ≤ 1. Note that qk(s) provides a measure for the “degree of
confounding” among the k columns in s, with smaller values of qk(s) implying
more serious confounding. Now the definition of R(D) in (2) can be rewritten as

R(D) = r + δ, (3)

where
δ = min

|s|=r
qr(s) = 1 − max

|s|=r
Jr(s)/n. (4)

We show later that δ itself has a nice geometric interpretation.

Example 1. Generate a 20-run Plackett-Burman design by using

(+ + −− + + + + − + − + −−−− + + −)

as the first row, shifting this row one place to the right 18 times, and then adding
a row of minus signs. Consider three designs D1, D2 and D3 with their columns
selected from the 20-run Plackett-Burman design, where D1 consists of columns
1–4, D2 columns 1–3 and 6, and D3 columns 1–3 and 16. In fact, these are the
three nonequivalent projection designs onto k = 4 dimensions discovered by Lin
and Draper (1992). Simple calculation gives max|s|=3 J3(s) = 4 for D1, and thus
D1 has generalized resolution 3.8. For D2 and D3, we have R(D2) = 3.4 and
R(D3) = 3.8. Both D1 and D3 are better than D2. Indeed, projection onto
any three columns of D1 or D3 contains two copies of a complete 23 factorial
plus one copy of a half replicate of 23 factorial, while for D2, one of the four
possible projections onto three columns contains one copy of a complete 23 fac-
torial plus three copies of a half replicate. The designs D1 and D3 have the
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same three-dimensional projection properties, and consequently have the same
generalized resolution. However, the projection properties of the two designs
onto 4 dimensions are different. Generalized resolution cannot distinguish the
designs. In Section 3, we will see that the two designs can be discriminated using
generalized minimum aberration.

A Hadamard matrix H of order n is an n × n orthogonal matrix of ±1,
that is H ′H = nE, where E is the identity matrix. A Hadamard matrix can
be normalized so that all the entries in the first column equal +1. Deleting
the first column gives a saturated design with n runs and (n − 1) columns,
henceforth called a Hadamard design. Plackett-Burman designs are special cases
of Hadamard designs. From a Hadamard design, we can select m columns to
obtain a design with n runs and m columns. The following preliminary results
are easily established.

Proposition 1. Let D be a design with its m columns selected from a Hadamard
design of size n.

(i) If m ≥ n/2 + 1, then 3 ≤ R(D) < 4.
(ii) If n is not a multiple of 8, then 3 < R(D) < 4 for any m ≥ 3.
(iii) If n is a multiple of 8 and m ≤ n/2, a design D can be constructed such

that R(D) ≥ 4.

Proof. The assertion in (i) is obvious. Quoting a result from Deng, Lin and
Wang (1994) we have max|s|=3 J3(s) = 4 + 8j for a nonnegative integer j when
n is not a multiple of 8. This shows that max|s|=3 J3(s) is always larger than 0
when n is not a multiple of 8, which proves that R(D) < 4. Using Lemma 2.2 of
Cheng (1995), there does not exist an s with three columns satisfying J3(s) = n

because n is not a multiple of 8. This shows that R(D) > 3. To see why (iii) is
true, note that if n is a multiple of 8, we can use the foldover method to construct
a design with m = n/2 columns, which has generalized resolution at least 4.

From Proposition 1, the generalized resolution of a design having run size n =
12, 20, 28, ..., with its m(≥ 3) columns selected from a Hadamard design is strictly
between 3 and 4. On the other hand, it is possible to achieve a larger generalized
resolution for designs of run size n = 16, 24, 32, ..., with m ≤ n/2. The generalized
resolution criterion is a useful tool to compare designs of the same size. Increasing
the run size (n), in general, will increase the design efficiency. Increasing the
number of columns (m), in general, will decrease the design resolution.

Example 2. Consider a 24-run design D with 12 columns, obtained by folding
over the 12 run Plackett-Burman design, obtained by using

(+ + − + + + −−− + −)
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as the first row, cyclically shifting this row one place to the right 10 times, and
then adding a row of minus signs. That is, D = (H ′

12,−H ′
12)

′ where H12 is the
Hadamard matrix given by adding the all +’s column to the 12-run Plackett-
Burman design, and H ′

12 is its transpose. Obviously, R(D) ≥ 4. It can easily be
shown or verified on a computer that max|s|=4 J4(s) = 8. Therefore the design
has generalized resolution R(D) = 4 + (1 − 8/24) = 4.67.

