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Abstract: The penalized likelihood estimator is the state-of-the-art method for
estimating a Gaussian graphical model, because it delivers a symmetric graph and
is efficient to compute, owing to the graphical lasso implementation. However, the
estimator requires a stringent irrepresentability condition in order to achieve con-
sistent recovery of the underlying graph. Another popular method, neighborhood
selection, does not offer a symmetric solution by itself, and also requires a set of
irrepresentability conditions for exact recovery. In this paper, we propose a new
method, called the simple graph maker, for estimating an underlying graph. The
simple graph maker produces a symmetric estimator by using a simple ¢;-penalized
quadratic problem, which is easily computed by coordinate descent. Furthermore,
it is shown to recover the underlying graph with overwhelming probability, without
assuming additional structure conditions on the variables. The rates of convergence
under various matrix norms are also established. The new method is shown to
exhibit excellent performance on simulated and real data.

Key words and phrases: Coordinate descent, exact recovery, Gaussian graphical
model, graphical Lasso, irrepresentable conditions, sparsity.

1. Introduction

In this study, we examine the problem of constructing a Gaussian graphical
model from n independent and identically distributed observations (i.i.d.) from a
multivariate Gaussian distribution. Suppose that X = (X, X,,..., X,)” follows
a multivariate Gaussian distribution N,(p, ¥*). Let ©* = (6;;) and X* = (©*)~"
denote the precision matrix and the covariance matrix, respectively. It is known
that the (7,7) element of ®* is zero if and only if variables X; and X, are
conditional independent, given all the other variables (Lauritzen (1996])). Thus,
data analysts often use the sparsity pattern of an estimated sparse precision
matrix to construct a Gaussian graphical model that describes the dependence
relationships between variables. As a result, the problem of estimating a large
sparse precision matrix has received increased attention in the past decade, for
a comprehensive review, see Chapter 9 of Fan et al.| (2020), and the references
therein. Currently, the two most popular methods are neighborhood selection
(Meinshausen and Bithlmann| (2006)) and the penalized likelihood estimator (i.e.,
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the graphical lasso)(Yuan and Lin| (2007); Rothman et al. (2008); Friedman,
Hastie and Tibshirani| (2008); Ravikumar et al.| (2011)).)

In this paper, we propose a new method for estimating an underlying graph.
In order to motivate our proposal, we first discuss the strengths and weaknesses
of the two most popular existing methods. Neighborhood selection was proposed
prior to the penalized likelihood estimator. It is a column-wise recovery method,
in the sense that it estimates the columns of ®* one by one. As a result, the
matrix estimation problem is cast into p separate vector estimation problems,
making the computation easy by running a lasso linear regression. However, the
solution is usually not symmetric, and hence a post-processing step is necessary
to make the estimator symmetric. This was the major motivation for researchers
to study the penalized likelihood estimator. The graphical lasso delivers a
sparse symmetric precision matrix estimator by following the penalized likelihood
principle. In addition, the graphical lasso can be solved efficiently (Friedman,
Hastie and Tibshirani| (2008])), making it the first choice for many users when
a sparse precision matrix estimator is needed. Theoretically, neighborhood
selection requires an irrepresentability condition (Zhao and Yul (2006); Zou
(2006)) in order to estimate each column of ®*. A similar matrix-version of the
irrepresentability condition is required for the graphical lasso (Ravikumar et al.
(2011))). Because these conditions are so stringent, theoretical support for the two
methods is not strong. Note that these issues cannot be removed by replacing
the lasso penalty with the adaptive lasso penalty or the concave penalty, because
the likelihood function or the “loss” function in neighborhood selection is a key
factor in creating these theoretical obstacles. See the discussion in Section 2.3
for details.

Based on the above discussion, we develop a new method for estimating a
sparse precision matrix that has three desirable properties:

1. the proposed method yields a symmetric matrix estimator, as in the case of
the graphical lasso;

2. the proposed method is computationally efficient;

3. the theoretical justification for the proposed method does not require the
irrepresentability condition or other strong structure conditions.

In other words, the proposed method enjoys the advantages of existing methods,
but avoids their major drawbacks.

In Section 2, we present the technical details of the proposed method, which
we call the simple graph maker (SGM). The SGM estimator is symmetric and
easy to compute. In Section 3, we prove its sparse recovery property and
establish its rates of convergence under several common matrix norms. In
Section 4, we present a simulation study and real-data examples to demonstrate
the performance of the proposed method, and compare it with Glasso, Galasso
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(Fan, Feng and Wu! (2009)) ), CLIME (Cai, Liu and Luo| (2011)) and Dtrace (Zhang
and Zou (2014)) methods. Technical proofs are relegated to the appendix.

2. Methodology
2.1. Notation

Here, we introduce the notation and definitions used throughout this paper.
For a vector v, ||V||max = max; |v;], ||V||min = min; |v;], and [v]; =3, |v;|. We use
Amax(A) and A (A) to denote the largest and smallest eigenvalues, respectively,
of a matrix A. Denote by tr(A) the trace of a square matrix A. For a real matrix
A = (aij); [|Allmax = maxjlay|, |[[Allmin = mingjlagl, [|AlL = 32, lail,

[Alle, = max; Y, [ay|, [|All, = max; 37, lai|, [|Allr = (/32 ;]a;]? and
|Allz = VAmaz(ATA). We use A > 0 to indicate that A is a positive-definite
matrix. We write A; = A, when A, — A, is a positive semidefinite matrix. We
use vec(A) to denote the vectorization of A in the column by column order. Let
e; be the ¢th column of the p-dimensional identity matrix. We use A oB to denote
the Hadamard product of matrices A and B. Define I'(X) = (1/2)(Z®I+I®X),
where ® is the Kronecker product. It is easy to see that I'(X) is positive definite
when 3 is positive definite. Let S = {(i,7)|0;; # 0} denote the support set of
©*, and S¢ the complement of S. For each j, let S; = {(,7)[0;; # 0} be the
support set of the jth column of ®*, and let S¥ be the complement of S;. Let
d = max; |S;| and s = |S].

