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Abstract: We construct a series of adjusted orthogonal designs with n + 1 rows, 2n

columns and n2 + n treatments, where n is an integer other than 6. It is shown

that members of this series are E-optimal when n ≥ 5. This is the first series of

adjusted orthogonal designs with constant replication number, and that too, at the

minimum possible level. We also provide efficient designs in the cases n = 2, 3 and

4. The column designs of the above series are not regular graph designs. Since they

are shown to be E-optimal, they provide an infinite series of counter examples to

John and Mitchell’s (1977) conjecture.

Key words and phrases: Adjusted orthogonal design, row-column design, rectangu-

lar design, E-optimality, regular graph design.

1. Introduction

Shah and Eccleston (1986) introduced the class of adjusted orthogonal row-
column designs. Since then the equireplicate designs in this class have gained
much importance because of the simplicity of their analysis and because many
of them are optimal. (See Shah and Eccleston (1986) for their properties, Shah
and Sinha (1989, chapter 4) and Bagchi and Shah (1989) for optimality results).

Let us recall that an equireplicate row column design with replication r is
said to be adjusted orthogonal, if

M ′N = rJ,

where M and N are the treatment-row and treatment-column incident matrices
of the design and J is the all-one matrix of appropriate order.

Now, not many adjusted orthogonal designs are available in the literature.
So far, the only known series are those in Agarwal (1966), Shah and Raghavarao
(1980), John and Eccleston (1986) Eccleston and Street (1990), Bagchi and
Berkum (1991) and Bagchi (1996). Among these, the members of the first , fifth
and sixth are known to be optimal and those of the second are highly efficient.

In the present paper, we construct a new series and prove its E-optimality.
Specifically, we prove :
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Theorem 1.1. Let n be an integer ≥ 2, n �= 6. Then there exists a row-column
design with n + 1 rows, 2n columns and n2 + n treatments such that
(i) it is adjusted orthogonal (AO),
(ii) its row design is a linked block design (LBD) and
(iii) its column design is the dual of a balanced rectangular design of type two.

By a balanced rectangular design of type 2 (RD2) we mean a PBIBD with
rectangular association scheme with two rows and λ1 = λ2 − 2 = λ3 − 1. (See
Bagchi (1994).)

We also prove :

Theorem 1.2. The dual of an RD2 is E-optimal whenever it has at least 10
blocks.

This together with Theorem 4.4.2 of Shah and Sinha (1989) proves the fol-
lowing.

Corollary. The members of the series described in Theorem 1.1 are E-optimal
when n ≥ 5.

We now note the following remarkable features of this series of designs.

1. This is the first series of AO row-column designs with constant replication
number. This constant, again, is the minimum possible value for a connected
equireplicate design. Thus, these designs are extremely cost-effective as they
allow the maximum number of treatments to be tested on a given set up.
2. The members of the series are quite plentiful, as for every positive integer
other than 6, there is a design.
3. The column designs are not regular graph designs (RGD). (For the definition
see John and Mitchell (1977).) So, here is another infinite series (the earlier
one was in Bagchi (1994)) of designs which are counter examples to John and
Mitchell’s conjecture.

An adjusted orthogonal (AO) design need not always be good (it can even
be disconnected!). To have an optimality property, it must have good marginals.
Now the following question arises. Suppose there are two row-column designs
d1 and d2, of which only d1 is AO. Both have the same row design, but the
column design of d2 is better (with respect to some optimality criterion) than
that of d1. Which one is better (with respect to that criterion)? This seems
to be a difficult question. (Note that this is relevant in the search for optimal
designs as AO designs with specified marginals need not exist, even when both
marginals exist. See Section 3.2 for examples.) In Section 3.2 we have studied a
few parametric set ups where this type of situation arises. In this connection we
find examples of nonisomorphic designs with the same marginals. Interestingly,
their performances differ considerably.
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2. The Proof of Theorem 1.1

Case 1. n = 2. The following array represents the proposed two-way design when
n = 2.

1 4 5 2
2 5 3 6
3 6 1 4

Case 2. n = 3. In this case the following is a two-way design as proposed.