Note 1. Generalized resolution is also useful for assessing nonorthogonal designs.
For example, in the situation n = 2 (mod 4), no orthogonal design exists. Assume
D is a nonorthogonal design with each of its columns having the same number of
+’s and −’s. Then its generalized resolution is R(D) = 2+[1−max|s|=2 J2(s)/n].
In this case the generalized resolution is equivalent to the maxi<j s2

ij criterion well
known in the context of supersaturated designs. For example, see Lin (1995).

2.3. Projection properties

A regular factorial design of resolution r is an orthogonal array of strength
r − 1. When such a design is projected onto any r − 1 columns, the 2r−1

level combinations occur with the same frequency. For a nonregular facto-
rial, the generalized resolution newly defined has a similar geometric interpreta-
tion. To be specific, suppose a nonregular factorial D has generalized resolution
r ≤ R(D) < r + 1. Then when it is projected onto any r − 1 columns, the 2r−1

level combinations also occur with the same frequency. In addition, the projec-
tion properties onto r dimensions are determined by the value of R(D). The
closer R(D) is to r + 1, the better the projection properties. These statements
are supported by the following proposition.

Proposition 2. Let D = (d1, . . . , dm) be an orthogonal array of strength r − 1
and of size n.
(i) A subset s of D with r columns is an orthogonal array of strength r if and

only if Jr(s) = 0.
(ii) More generally, a subset s of D with r columns contains [n−Jr(s)]/2r copies

of a complete 2r factorial plus Jr(s)/2r−1 copies of a half replicate of 2r

factorial.

The results in Proposition 2 are essentially in Cheng (1995). We note that
part (ii) of Proposition 2 is more explicit than that given by Cheng (1995). In the
discussion following his Theorem 2.1, Cheng (1995) stated that, in our notation,
s contains copies of a complete 2r factorial plus copies of a half replicate and did
not give the explicit numbers of copies in both cases. Part (ii) asserts that the n

runs of design s can be split into two portions: one portion containing n− Jr(s)
runs is given by copies of a complete 2r factorial, the other containing Jr(s) runs
is given by copies of a half replicate of 2r factorial. Note that the proportion of
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runs from the complete factorial portion is [n− Jr(s)]/n = 1− Jr(s)/n. Here we
record some interesting facts. We know that n is a multiple of 2r−1 since D in
Proposition 2 is an orthogonal array of strength r − 1. Part (ii) of Proposition 2
shows that Jr(s) is a multiple of 2r−1 and n − Jr(s) is a multiple of 2r.

Now suppose that D is a fractional factorial with r ≤ R(D) < r + 1, so
max|s|=k Jk(s) = 0 for k = 1, . . . , r − 1, and max|s|=r Jr(s) > 0. Now because
max|s|=k Jk(s) = 0 for k = 1, . . . , r − 1, we conclude that D is an orthogonal
array of strength r − 1 by applying Proposition 2(i) recursively. For a subset s

of r columns, Proposition 2(ii) states that it contains [n − Jr(s)]/2r copies of a
complete 2r factorial plus Jr(s)/2r−1 copies of a half replicate. The proportion of
runs from the complete factorial portion is given by 1− Jr(s)/n. We thus arrive
at the conclusion that if R(D) = r + δ as in (3), with δ = 1 − max|s|=r Jr(s)/n
as in (4), then the proportion of runs from the complete factorial portion is at
least δ. If δ > 0, then projections onto any r factors contain at least one copy
of a complete 2r factorial. Thus the projectivity, as defined in Box and Tyssedal
(1996), of the design is r. We see that generalized resolution provides a more
precise description of the projection properties than projectivity.

As an application of these results, let us look at the two designs D1 and
D2 in Example 1. We find R(D1) = 3.8, and therefore in the projection design
onto any three factors, 20 × 80% = 16 out of 20 runs (δ = 0.8) are from the
complete factorial portion. In this case, all the four J3 values are equal to 4. We
have R(D2) = 3.4, and thus in the projection design onto some three factors,
20 × 40% = 8 out of 20 runs are from the complete factorial portion. Since only
one J3(s) is 12 and the other J3(s) values are 4, for the other projections onto
three factors there are 16 runs from the complete factorial portion.

2.4. Statistical justification of generalized resolution

We first note the following simple fact. If r ≤ R(D) < r + 1 then, as
discussed in Section 2.3, D is an orthogonal array of strength r − 1. Therefore
generalized resolution has the same implication in estimability of factorial effects
as resolution does for regular factorials.

The purpose of this section is to provide some additional statistical justi-
fication for generalized resolution. To simplify the discussion, we consider the
following scenario.

Suppose that we are mainly interested in estimating the main effects in
an experiment but cannot afford to use a design of generalized resolution 4 or
higher. Also suppose that from previous knowledge, we can safely assume that 3-
factor or higher order interactions do not exist, but suspect that some two factor
interactions (2fi’s) may not be negligible. In this case, a good design should be
able to satisfactorily answer one or more of the following questions.
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(i) Suppose we are not interested in estimating these 2fi’s. How does their
presence affect the estimation of the main effects?