2.2. The SGM

Let 3 be the sample covariance matrix, and define S=3+ av/logp/nl,
where a is a positive constant. If 3 s positive definite, we can set a = 0. The
perturbation term a+/logp/nl is primarily used to improve the numeric stability
of the estimator when 3 has a zero or near zero eigenvalue. The theoretical upper
bound on a is given in the next section. In practice, we use a small a, such as
a = 0.05.

The SGM @SCM ig defined as follows:

~ 1 ~
©5M — argmin 3 tr(@7X0) — tr(@) + A ||[W o O], (2.1)

[SEEC)

where \; is a penalization parameter, and the adaptive weight matrix W = (w;;)
is computed from

o (min{]égjy, ’é%} +u(n,p))~t fori#j
? 0 for i = j,

~

where (Qg);; = é?j is a pilot estimator of @*, and u(n,p) is a positive-valued
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function of n and p. In theory, we can let u(n,p) = 0 and set the weight w;; = co
if dividing by zero occurs. When w;; = oo, it automatically implies that éijM =0.
Any u(n, p) below a theoretical upper bound is good, in theory. In practice, we use
a small, but positive u(n, p) to avoid zero division, for example, u(n, p) = (np) 2.

Given the weight matrix, it is easy to solve the optimization problem in .
In order to handle the symmetry constraint, we parametrize ® = (6;;) with 6,;; =
0;;. Then we recast the constrained optimization problem as an unconstrained
¢, penalization problem in which the unknowns are 60,;, for 1 < i < p, and 6,;,
for 7 > i. Note that the objective function in is a quadratic function of the
unknowns plus the weighted ¢;-penalty term. Following [Friedman, Hastie and
Tibshirani| (2010), we use the coordinate descent algorithm and computational
tricks, such as active set update and warm start, to solve for a grid of \;
values.

We now discuss the pilot estimator from which we compute the weight matrix.
The primary goal is to ensure that the SGM estimator recovers the true graph
with probability going to one as the sample size and the dimension grow together.
Our analysis of the SGM estimator reveals a sufficient condition for the weight
matrix under which the exact recovery property of the SGM estimator holds.
Based on that analysis, we design a pilot estimator ©, as follows:

~ 1 ~
®( = argmin 5 tr(@7X0) — tr(®) + \||O||1, (2.2)
©

where )\ is a tuning parameter.

Remark 1. A seemingly natural pilot estimator is

&, — argmin - 11(O75O) — tr(©) + Ao||O| .. (2.3)
e0T—e 2

Although we do not deny the legitimacy of ©, as a pilot estimator for the SGM
estimator, we prefer to use C:)O, for computational convenience. We can use the
coordinate descent algorithm for solving to solve . It turns out that
is even easier to compute, owing to the removal of the symmetry constraint.
Let 6, denote the jth column of ®. Observe that

1 - SN gy
5 1(©750) — t(®) + Xo|[®]l, = > (205203- —0;; + >\0|9j’1>-

j=1
Therefore, if §; is the minimizer of (1/2)9?5]@ —0,;+X0|0;]1, then @ = [0 -- - 6,]

is the minimizer of (1/2) tr(@7X@) — tr(®)+ \o||®||;. Hence, we can solve (2.2)
by solving p ¢;-penalized quadratic problems in parallel.
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The construction of the SGM estimator is traced back to the penalized Dtrace
loss estimator (Zhang and Zou| (2014)),

(E)ntileLD(@,E)-F)\H@Hl, (2.4)
where the loss function Lp (0, X) = (1/2) tr(@TX0O) —tr(O) is called the Dtrace
loss. Note that the graphical lasso estimator is mines o Lg(©,3) + A||©]|,, with
Ls(0,%) = tr(X0) —logdet(®). The Lg loss function is essentially the negative
log-likelihood function (up to a scale factor and a constant term). The Dtrace
loss was originally proposed as a nonlikelihood-based approach to estimate a large
precision matrix. However, the penalized Dtrace loss estimator also requires a
kind of irrepresentability condition in order to recover the true graph consistently.
That motivated us to use an adaptive lasso penalty (Zoul (2006)) to replace the
lasso penalty in . Further, if we aim to recover the true graph, we need only
have the symmetry constraint, and can be free with the eigenvalue constraint.
Thus, we remove this constraint to explore the fact that Lp is a quadratic function
of ®. As a result, we can use the coordinate descent algorithm to compute
a solution path of the SGM estimator. If we choose to keep the eigenvalue
constraint, the state-of-the-art algorithm for with an adaptive lasso penalty
is the alternating direction method of multipliers (ADMM) (Boyd et al.| (2011))).
We need to run the ADMM algorithm for each penalization parameter. Thus, it
is computationally much more expensive than the SGM estimator.

Remark 2. We comment on the tuning of the SGM estimator. Suppose that we
have a training set and a validation set. Denote by C:)g’”()\o) the pilot estimator,
with )y as its penalization parameter. Let 35, be the sample covariance matrix
from the validation data. Then, the validation error is defined as ValErr()\g) =
Lp(O! (\o),2,), which we can use to compute the cross-validation (CV) error,
if necessary. After computing the solution path of the pilot estimator for a grid
of g values, we can pick the one yielding the smallest validation (or CV) error.
Then, we fix Ay (and hence the pilot estimator and the weight matrix) when
selecting A, in (2.I). Likewise, let @M ()\,) be the SGM estimator with A, as
its penalization parameter. Then, its validation error is defined as ValErr(\;) =
Lp(©$SM()\), 33,), which we can use to compute the CV error, if necessary. After
computing the SGM estimator for a grid of A; values, we pick the one with the
smallest validation (or CV) error. The procedure is similar to the tuning of the
graphical lasso, in which Lg (instead of Lp) is used to compute the validation
(or CV) error.

2.3. Comparison with related estimators

In this section, we discuss several other related estimators. As noted earlier,
neighborhood selection and the graphical lasso require the irrepresentability
condition in order to be consistent in terms of recovering the true graph. The
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irrepresentability condition is caused by the lasso penalty. A natural remedy is to
use the adaptive lasso penalty in these two methods. For neighborhood selection,
we can first fit the lasso regression, and then fit an adaptive lasso regression to

estimate the support of each column of the precision matrix. For j =1,2,...,p,
(N1). First solve ming Y0 | (X, ; — X, XuBy)? + Ao Sis |41] and let w; = (6] +
u(n, p))~".