A 4 7 5 8 2
2 5 C 9 3 6
3 B 9 1 4 7
1 6 8 A C B

Case 3. n ≥ 4, n �= 6. In all these cases there are two mutually orthogonal latin
squares of order n, say L1 and L2 with a common transversal. Indeed, in all
these cases – except possibily when n = 10 – there are three mutually orthogonal
latin squares of order n (see Brouwer(1978) for instance) any two of which may
be taken to be L1 and L2; then the positions in which any given symbol occurs in
the third square is a common transversal of L1, L2. When n = 10, the following
example (taken from Rouse Ball and Coxeter (1986)) shows the existence of
L1, L2 (here the entry ij in a position indicates that i occurs in L1 and j in L2

in that position):

00 82 95 48 76 23 51 39 17 64
28 11 03 96 50 87 34 62 49 75
59 30 22 14 97 61 08 45 73 86
84 69 41 33 25 98 72 10 56 07
67 05 79 52 44 36 90 83 21 18
32 78 16 89 63 55 47 91 04 20
15 43 80 27 09 74 66 58 92 31
93 26 54 01 38 19 85 77 60 42
71 94 37 65 12 40 29 06 88 53
46 57 68 70 81 02 13 24 35 99

For simplicity we assume that the symbols of L1, L2 are integers from 0 to
n − 1, and that (without loss of generality) the common transversal is the main
diagonal occupied (in both L1 and L2) by the symbols in natural order. That is,

L1
ii = i = L2

ii, for 0 ≤ i ≤ n − 1.

This may be achieved by suitable permutations of rows, columns and sym-
bols.
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Now we present the two-way design as follows. Let V denote the treatment
set, R the set of rows and C the set of columns. Let f(i, j), i ∈ R, j ∈ C

denote the treatment assigned to the position (i, j). Take I = {0, 1, · · · n − 1},
V = I ∪ (I × I), R = I ∪ {∞}, C = I+ ∪ I−, where I± = {i± : i ∈ I} are two
disjoint copies of I, and ∞ is a new symbol. Then for i and j in I we assign

f(∞, i− ) = i,

f(∞, i+) = (i, i),

f(j, i− ) = (x, y),

f(j, i+) =

{
(i, j), if i �= j,

i, if i = j,

where x, y ∈ I are determined by L1
x,y = i and L2

x,y = j.

An easy but tedious verification shows that this is an adjusted orthogonal
two-way design, its row design is an LBD and its column design is the dual of a
rectangular design with v = 2n, b = n2 + n, r = n + 1, k = 2, λ1 = 0, λ2 = 2
and λ3 = 1, based on a 2 × n rectangular association scheme.

That the designs constructed for the cases n = 2 and 3 satisfy the above
properties is easy to verify.

3. Optimality Study

3.1. Proof of Theorem 1.2

We first introduce a few notations.
Notation 3.1.
(i) D(b, k, v) denotes the class of all connected block designs with b blocks; each
of size k and v treatments, where k < v.
(ii) r = bk/v.
(iii) If d ∈ D(b, k, v) is equireplicate (and hence has replication number r) then
the parameters of the dual design of d are denoted by b∗, k∗ and v∗. Thus b∗ =
v, k∗ = r and v∗ = b and the replication number is r∗ = k.
(iv) λ∗ = [k(r − 1)/(b − 1)]. Here [x] denotes the integral part of x.
(v) For a design d in D(b, k, v), Nd will denote its treatment-block incidence
matrix, rdi, 1 ≤ i ≤ v, the replication numbers arranged in increasing order, λdij

the (i, j) entry of NdN
T
d and µd the minimum positive eigenvalue of the C-matrix

of d. We drop d from the suffix when there is no sense of confusion.
(vi) d∗ denotes the dual of RD2. (For definition of RD2, see the paragraph
following Theorem 1.1.) It is easy to see that

kµd∗ = {k(r − 1) − 3/2}b/(b − 1). (3.1)
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In view of Theorem 3.1 of Bagchi (1994) and the well-known relation between
the C-matrices of a design and its dual, it suffices to show :

Proposition 3.2. Let d be an unequally replicated design in D(b, k, v). Then

µd ≤ µd∗ , when b ≥ 10.

Remark. With a little modification in the proof, this proposition can be stren-
thened to include the case b = 10. But since RD2 is not E-optimal when v = 8,
Theorem 1.2 can not be strengthened.