(ii) Does our design allow estimation of these 2fi’s if they are of interest?
(iii) If our design allows estimation of these 2fi’s, does it have high efficiency?
In this paper, we focus on (i), and show that a design of maximum generalized
resolution minimizes the contamination of these 2fi’s on the estimation of the
main effects, in the sense to be given below. We are currently exploring how
generalized resolution leads to satisfactory answers to questions (ii) and (iii),
and hope to report on this in the near future.

Back to (i). Consider a factorial design of generalized resolution 3 ≤ R(D) <

4 and suppose its m columns are d1, . . . , dm. Suppose the true model is

yi = β0 +
m∑

j=1

βjdij +
m∑

k<l

βkldikdil + εi,

while the fitted model is

yi = β0 +
m∑

j=1

βjdij + εi.

It is easily seen that the least squares estimates of the main effects β1, . . . , βm

from the fitted model have expectation (taken under the true model)

E(β̂j) = βj + n−1
∑
k<l

I3(dj , dk, dl)βkl

for j = 1, . . . ,m, where I3(dj , dk, dl) =
∑n

i=1 dijdikdil. Clearly, J3(dj , dk, dl) =
|I3(dj , dk, dl)|. One way to minimize the biases in estimating βj’s due to the
presence of βkl is to minimize maxj<k<l J3(dj , dk, dl), which is equivalent to max-
imizing the generalized resolution as defined in (2). Therefore, a design of maxi-
mum generalized resolution minimizes the biases for estimating the main effects
through minimizing maxj<k<l J3(dj , dk, dl), the maximum coefficient in the bias
terms.

Finally, we note that our argument for minimizing biases is similar to that
in Box and Draper (1959).

3. Generalized Minimum Aberration

3.1. The idea

Obviously, the defining relation of a regular factorial D is the collection of
subsets s of columns such that Jk(s) = n, for k = 3, . . . ,m. If Jk(s) = n, the k

columns in s form a word of length k in the defining relation. Let Ak(D) be the
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number of words of length k in the defining relation. The word length pattern
of design D is the vector W (D) = (A3(D), . . . , Am(D)).

Two regular factorials D1 and D2 of the same resolution can be distin-
guished using the minimum aberration criterion. This is done as follows. Suppose
W (D1) = (A3(D1), . . . , Am(D1)) and W (D2) = (A3(D2), . . . , Am(D2)) are the
word length patterns of D1 and D2, respectively. If both designs are of the
same resolution r, then both Ar(D1) and Ar(D2) take on positive values. If
Ar(D1) < Ar(D2), D1 has a smaller number of words of length r, and hence is
preferred. If Ar(D1) = Ar(D2), we proceed to compare Ar+1(D1) and Ar+1(D2).
If Ar+1(D1) < Ar+1(D2), D1 is preferred. Otherwise, the process is continued
until the two designs can be distinguished. For results on minimum aberra-
tion designs, we refer to Fries and Hunter (1980), Franklin (1984), Chen and Wu
(1991), Chen (1992), Tang and Wu (1996), Chen and Hedayat (1996) and Cheng,
Steinberg and Sun (1999).

The same idea can be applied to nonregular factorials. Suppose two non-
regular factorials D1 and D2 have the same generalized resolution r ≤ R(D1) =
R(D2) < (r + 1), which implies that the values of max|s|=r Jr(s) for the two de-
signs are the same. Clearly, if in D1 the frequency of combinations of r distinct
columns that attain max|s|=r Jr(s) is lower than that in D2, D1 is preferred. If
the two frequencies are the same, we proceed to compare the second largest Jr(s)
values of the two designs. If the second largest Jr(s) value of D1 is smaller, D1

is preferred. If they are equal, we compare the frequencies that give rise to this
same second largest Jr(s) value. The process is continued until the two designs
can be distinguished.

The idea can be formally developed using what we call confounding frequency
vectors, which are natural generalizations of word length patterns.

3.2. Generalized aberration criterion

Before giving a definition of a confounding frequency vector, we want to
know the possible values of Jk(s). The following proposition provides an answer
to the question.

Proposition 3. For any k columns of an orthogonal factorial design, the value
of Jk(s) must be a multiple of 4.