(N2). Then, solve ming y (X, ; — P XuB)? + M\ > i wy|Bi].

For the graphical lasso, the modified procedure is as follows:

(G1). First solve mineyo La(©,3) + Ao||®||; and let w;; = (16;;] 4+ u(n, p))~".
(G2). Then, solve mine, o Le(0, ) + A ||[W 0 O|,.

For their theoretical justification, we need to show that the estimator is good
enough such that the next step delivers the right solution, in theory. For the
lasso regression, the rate of convergence of B can be established without using
the irrepresentability condition. Still, we need to assume other conditions on the
Gram matrix, such as the restricted eigenvalue condition or the compatibility
condition, that remain difficult to satisfy in practice; see |Biihlmann and van de
Geer| (2011) and |[Fan et al. (2020). For a more general lasso problem, such
conditions are imposed on the Hessian of the loss function. In other words, the
two estimators still require some structure assumptions in addition to the sparsity
assumption of @*.

In practice, the modified neighborhood selection estimator is still not
symmetric. Thus, the modified graphical lasso procedure is preferred, which
we refer to as Galasso, and include it in our numerical study.

An alternative is to use the folded concave penalty (Fan and Li (2001))) in step
(N2) and step (G2) (Fan, Feng and Wu| (2009)). The theory for folded concave
penalized estimation also requires a reasonably good estimator (Fan, Xue and
Zou| (2014)). There is no fundamental difference in theory between using the
folded concave penalty and the adaptive lasso penalty. We must deal with the
nonconvexity problem when using the folded concave penalty. When applicable,
the coordinate descent algorithm often finds a suboptimal local solution of the
folded concave penalized problem, as shown by examples in [Fan, Xue and Zou
(2014). A better algorithm is the local linear approximation algorithm (Zou and
Li (2008))), which is shown to find the oracle solution within two iterations with
a high probability under ultrahigh dimensions (Fan, Xue and Zou (2014))). Each
iteration is an adaptive lasso penalized problem.

3. Theory

Our analysis uses the following well-known proposition, which is shown under
the sub-Gaussian assumption for the distribution of X = (X, X, ..., X,)’.
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Proposition 1. For any 0 < € < 1, there exists some cq > 0, such that
P(||2 — Z*||max > €) < p® exp(—cone?).

Proposition 1 is obtained by the union bound and the bound on |&;; — 5
by the sub-Gaussian assumption (Ravikumar et al.| (2011))).

First, we show the validity of the pilot estimator. The pilot estimator is
only used to compute the weight matrix in the SGM estimator. We do not need
to worry about whether it can recover the true graph with a high probability.
Because the weight matrix is defined entrywise from the pilot estimator, the
analysis of the SGM estimator shows that it is sufficient to require the pilot
estimator to be close to the true precision matrix under the matrix max norm.
This property of the pilot estimator is established in Theorem 1.

Theorem 1. Let M = ||®*||,,, and take 0 < a < A\o/(4M). With probability at
least 1 — p* exp(—conA3/(16M?)),

A 5
[|©@0 — OF|max < 5)\OM.

Based on Theorem 1, we can set A\g=c;+/log p/n where ¢; > /(32 + 16ty)/co

M, and to > 0 is a constant. Pick any 0 < a < ¢;/(4M). Then, with probability

at least 1 — p~, we have ||@g — @*||max < (5/2)c; M \/log p/n.
The next theorem concerns the exact recovery property of the SGM estimator
and its rates of convergence under some matrix norms.

Theorem 2. Let ¥ =min,cs |03, G = (Pse) e and H=|[T5s(Tss) e,
where I'* = T'(X*). Take A\ < (1/(5M))[{¥/(2H + 1+ dG¥(1 + H))}—2u(n,p)]
where u(n,p) < V/{22H +1+dG¥(1+ H))}, A < min{l/(2dG), ¥?/(2G
(24dGY)), Amin(©*)/(2min{y/s,d}((2/¥) + dG)G)}, and 0<a < min{Ay/(4M),
A1/2}y/n/logp. Then, with probability at least 1 — p* exp(—con min{\2/(16M?),
A2 /4}), OSM s positive definite and recovers the true graph, that is, {(z,])|é”
# 0} = S. Furthermore, we have

N 2
15N — ©||ax < 2(\11 + dG) G,
A 2
165N — ©°|| < 2\/§<qj - dG)G/\l,

A 2
|O5M — @], < 2min{\/5, d} (\P + dG) G,

Remark 3. Based on Theorem 2, we can take Ay = ¢;+/log p/n, A\; = c2\/logp/n,

where
32 + 16t, o1 v
Ry Ny
co S\ logp 10M 2H + 1+ dGW(1 1 H)
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and

8 + 4ty
Co

< Co

n . 1 w2 )\min(g*)

<\ logp ™™ { 24dG’ 2G(2 + dG¥)’ 2min{ /s, d} ((2/T) + dG)G}'
Further, let the small perturbations a and u(n, p) satisfy 0 < a < min{c¢,/(4M),
c2/2} and u(n,p) < V/(4(2H + 14 dGY(1 + H))), respectively. Then, with
probability at least 1—p~fo, OSCM g positive definite and recovers the true graph,
with matrix bounds ||©3M — ©*||,ax < 2((2/¥) + dG)Geyy/log p/n, ||©5M —
O*||r < 2/5(2/V +dG)Geyv/logp/n, and ||©35M — ©*||, < 2min{/5,d}(2/¥ +
dG)Geg/logp/n. Comparing these with the results for the graphical lasso
in Ravikumar et al. (2011) under the irrepresentable condition, the SGM and
the graphical lasso have similar asymptotic rates of convergence under different
matrix norms.