In order that RD2 can belong to D(b∗, k∗, v∗), we assume k(r − 1) = b/2 +
1mod (b − 1), so that, using Notation 3.1 (iv), we get

k(r − 1) = λ∗(b − 1) + b/2 + 1. (3.2)

Before going to the proof of Proposition 3.2 we recall a few well-known
inequalities, for the proof of which we refer to Cheng (1980), Jacroux (1980) or
Constantine (1981). For d in D(b, k, v), we have

kµd ≤



vrdi(k − 1)(v − 1)−1, (i)
(rdi + rdj)(k − 1)/2 + λdij , (ii)
v{(rdi + rdj)(k − 1)/2 − λdij}(v − 2)−1. (iii)

(3.3)

Let us fix an unequally replicated design d in D(b, k, v). Clearly rd1 ≤ r − 1.

Proof of Proposition 3.2.
Case 1. r ≥ 3.

In view of 3.3 (i) and (3.1), it suffices to show 2(r − 1)v(b + k − r − 1) −
3b(v − 1) ≥ 0, which would follow from the following:

2(r − 1)(b + k − r − 1) ≥ 3b. (3.4)

Since k < v, r < b then r can take the values 3, 4, . . . , b − 1. Now the
coefficient of r2 in the L.H.S. of (3.4) is negative, so that it is minimum at one of
the boundaries. It is easy to check that (3.4) holds for both r = 3 and r = b − 1
whenever k ≥ 2 and b ≥ 8. Hence the result.
Case 2. r = 2.

Here
v = (b/2)k, r1 = 1. (3.5)

Case 2.1. r2 = 1. Here, λ12 = 0 or 1.
Case 2.1(a). λ12 = 0.

By 3.3 (ii) we have kµd ≤ k−1. So, we have to show that k ≥ b/2+1, which
follows from (3.2).
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Case 2.1(b). λ12 = 1.
Using (3.3) (iii), we get kµd ≤ v(k − 2)(v − 2)−1. So, we need to show

2(k − v)(b − 1) ≤ (v − 2)(k − 3b/2), (3.6)

which trivially holds when λ∗ ≥ 1, by (3.2). Again, in the case λ∗ = 0, k = b/2+1
(see (3.2)), so that (3.6) is reduced to {(v−2)+2(k−v)}(b−1) ≤ 0, which holds
because of (3.5).
Case 2.2. (The remaining case) r2 ≥ 2.

In this case, we have ri = 2, 2 ≤ i ≤ v − 1 and rv = 3. Let B denote the
unique block containing treatment 1. Let

Uj = {2 ≤ i ≤ v − 1 : i appears j times in B},
uj = |Uj |. (3.7)

Then
u0 + u1 + u2 = v − 2 (3.8)

and
u1 + 2u2 = k − 1 − �, (3.9)

where � is the number of times v appears in B, � = 0, 1, 2 or 3.
From (3.5), (3.8) and (3.9) it follows that

u0 ≥ v − k − 1 ≥ 4k − 1. (3.10)

It is easy to see that in order to prove the required result, it suffices to find
a v × 1 vector x with x′1v = 0, such that

x′(kCd)x
x′x

≤ kµd∗ . (3.11)

For this purpose we choose the following vector: x1 = u0, xi = −1, i ∈ U0,
xi = 0, i �= 1, i �∈ U0. Then

x′(kCd)x
x′x

≤ (k − 1){1 + (u0 + 1)−1},

so that it suffices to show that

(k − 1)/(u0 + 1) − 1 ≤ (k − 3b/2)/(b − 1).

By (3.10), the L.H.S. ≤ 0. So, in the case when λ∗ ≥ 1, the R.H.S. ≥ 0 and
the proof is complete.
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In the remaining case, however, this inequality does not hold. We therefore
go to a more involved computation. Since from now on we have k = b/2 + 1 and
v = k(k − 1), the following holds:

kµd∗ = k − 1. (3.12)