Proof. The proposition is proved by induction. Obviously it holds for k = 1, 2.
Now, suppose it is true for k columns. Consider Jk+1(dj1 , . . . , dj(k+1)

) for (k + 1)
columns dj1, . . . , dj(k+1)

. Let d denote the column given by the componentwise
product of dj2, . . . , dj(k+1)

, that is, d = dj2 , . . . , dj(k+1)
. Because the proposition

is true for k, we have
∑n

i=1 di = 4t1 for an integer t1. Let n = 4t. Then there are
2t +’s and −’s in column dj1 , and the numbers of +’s and −’s in column d are
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2t + 2t1 and 2t− 2t1, respectively. Now consider the n× 2 matrix (dj1 , d). Let u

be the number of (+,+) pairs and note that the numbers of (+,−), (−,+), and
(−,−) pairs are 2t−u, (2t+2t1)−u, and (2t−2t1)− (2t−u), respectively. This
shows that
n∑

i=1

dij1di = u− (2t− u)− [(2t + 2t1)− u] + [(2t− 2t1)− (2t− u)] = 4(u− t− t1).

Therefore, Jk+1(dj1 , . . . , dj(k+1)
) = |∑n

i=1 dij1di| = 4|u − t − t1|. This completes
the proof.

Let D be an orthogonal factorial design of size n and of m columns, with
n = 4t. Let fkj be the frequency of k column combinations that give Jk(s) =

4(t + 1 − j), for j = 1, . . . , t, t + 1. Since
∑t+1

j=1 fkj =
(m

k

)
, it is sufficient to

consider fkj for j = 1, . . . , t. As f1j = f2j = 0 for orthogonal designs, this
reduces to consideration of fkj for k ≥ 3. The confounding frequency vector of D

is defined to be the vector

F = [(f31, . . . , f3t); (f41, . . . , f4t); . . . ; (fm1, . . . , fmt)]

of length (m− 2)t. This vector provides essential information on how the effects
are confounded, in the way the word length pattern reflects on a regular factorial
design. The former is in fact a natural extension of the latter, as we can see
that for a regular factorial design, fkj = 0 for j ≥ 2 and the reduced vector
(f31, f41, . . . , fm1) is exactly the word length pattern of the design.

Note 2. A general definition of confounding frequency vectors can be given for
any factorial design. Note that Jk(s) is always an integer satisfying 0 ≤ Jk(s) ≤
n. For any factorial design D, not necessarily orthogonal, let fkj be the frequency
of k column combinations that give Jk(s) = (n + 1 − j) for j = 1, . . . , n. Then
we define the confounding frequency vector of this design as the vector

F = [(f11, . . . , f1n); (f21, . . . , f2n); . . . ; (fm1, . . . , fmn)]

of length nm.

The idea given in Section 3.1 can now be formalized using confounding fre-
quency vectors. Let fl(D1) and fl(D2) be the lth entries in the confounding
frequency vectors of two designs D1 and D2, l = 1, . . . , (m − 2)t. Let l be the
smallest integer such that fl(D1) �= fl(D2). If fl(D1) < fl(D2), we say D1 has
less generalized aberration than D2. If no design has less generalized aberration
than D1, then D1 is said to have minimum generalized aberration. Clearly, this
criterion reduces to the usual minimum aberration for regular factorial designs.
Some examples are now in order.
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Example 3. Consider the two 20-run designs D1 and D3 discussed in Example
1. Recall that they have the same generalized resolution R(D1) = R(D3) = 3.8.
Their confounding frequency vectors are given by

F (D1) = [(0, 0, 0, 0, 4)3 ; (0, 0, 0, 0, 1)4 ], F (D3) = [(0, 0, 0, 0, 4)3 ; (0, 0, 1, 0, 0)4 ],

where the subscripts 3, 4 are used to indicate the groups of frequencies, with
group k representing the group of frequencies given by the subsets of k columns.
So D1 has less generalized aberration than D3. Among the three designs D1, D2

and D3 given in Example 1, D1 is the best according to our generalized aberration
criterion. This conclusion is consistent with that of Wang and Wu (1995).

Example 4. Consider two designs D1 and D2 with their columns selected from
the 12-run Plackett-Burman design as given in Example 2, where D1 consists
of columns 1–4, and 10, and D2 consists of columns 1–5. According to Lin and
Draper (1992), these are the only two nonequivalent projection designs onto five
factors. The two designs have the same generalized resolution R(D1) = R(D2) =
3.67. The confounding frequency vectors of D1 and D2 are given by

F (D1)=[(0, 0, 10)3 ; (0, 0, 5)4; (0, 1, 0)5 ], F (D2)=[(0, 0, 10)3 ; (0, 0, 5)4 ; (0, 0, 0)5 ].

Clearly, D2 has less generalized aberration than D1, and hence is a “better”
design, a conclusion also reached by Wang and Wu (1995) in their study of
“hidden projection properties” of the two designs.
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