Remark 4. Although the SGM estimator is positive definite with overwhelming
probability, it is not guaranteed to be positive definite for every data set. In all
of our numerical examples, we have checked that the computed SGM estimator is
positive definite. If the user only cares about recovering the graph, then this is not
important, as for neighborhood selection. On the other hand, if the application
demands using a positive-definite matrix estimator, and OSeM happens to have a
zero or negative eigenvalue, we can perform an additional optimization by adding
an eigenvalue constraint, as follows:

~ 1 ~
©5°M = argmin - t1(@7XO) — tr(O) + \,|[W 0 O, (3.1)

©>10-5I

which can be solved efficiently using the ADMM algorithm in [Zhang and Zou
(2014)). Note too that we only solve (3.1)) after tuning the SGM estimator, which
means that A; is the chosen penalization parameter in the final SGM estimator
and the weight matrix is given too. Thus, we run the ADMM algorithm only
once.

4. Numerical Results
4.1. Simulations

In the simulation study, we generate n i.i.d. samples from N,(0,X*) under
four different ®* generation processes:

Model 1: ©* is fixed, with 0; = 1, and 0;; = 0.3 for |[i — j| = 1, and 0;; = 0
otherwise.

Model 2: ©* is fixed, with 0;; = 1, and ¢;; = 0.4 for |i — j| = 1,0;; = 0.3 for
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li —j| =2,0;; = 0.2 for [i — j| = 3, and 0;; = 0 otherwise.

) Vig
Model 3: ©* is generated randomly. First, let B = (b; ;) be a p X p matrix, such
that b;; = b;; xR Bernoulli(q),¥i > j. The diagonal elements of B are
zero. Next, select § € R such that M = B + I is positive definite and
the condition number of M equals to p. Finally, select a > 0 and let the
precision matrix ®* = aM such that the diagonal elements of ®* are equal
to 1. We set ¢ = 0.05 in the simulations.

Model 4: ©* is generated randomly. Let @', @2 ... ©° be five (p/5) x (p/5)
matrices generated independently by model 3, with ¢ = 0.25. Then, the
precision matrix @* = diag{®*, ..., ©°}.

Model 1 and model 2 are commonly used for precision matrix estimator
comparisons (Zhang and Zou| (2014))). The generation process of model 3 is based
on that of model 2 in |Cai, Liu and Luo (2011). Model 4 is the block-diagonal
version of model 3, corresponding to a graph with five unconnected parts, with
denser connections within each. We set ¢ = 0.05 and 0.25 for model 3 and model
4, respectively, such that the overall sparsity levels of the precision matrices are
the same. In each model, we use three n, p combinations: (i) n = 400, p = 100; (ii)
n = 400, p = 500; and (iii) n = 100, p = 500. We compare theSGM with Glasso,
Galasso, the Dtrace estimator (Zhang and Zou| (2014)), and CLIME (Cai, Liu
and Luo| (2011)). Glasso and CLIME are implemented using the R packages
glasso and clime, respectively. Dtrace is implemented using the code from [Zhang
and Zou| (2014). The performance of each estimator is evaluated by the following
measures:

e Frobenius risk E||© — ©*||y; spectral risk E||/© — @*||,; the £ risk E||© —
O*||s,; the max risk F||© — O*||,,4z

e Sensitivity = T'P/(T'P + FN), and Specificity = TN /(TN + FP), where
TP, FP, TN and FN denote the numbers of true positives, false positives,
true negatives, and false negatives, respectively.

The results are summarized in Tables 1-12, where we report the mean and
standard error of each metric based on 100 independent repetitions. We also
report the running time of each method, in seconds. Note that when p = 500,
the code for CLIME gives an error message or does not finish the computation
within one hour. For these cases, we record NA for CLIME.

Several observations can be made from these tables. For the quality of the
estimates, under model 1 with n = 400 and p = 100 or n = 400 and p = 500,
the SGM performs similarly to Galasso, and both outperform the other methods.
For model 2 with n = 400, and p = 100 or n = 400 and p = 500, the SGM is a
clear winner among all the methods. When the precision matrices are generated
randomly, in the n = 400 and p = 100 scenario (table 7 and 10), the SGM gives
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the best estimates, measured by all the matrix norms, sensitivity, and specificity.
When n = 400 and p = 500, the SGM is the best measured by the [;-norm
for model 3, and the best measured by the spectral norm and the /;-norm for
model 4. In the scenario of n = 100 and p = 500, under all four data-generating
models, the SGM is among the best when measured by the [;-norm, and has a
slightly larger ls-norm. Overall, the simulation results provide numerical results
that confirm or complement the theoretical bounds for the SGM.

The SGM and Galasso have comparable computing time, and both are much
faster than Dtrace and CLIME. The ratio of the timing between the SGM and
Glasso is about five and the ratio of the timing between the SGM and Galasso is
about two. The ratio stays stable when p increases from 100 to 500, suggesting
that the SGM can scale as well as Glasso or Galasso for practical applications.
In addition, we observe that the SGM is the one of the most stable methods. In
some runs, CLIME, Glasso, and Galasso either report error messages or cannot
finish the computation within one hour. When an error message occurred, we do
not use that run to compute the average and standard error for that method. In
contrast, the SGM exhibits no such an issue in our simulations.

4.2. Real-data examples

We examine the performance of the SGM on two gene expression data sets.
Data set 1 contains data on prostate cancer, studied by Singh et al| (2002).
It contain 52 prostate tumor samples and 50 nontumor prostate samples, with
12,600 gene expression levels. Data set 2 contains data on breast cancer, analyzed
by |Hess et al. (2006), and consists of 22,283 gene expressions of 133 subjects,
among which, 34 have pathological complete response and 99 have residual
disease. First, we randomly split each data set into training, validation, and
test sets of almost equal sizes. The splits are done in a stratified way, such that
the class proportions are preserved in each set. Then, using the training and
validation sets, we preprocess the data by screening the genes (Fan and Fan,
2008; |[Fan, Feng and Wu, 2009)) down to a subset of size p,, containing the most
significant genes, according to the two-sample t-tests between the two classes,
and standardizing the gene expressions.