Let Cd denote the “averaged version” of Cd, “averaged separately over U0, U1

and U2”. (For the meaning of these terms, see Constantine (1981).) Then the
form of kCd is as given below:

a1 0 · J1×u0 −1 · J1×u1 −2 · J1×u2 −�

0 · Ju0×1 a2Iu0 + b2Ju0 b3Ju0×u1 0 · Ju0×u2 b4Ju0×1

−1 · Ju1×1 b3Ju1×u0 a3Iu1 + c2Ju1 −2 · Ju1×u2 −(� + ε)Ju1×1

−2 · Ju2×1 0 · Ju2×u0 −2 · Ju2×u1 a4Iu2 − 4 · Ju2 −2� · Ju2×1

−� b4J(1 × u0) −(� + ε)J1×u1 −2� · J1×u2 a5

where

a1 = k − 1, a2 + b2 = d + δ, δ = 0 or 2,

a3 + c2 = d, a4 = d + 2, with d = 2(k − 1),

a5 ≤ 3(k − 1) − �(� − 1),

0 ≤ −b2 ≤ 4, 0 ≤ −b3 ≤ 2, 1 ≤ −c2 ≤ 2, and ε ≥ 0. (3.13)

Since kCd.1v = 0, we also have

a2 + u0b2 − δ + u1b3 + b4 = 0, (3.14)

u0b3 = −2(k − 1) + 1 − (u1 − 1)c2 + 2u2 + � + ε (3.15)

and
u0b4 = −a5 + � + u1(� + ε) + u22�.

Using the upper bound for a5 from (3.13) in the last equation, we get

u0b4 ≥ −3(k − 1) + �(� − 1) + �(1 + u1 + 2u2) + u1ε.

This, with the help of (3.9) simplifies to the following:

u0b4 ≥ (k − 1)(� − 3) + u1ε. (3.16)

Substituting in (3.14) the value of b3 from (3.15) and the lower bound for b4

from (3.16) and using the fact that c2 < 0 (see (3.13)), we get

u0(u0 − 1)b2 ≤ (k − 1)(2u1 − 2u0 + 3 − �) − u1(1 + 2u2 + �). (3.17)
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In view of (3.11) and (3.12), it suffices to find a vector x with x′1v = 0 such
that

x′(kCd)x − (k − 1)x′x ≤ 0. (3.18)

We choose the following vector x = (x1, . . . , xv)′, x1 = u0 − 2u2 = u say,
xi = −1, i ∈ U0, xi = 2, i ∈ U2, xi = 0 for remaining i’s. So, we have

x′(kCd)x − (k − 1)x′x
= (k−1)(u0+4u2)−8u0−u0δ + 2[u0(u0−1)b2−4u2u−16u2(u2−1)]. (3.19)

Using (3.17) and the fact that u1, u2 ≥ 0, we have

R.H.S. ≤ (k − 1)(4u1 + 4u2 − 3u0 + 6 − 2�) − 8u2u.

From (3.9), it follows that u ≥ 0. Hence all we have to show is that the
coefficient of k − 1 is negative.

Again using (3.9), we find that u0 − u2 ≥ k2 − 2k − 1, so that the coefficient
of k − 1 is

≤ 4(u1 + 2u2) − 3(u0 − u2) + 6

≤ −3k2 + 10k + 5, by (3.10).

This is ≤ 0 as k = b/2 + 1 ≥ 6.
This completes the proof.

3.2. The smaller values of n

In this section we consider the cases n = 2, 3, 4. In the case n = 3, we have
obtained an E-optimal design. In the other cases no design could be proved to be
optimal. We have therefore searched for efficient designs (with regard to A- and
D-criteria as well) . In the process we have made some interesting observations
regarding the relative performances of non AO designs with good marginals and
AO designs with not-so-good marginals.

In all the optimaity statements that follow, the competing class is the equir-
eplicate class unless otherwise stated.

Notation 3.2.1. The row-treatment and column-treatment incidence matrices
of a row-column design with p rows, q columns and v treatments are denoted by
M(v × p) and N(v × q) respectively. The C-matrix of an equireplicate design
d is given by

Cd = rIv − q−1MM ′ − p−1NN ′ + v−1rJ(v × v),

where r = pq/v.
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Definition 3.2.2. A row-column design is said to be commutative ( respectively
have i common eigenvectors) if MM ′ and NN ′ commute (respectively have i

common eigenvectors).

Notation 3.2.3. For a row-column design d, Ad denotes the sum of reciprocals
and Dd denotes the product of the positive eigenvalues of Cd.

Before we study the cases n = 2, 3 and 4, let us calculate the eigen values of
the C-matrix of the design (d0, say) constructed in Section 2.

For a fixed n, let C1 and C2 denote the C-matrices of the row design and the
column design respectively of d0 . Then it is easy to see that the spectrum of
C1 is given by 2n2−1((n + 1)/n)n and the spectrum of C2 can be obtained from
Bagchi (1994) as

2n2−n+1
(n + 2
n + 1

)n−1( n

n + 1

)n−1
.

Since the design is adjusted orthogonal, it follows that (see Shah and Eccle-
ston (1986)) the spectrum of Cd0 is

2(n−1)2
(n + 1

n

)n(n + 2
n + 1

)n−1( n

n + 1

)n−1
.

Case n = 2 : p = 3, q = 4 and v = 6.
In this case, if there existed an AO design with both marginals LBD, then

that would be optimal with regard to all convex decreasing optimality criteria.
(See Bagchi and Shah (1989).) However, it can be easily seen that such a design
does not exist.

In the class of equireplicate and binary designs, up to isomorphism there are
exactly three designs. Among these, there is only one AO design, namely d0,
the member with n = 2 in the series of Theorem 1.1. The other two designs are
shown below.

d1 =


 1 2 3 4

2 5 1 6
4 3 6 5


 and d2 =


 1 2 3 4

2 5 1 6
4 6 5 3


.

Note that d1 and d2 have the same marginals (both LBD’s) but they are non
isomorphic : d1 is commutative while d2 is not.

The performances of these designs are presented in the following table.

Table 3.1.

Design(d) µd Ad Dd # of Common Comment
eigenvectors

d0 0.67 4.084 4 6 d2 is best
d1 0.83 3.867 4.44 6 w.r.t each of
d2 0.91 3.847 4.47 2 A-,D-,E-criteria
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Case n = 3 : p = 4, q = 6, v = 12.
In this case, the best (w.r.t. any convex decreasing criterion) row design

would be an LBD. A column design is E-optimal if it is the dual of a GDD with
3 groups and λ1 = 0, λ2 = 1, say GDD(3,0). (See Theorem 2.1 (a) of Bagchi and
Cheng (1993).) Thus, by Theorem 4.4.2 of Shah and Sinha (1989) we have:

An AO design with row design as an LBD and the column design as the dual
of GDD(3,0) is E-optimal in the general class, if it exists.

We have been able to construct a design with the above properties, which is
displayed below, denoted by d∗. Shah and Puri have contructed a design with
the row design and the column design same as those of d∗, but it is not AO.
Interestingly enough, we have found two other non-AO designs with the same
properties and neither of them is isomorphic to the design of Shah and Puri.

We now make a comparative study of the performances of these designs.

d∗ =




1 2 3 4 5 6
7 8 1 2 9 10
5 12 10 11 8 4

11 6 12 9 3 7


.

Let d1 denote the design constructed by Shah and Puri which is presented in
page 82 of Shah and Sinha (1989). Let

d2 =




1 2 3 4 5 6
7 8 1 2 9 10
5 11 9 12 4 7

12 6 11 10 8 3


 and d3 =




1 2 3 4 5 6
7 8 1 2 9 10
5 6 12 11 8 7

11 12 10 9 3 4


.

Thus, in this case we have four (at least!) non isomorphic designs having the
same marginals, and one of them AO. We compare them below.

Table 3.2.

Design µd1 Ad Dd # of common Comment
eigenvectors

d0 0.75 9.42 33.3 12 d∗ is best w.r.t. A-
d∗ 1.00 8.08 42.6 12 and D-criteria also.
d1 0.91 8.47 32.7 8 Next best is d1 w.r.t.
d2 0.57 8.67 32.0 10 E-criterion and d3 w.r.t.
d3 0.83 8.37 35.6 12 A- and D-criteria

Case n = 4 : p = 5, q = 8, v = 20.
Here again, the best row-design is an LBD. Let us look at the column set

up. The dual set up has v∗ = 8, r∗ = 5, k∗ = 2.
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Now there are three regular graphs of degree 5 with 8 vertices. These are
the complements of the following graphs:
G1 = Union of two disjoint four cycles.
G2 = Union of one 3-cycle and another 5-cycle.
G3 = The 8-cycle.