To estimate the precision matrices, for each method, we fit it using the
training set on a grid of regularization parameter values, and choose the best
estimate by minimizing a loss function on the validation set. Here, the Dtrace
loss is used for the SGM and Dtrace, and the graphical lasso loss is used for
Glasso, Galasso, and CLIME. We report the ratios of nonzero entries in the
estimated precision matrices. A sparser estimate is usually more favorable, for
ease of interpretation. Because the true precision matrices are unknown, we
examine and compare the quality of the precision matrix estimates by using
a linear discriminant analysis (LDA) in which the resulting precision matrix
estimator can be used to fit the LDA rule. The rationale is that a better precision
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Table 1. Model 1 with n = 400 and p = 100.

[lle ldlz Wl I llmae  Sen. — Spe.  Time(s)
SGM 1170  0.302 0419 0206  1.000  0.995 1.701
(0.007)  (0.004) (0.006) (0.003) (0.000) (0.000)  (0.002)
Glasso 1.808  0.409 0710 0213  1.000  0.905 0.432
(0.007) (0.002) (0.006) (0.002) (0.000) (0.002)  (0.002)
Galasso 1161 0297 0417  0.192  1.000  0.993 0.949
(0.006) (0.004) (0.005) (0.002) (0.000) (0.000)  (0.004)
CLIME 1581 0311 0443 0217  1.000 0967 353.795
(0.005) (0.003) (0.004) (0.002) (0.000) (0.001)  (0.165)
Dtrace 1.620  0.366  0.626  0.202  1.000  0.921 2.942
(0.006) (0.003) (0.006) (0.002) (0.000) (0.001)  (0.016)

Table 2. Model 1 with n = 400 and p = 500. The code for CLIME gives an error message
or does not finish the computation within one hour.

[lle lll2 Wl I llmae  Sen.  Spe.  Time(s)
SGM 23863 0.374 0538 0256  1.000 0.998 197.519
(0.007) (0.003) (0.005) (0.003) (0.000) (0.000)  (0.962)
Glasso  4.853  0.492 0947 0258  1.000 0972  44.053
(0.007) (0.002) (0.008) (0.001) (0.000) (0.000)  (0.234)
Galasso  2.789  0.370  0.538  0.249  1.000  0.980  78.001
(0.007)  (0.003) (0.006) (0.003) (0.000) (0.000)  (0.406)
CLIME NA NA NA NA NA NA NA
Dtrace  4.227 0444  0.742 0247 1000  0.980 257.417
(0.006) (0.002) (0.004) (0.002) (0.000) (0.000)  (3.967)

Table 3. Model 1 with n = 100 and p = 500. The code for CLIME gives an error message
or does not finish the computation within one hour.

[-lle lllz Wl I llmae  Sen.  Spe.  Time(s)
SGM 8208 0839  1.346 0499  0.738  0.998 273.517
(0.014)  (0.009) (0.018) (0.009) (0.002) (0.000)  (1.875)
Glasso 8434  0.776  1.670 0381  0.896 0976  98.188
(0.010)  (0.001) (0.010) (0.003) (0.002) (0.000)  (0.549)
Galasso  7.968  0.788  1.319 0416  0.773  0.996  138.960
(0.013)  (0.005) (0.011) (0.006) (0.002) (0.000)  (0.653)
CLIME NA NA NA NA NA NA NA
Dtrace  8.287  0.766  1.310 0473  0.860  0.990 437.238
(0.011) (0.004) (0.015) (0.008) (0.002) (0.000)  (0.574)
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Table 4. Model 2 with n = 400 and p = 100.

[-lle lll2 Wl I llmae  Sen.  Spe.  Time(s)
SGM 1939 0580 0958 0216  0.991  0.978 1.848
(0.011)  (0.007) (0.011) (0.002) (0.000) (0.000)  (0.004)
Glasso 4503 1242 2049 0290  0.998  0.689 0.434
(0.02)  (0.006) (0.008) (0.002) (0.000) (0.003)  (0.002)
Galasso  2.759  0.832  1.333  0.242 0989  0.934 1.021
(0.018)  (0.007) (0.011) (0.003) (0.001) (0.001)  (0.004)
CLIME 3830 0.751 1458  0.384 0991  0.848  374.404
(0.011)  (0.006) (0.009) (0.004) (0.001) (0.003)  (0.445)
Dtrace 3.108  0.888 1582  0.236 0999  0.771 3.017
(0.016)  (0.007) (0.011) (0.002) (0.000) (0.004)  (0.017)

Table 5. Model 2 with n = 400 and p = 500. The code for CLIME gives an error message
or does not finish the computation within one hour.

[-lle -l I-lle - llmae  Sen.  Spe.  Time(s)
SGM 5800 0857 1402 0297  0.963 0992 231.802
(0.017)  (0.006) (0.009)  (0.002)  (0.000) (0.000)  (2.340)
Glasso 13.397  1.630 2758  0.368  0.975  0.897  46.049
(0.034)  (0.004) (0.014) (0.001) (0.001) (0.002)  (0.623)
Galasso 9230  1.247 2000 0345 0932 0980  87.763
(0.035)  (0.005) (0.010) (0.004) (0.001) (0.000)  (1.064)
CLIME NA NA NA NA NA NA NA
Dtrace  9.678 1243 2,036 0315  0.991  0.938  218.368
(0.039)  (0.006) (0.011)  (0.002)  (0.000) (0.001)  (0.137)

Table 6. Model 2 with n = 100 and p = 500. The code for CLIME gives an error message
or does not finish the computation within one hour.

e Il Wl I llmaw  Sen.  Spe.  Time(s)
SGM 18136  2.130 2382 0541 0204 0999 364.245
(0.012)  (0.001) (0.004) (0.002) (0.001) (0.000)  (3.469)
Glasso 17.940  2.099 2773 0510  0.358  0.984  96.880
(0.007)  (0.001) (0.010) (0.002) (0.002) (0.000)  (0.476)
Galasso 18.128 2,126 2517 0526 0212  0.999  140.462
(0.008)  (0.001) (0.007) (0.002) (0.001) (0.000)  (0.690)
CLIME  NA NA NA NA NA NA NA
Dtrace 17.962  2.106  2.396  0.521  0.286  0.993  463.535
(0.009)  (0.001) (0.004) (0.002) (0.002) (0.000)  (1.098)
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Table 7. Model 3 with n = 400 and p = 100.
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[lle ldlz Wl I llmae  Sen. — Spe.  Time(s)
SGM 1424 0369 0669 0210  0.998  0.986 2.353
(0.009) (0.005) (0.009) (0.003) (0.000) (0.000)  (0.017)
Glasso 2.284  0.645 1353 0249 1000 0811 0.370
(0.019) (0.007) (0.014) (0.003) (0.000) (0.006)  (0.006)
Galasso 1577 0443 0762 0219 0998  0.987 0.905
(0.018)  (0.007) (0.012) (0.002) (0.000) (0.001)  (0.012)
CLIME 5251 2020 3200 1581  0.832 0901 344.889
(0.092) (0.044) (0.074) (0.068) (0.026) (0.008)  (0.491)
Dtrace 1.950  0.534  1.129 0210  1.000  0.856 9.840
(0.007) (0.004) (0.011) (0.002) (0.000) (0.002)  (0.068)