Let Ri denote the RGD with the edges of the complement of Gi as blocks.
Then we know that:
(i) R2 is E-optimal. (See Bagchi and Cheng (1993) : Theorem 2.1 (c)(iv).)
(ii) R1 as well as R3 has the next largest value of µ. (That µ of R1 (R3) is at
least as large as any non- RGD follows by simple calculations using (3.3) (iii).)

Let Ri denote the dual of Ri. In the set up with b = 8, k = 5, and v = 20
an unequally replicated design has µ(Cd) ≤ 0.8 = µ(R1). (Follows from 3.3 (i).)

Thus we have,
(i) R2 is E-optimal in D(8, 5, 20),
(ii) R1 (also R3) is next best.

Now, let us go back to our row-column set up. From the above discussion,
we find:
(i) An AO design with row design an LBD and column design R2 is E-optimal.
(ii) The next largest value of µ among AO designs is 0.8.

We do not know whether the design described in (i) exists. The best design
that we could find with marginals same as that of (i) is shown below. We call it
d1:

d1 =




1 2 3 4 6 5 7 8
13 14 1 2 9 10 12 11
16 15 20 19 13 4 14 3
18 8 17 12 10 20 6 16
7 17 9 18 15 11 5 19


.

Further, we have obtained an AO design with row design an LBD and column
design R1, which we present below:

d2 =




1 2 3 4 5 6 7 8
13 14 2 1 10 9 12 11
15 16 19 20 3 4 14 13
17 8 9 18 15 12 5 20
7 18 17 10 11 16 19 6


.

We have another AO design the column design of which is the dual of a non
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RGD. It’s row design is again the same LBD as d1 and d2:

d3 =




1 2 3 4 5 6 7 8
9 10 1 2 11 12 13 14

15 16 13 14 3 4 18 17
17 18 19 20 9 10 5 6
7 8 20 19 16 15 12 11


.

We now compare these designs.

Table 3.3.

Design(d) µ Ad Dd # of common Comment
eigenvectors

d0 0.8 13.95 1105.9 20 d2 is best w.r.t.
d1 0.7 13.84 1192.4 15 all criteria while
d2 0.8 13.66 1327.1 20 d0 and d3 are
d3 0.8 13.754 1254.4 20 equally good w.r.t.

E-criterion

We have investigated a few other designs, the performances of which are
worse than those given above, regarding all three criteria. It appears that 0.8 is
the maximum value of µ, which would mean that d0, the member of our series,
is actually E-optimal, although we cannot prove it.

Let us now summarise our findings for the three cases, n = 2, 3, 4.
1. In each case, we find non-isomorphic designs having the same marginals.

Their performances differ quite a bit. (For n = 4, we had constructed two other
designs having the same marginals as d1. We have not presented these as their
performances are poorer than those of the ones presented.)

2. Since an AO design is commutative, one might expect that the more the
number of common eigen vectors (of MM ′ and NN ′), the better the performance.
But it need not be so. Consider the case n = 2. The design d1 is not only
commutative but its C-matrix has three (out of five) positive eigenvalues the
same as that of the hypothetical best design, (say d∗) whereas for d2 only one
eigenvalue of Cd2 equals that of Cd∗ . Still d2 is better than d1 regarding all
the three criteria. In the case n = 3, however, we have the opposite picture.
Here, among the three designs di, 1 ≤ i ≤ 3, having the same marginals, d3 is
the best regarding A- and D-criteria. We observe that d3 is commutative and
is the “closest” to adjusted orthogonality in the sense that there is only one
eigenvector of Cd3 which correspond to positive eigenvalues for both MM ′ and
NN ′. As a result, the spectrum of Cd3 differs from the spectrum of Cd∗ in only
two eigenvalues. However d3 is not the next best w.r.t. the E-criterion. So the
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question arises whether there exists a non-AO design which is “closest” to d∗

w.r.t. all of A-,D- and E-criteria ? In the case n = 4 we could not construct any
design which is “close” to the hypothetical best design.

Thus it is more or less clear that either an AO design with one best and
another second best marginal or a non AO design with both marginals best is
likely to be optimal (in the absence of an AO design with both marginals best, of
course). But to be able to say which one wins the race in what situation, further
study is needed.
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