Table 8. Model 3 with n = 400 and p = 500. The code for CLIME gives an error message

or does not finish the computation within one hour.

[-lle Ill2 M-l I llmae  Sen.  Spe.  Time(s)

SGM  9.001 1563 3.145  0.309  0.643 0984  267.299
(0.018) (0.008) (0.014)  (0.003)  (0.003) (0.000) (1.779)

Glasso 9.313 1924 3847 0338 0898  0.866 73.949
(3 NAs) (0.047) (0.011) (0.02)  (0.004) (0.003) (0.004) (1.679)
Galasso 8518 1475 3154 0280  0.769  0.963  131.181
(3 NAs) (0.031) (0.011) (0.016) (0.004) (0.004) (0.001) (2.131)
CLIME  NA NA NA NA NA NA NA

Dtrace 8.829  1.863  3.431 0309 0842 0924 1.273.311
(0.013) (0.004) (0.014) (0.002) (0.002) (0.001) (4.490)

Table 9. Model 3 with n = 100 and p = 500. The code for CLIME gives an error message

or does not finish the computation within one hour.

[-lle A2 Il - llmaz  Sen.  Spe.  Time(s)
SGM 14018 2861 4632 0647  0.113 0996  517.967
(0.020)  (0.003) (0.022) (0.003)  (0.001) (0.000) (8.861)
Glasso 12.684  2.676  4.958 0480 0405 0934  125.451
(0.024)  (0.005) (0.021) (0.003)  (0.003) (0.001) (3.055)
Galasso 13.079 2623 4723 0511 0225 0984  185.978
(0.017)  (0.005) (0.021) (0.003)  (0.002) (0.000) (3.349)
CLIME NA NA NA NA NA NA NA
Dtrace 13.071  2.795  4.624 0565  0.269  0.934  1,327.819
(0.018)  (0.003) (0.022) (0.003) (0.002) (0.001) (6.106)
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Table 10. Model 4 with n = 400 and p = 100.

[-lle lll2 Wl I llmae  Sen.  Spe.  Time(s)
SGM 1542 0463 0824 0223  0.998  0.986 2.073
(0.011)  (0.009) (0.016) (0.003)  (0.000) (0.000)  (0.005)
Glasso  2.693 0916  1.700 0271  0.999  0.799 0.424
(0.017) (0.011) (0.019) (0.002) (0.000) (0.003)  (0.003)
Galasso  1.747 0599  1.030  0.234  0.996  0.970 0.915
(0.016) (0.011) (0.019) (0.002)  (0.000) (0.001)  (0.004)
CLIME 5130 158 2511 1313 0987 0901  394.392
(0.034) (0.022) (0.035) (0.024) (0.004) (0.004)  (0.253)
Dtrace  2.202  0.710  1.325 0222 1000  0.848 6.912
(0.011)  (0.009) (0.016) (0.003) (0.000) (0.001)  (0.048)

Table 11. Model 4 with n = 400 and p = 500. The code for CLIME gives an error
message or does not finish the computation within one hour.

[-lle -l I-lle - llmae  Sen.  Spe.  Time(s)
SGM 10.745 2266  4.007  0.336  0.525 0986 245.181
(0.016)  (0.008) (0.023) (0.003)  (0.002) (0.000)  (0.590)
Glasso 11.027 2565  4.670  0.349  0.784  0.870  57.883
(0.028)  (0.007) (0.023) (0.002) (0.003) (0.002)  (0.419)
Galasso 10.797 2330  4.152 0329 0590 0971 111.813
(0.027)  (0.010) (0.025) (0.003) (0.003) (0.001)  (0.655)
CLIME NA NA NA NA NA NA NA
Dtrace 10.669 2494 4216 0331  0.720  0.932  435.302
(0.011)  (0.006) (0.022)  (0.002)  (0.002) (0.000)  (1.566)

Table 12. Model 4 with n = 100 and p = 500. The code for CLIME gives an error
message or does not finish the computation within one hour.

e Il Wl I llmaw  Sen.  Spe.  Time(s)
SGB 14677 3223 4806  0.607  0.105  0.997 395.848
(0.021)  (0.006) (0.022) (0.003) (0.001) (0.000)  (2.776)
Glasso 13.992  3.144 5096 0501  0.322 0953  96.147
(0.021)  (0.006) (0.021) (0.002) (0.002) (0.001)  (0.908)
Galasso 14.137  3.087 4903 0516  0.179  0.990 155.107
(0.018)  (0.006) (0.021)  (0.002) (0.001) (0.000)  (1.029)
CLIME  NA NA NA NA NA NA NA
Dtrace 14.025  3.186  4.768  0.546  0.211  0.945  697.595
(0.021)  (0.006) (0.021) (0.002) (0.001) (0.002)  (2.629)
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matrix estimator leads to better classification accuracy. Similar comparison
methods based on the LDA are used in other work including [Fan, Feng and Wul
(2009) and |Cai, Liu and Luo| (2011). Here, we do not repeat the LDA formula.
The classification performance is evaluated using the sensitivity, specificity, and
Mathews correlation coefficient (MCC) metrics. Let TP, FP, TN and FN
denote the numbers of true positives, false positives, true negatives and false
negatives, respectively, on the test set. Then, these metrics are defined as
Sensitivity = TP/(T'P + FN), Specificity = TN/(T'N + FP), and MCC =
(TP xTN — FP x FN)/\/(TP+ FP)(TP+ FN)(TN + FP)(TN + FN).

In the variable screening step, both [Fan, Feng and Wu (2009) and |Cai, Liu
and Luo| (2011)) reduce the numbers of variables down to n + 1, where n is the
training sample size. Typically, variable screening reduces the dimension from
p to n, n/log(n), or 2n/log(n) (Fan et al. [2020))). [Fan, Feng and Wu| (2009)
and |Cai, Liu and Luo (2011)) set the reduced dimension to n + 1 to emphasize
that the sample covariance matrix for the reduced dimension is still singular.

Following their practice, we similarly set p, to be marginally larger than the
training sample size, letting p, = 35 for data set 1 and p, = 50 for data set 2.
The corresponding training sample sizes are 33 and 44, respectively. Because
p, is larger than the training sample size, we can examine the performance of
the methods when the input sample covariance matrices are not invertible. The
tumor group of data set 1 and the pathological complete response group of data
set 2 are treated as “positive” when computing the classification metrics. We
performed 100 repetitions in order to have a more stable comparison. The results
are reported in Table 13 (prostate cancer data) and Table 14 (breast cancer
data). For the prostate cancer data, the methods perform similarly in terms of
classification performance, with the SGM and Dtrace having the highest average
MCC scores. The sparsity level of the SGM is significantly better than those
of the other methods. For the breast cancer data, the SGM has a significantly
higher sensitivity score than Glasso, Galasso, and CLIME, and its specificity score
is comparable with those of the other methods. The MCC score of the SGM is
the highest among these methods. The SGM again achieves the best sparsity
level.

5. Conclusion

In this paper, we have introduced a simple method that we call the SGM
for recovering a Gaussian graphical model under ultrahigh dimensions. The
SGM is based on a simple quadratic loss function, and hence allows us to
use a simple coordinate descent algorithm to achieve excellent computational
efficiency compared with that of the graphical lasso, which requires a much more
sophisticated algorithm. The SGM can easily handle the symmetry constraint,
which is an obvious advantage over methods such as CLIME and neighborhood
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Table 13. Performance comparison between SGM, Glasso, Galasso, CLIME, and Dtrace
on a prostate cancer data set.

Sensitivity = Specificity ¥ MCC  Ratio of Nonzero Entries
SGM 0.899 0.920 0.822 0.095
(0.006) (0.008) (0.009) (0.004)
Glasso 0.900 0.899 0.806 0.330
(0.008) (0.009) (0.009) (0.004)
Galasso 0.902 0.904 0.812 0.143
(0.007) (0.009) (0.009) (0.002)
CLIME 0.894 0.904 0.803 0.822
(0.007) (0.008) (0.010) (0.007)
Dtrace 0.901 0.920 0.823 0.132
(0.006) (0.008) (0.009) (0.005)

Table 14. Performance comparison between SGM, Glasso, Galasso, CLIME, and Dtrace
on a breast cancer data set.

Sensitivity = Specificity ¥ MCC  Ratio of Nonzero Entries
SGM 0.753 0.736 0.448 0.063
(0.010) (0.008) (0.011) (0.002)
Glasso 0.543 0.800 0.339 0.266
(0.014) (0.008) (0.014) (0.003)
Galasso 0.626 0.779 0.387 0.102
(0.014) (0.008) (0.014) (0.002)
CLIME 0.663 0.766 0.403 0.653
(0.014) (0.008) (0.012) (0.008)
Dtrace 0.740 0.737 0.437 0.310
(0.010) (0.008) (0.012) (0.019)

selection. Although the SGM does not guarantee that the resulting precision
matrix estimator is positive definite, we provide a simple step to mitigate this
issue, and in our numerical experiments we check whether the SGM estimators
are positive definite in each run. We compare the rate of convergences of the
SGM and the graphical lasso, but the SGM does not require the irrepresentable
condition necessary for the graphical lasso. Our simulations confirm that the
SGM exhibits excellent and often improved performance over the graphical lasso.
Based on our results, we recommend using the SGM to estimate a large Gaussian
graphical model.
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Appendix

In this appendix we present the proof of the main theorems and the link for
downloading the code used in this paper.

A.1. Proofs

Proof of Theorem 1. We bound the difference between ©, and ©* under
element-wise /., norm under the event || — 3*|| 0 < Ao/(4M). Then

S S log p Ao
2_2* rrnx< 2_2* max < —.
15 = 3 s <115 = 3l 0y 2 < 2

Firstly, we show |0 —I||max < Ao. Since Oy is the optimal solution, it satisfies

i@o —I+)\020 - 0,

where Z = (2;) is the sub-gradient of 1©,| and

0 )= sign(0?) if 69, # 0
Ylel-L1]  if 6 =0

where ©, = (é?]) Thus, ||5]@0 —I||max = || — )\()Z()Hmax < X¢. Then we show
1©0le, < 3]|®*||s,. To prove this, it is sufficient to prove |0°; < 3|07|, for

i = 1,2,...,p where ©, = (69,09,...,8°) and ©* = (6;,6;,...,07). Let f
denote the function f(0;) = (1/2)07%6;, — €70, + Xo|6;], and A, := §° — 6,

. 1 oae . .
1(87) = 5(67)"267 — e/ 67 + Ao |s
1 -
= §(Ai+0§)T2(A¢+0;“)—eiT(A,;+0j)+)\o\A,;+0j|1

1 - B

Since 69 is the optimal solution, f(8%) < £(0:). The term ATSA,; > 0 because
of the positive definiteness of X. We have
Mol 0711 = 20|07 [1 = Xol A + 671 — X654
<elA, — ATS0;
= AT (Z - )0
Noticing

AT(Z* — )07 < |AL[(Z = 2)0; | max
< ALZ" = a0 1
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IN

Ao
20A,
A,

IN

Ao, A Ao
=169 —\e;

2 | ’L‘l + 2 ‘ 7 |17
it follows that [9°|, < 3|07|, for any i. Therefore,

1©0 — O |max = [|O*(Z*O, — O + TG — 1)||1max
<O, [1Z" = B[ max![Oolle, + [1O7[],, [[ZO0 — I||max
< g)\oM-i-)\oM

)
= —AoM.
50

This completes the proof.
©sSaeM

Proof of Theorem 2. For simplicity, we use O to represent in this proof.

We first prove that © recovers the true graph under the event Hﬁ — X max <
min{\,/(4M), \;/2}. First, we note that

- . /1 A
HE_E*HmaXSHz_E*HmaX"’a nggmin{m(},/\l}.

Define © as the optimal solution for the following problem:

~ 1 -
© = argmin —tr(@'X0) —tr(®) + )\ |[W o O||,.

©5:=0,0T=0

It suffice to prove (i) @ recovers the true graph and (ii) @ = @. To show
(i) and (ii), we define two quantities Ag = [|(Tss) ™" — (Tsg) Y], and Agy =
|ITses(Tss) ™t — Dieg(Tsg) | where T' = T'(X). We first bound Ag and Ag.

Ag = [|(Tss) " (Tss — Ts)(Tis) ~Hlew

< [|(Tss) Mlew [ITss — Tasllew [|(Ths)  lew
< (G +Ag)dNG,

Blle., and [|A + Blle, < [[Alle. +
||B||,.. for any matrices A and B. It is easy to see

oo ’

where we use inequalities ||AB|[,. < ||A]l,

(A1)

The bound is larger than 0 since \; < 1/(2dG).

Ap < |[|[(Tses — Theg)(Tss) Hew + | Thes((Tss) ™t = (Tg) ™o
< (IPses = Tsesllee + (TS5 (Tss) " (Tss — Tég)le)(Tss) ™ lew
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<d\M(1+H)(G+ Ag) (A.2)
dAG(1+H)
— 1—-d\ G
Now we show (i). It is enough to show that none of the elements of @y is
zero. Note that © satisfies the optimality condition
1 =~ =~-= -
(2(E®+ eX)-I+\Wo Z) =0,
s
where Z denote the sub-gradient of |@|, and ||Z||max < 1. Or equivalently,
(T vec(©) — vec(I) 4+ A vec(W 0 Z))s = 0. (A.3)

Using partitions ® = (@g, Og.) = (04,0),1 = (Is,Is.) = (I5,0),W = (Wg,
W) and Z = (Zg, Zs-), we have

s vec(ég) —vec(Is) + Ay vec(Wg o ZS) =0.
Thus, we have
vec(@g) = (Tss) H(vec(Is) — A vee(Wg 0 Zg)). (A.4)
We rewrite (A.4]) as follows:
vec(@s) = (Tg) " (vee(Is) — Ay vee(Ws o Zs))
+((Tss) ™ = (Tis) ™ h) (vee(Is) — Ay vee(Ws o Zg)).

Because I'y g vec(®%) = vec(Is) and ||[AB||max < [|A]leo ||B]]maxs

1 vec(©s) lmin = || vec(©F)|lmin — MGl Wsllmax — A (1 + At [W[max)
2 \II - 2)\1G(||WSHmax + dG)
2
>0 — 2/\1G( + dG)
LG
> 0,

where the second inequality is due to (A.1) and the third inequality is due to the
following bound of ||Wg||max:
1 1 2

HWS'Hmax S ~ S S I A5
mingpes 05 ¥ - (BMA)/2 ¥ (49

Now we show (ii). The objective function in (2.1)) is strictly convex since its
Hessian matrix I' is positive definite. So any solution that satisfies optimality
condition is the unique optimal solution. Since (A.3) is already satisfied, we only



2062 YIN, SONG AND ZOU
need to show the following equation to prove e =06.
(T vec(®) — vec(I) 4+ A vec(W 0 Z))ge = 0,

which is equivalent to
ITses vec(@g)| < A |[Wgel.

It is sufficient to have

|ITges vee(@g)]lmax < Ai]|We

min- (A.6)

Partition I'* vec(®* ) =vec(I). We have I't ¢ vec(®%) = vec(Is) and I'i. g vec(©O%)
= vec(Ise) = 0. So vec(Is.) = Tio(Thg) *vec(Is) = 0. By (A.4), we have
FSCS VeC(@S) = I‘Scs(rss)il(—)\l VeC(WS OZS)) + (sts(]?ss)il —I‘E«CS(FES)il)
vec(Is), which implies

Hf‘SCS Vec(éS)Hmax S (H + AH))\lH‘A]SHma,x + AH

By (A.2), we get

NG + H NG+ H)
MG W GGt )
1= G Wl =507 (A7)
< (2H + DM [|Ws]|max + 2dNG(1 + H).

Hf‘SCS VeC(és)‘ |max <

On the other hand,

1 1
~ > .
03] +u(n,p) (5MXo)/2 + u(n,p)

||[W se

(A.8)

min —

maX(m-)ESc

Then, (A.6)) is obtained by combining (A.5), (A.7), (A.8) and Ny < (1/5M)
{U/(2H +1+dGU(1+ H)) — 2u(n,p)}. This completes the proof that @
recovers the true graph.

Finally, we show results of various matrix norms. Because 6= O, it is easy
to use (A.1), (A.4) and (A.5) to show that

16 — © s = [ vec(B5) — vec( @) s
= (B ss) ™ = (L)) vee(Ts) = M (Fis) " vea( Wi o Zs)
§ AG —+ )\1||WSHmax||(f‘SS)_1H£oo

2
<Ag+ )\16<AG + Q)

2
< 2(\11 + dG) G\



A SIMPLE METHOD FOR ESTIMATING GAUSSIAN GRAPHICAL MODELS 2063

Then
A ~ 2
1@ — OF||r < V$||O — OF|nax < 2\/§<\I] + dG)G)\l,
« A 2
[|©@ — ©F||; < min{y/s,d}||© — OF||max < 2min{y/s, d}<q; + dG) G\.

Because A; < Amin (©%)/{2min{\/s, d}(2/U + dG)G}, ||© — O[] < Amin(OF), s0

~

Amin (@) > 0. This completes the proof.
A.2. Code

The code for implementing the SGM estimator is available at the follow-
ing Github link: https://github.com/songyng/A-Simple-Method-for-Estimating-
Gaussian-Graphical-Models| .
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