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Abstract: The penalized likelihood estimator is the state-of-the-art method for

estimating a Gaussian graphical model, because it delivers a symmetric graph and

is efficient to compute, owing to the graphical lasso implementation. However, the

estimator requires a stringent irrepresentability condition in order to achieve con-

sistent recovery of the underlying graph. Another popular method, neighborhood

selection, does not offer a symmetric solution by itself, and also requires a set of

irrepresentability conditions for exact recovery. In this paper, we propose a new

method, called the simple graph maker, for estimating an underlying graph. The

simple graph maker produces a symmetric estimator by using a simple ℓ1-penalized

quadratic problem, which is easily computed by coordinate descent. Furthermore,

it is shown to recover the underlying graph with overwhelming probability, without

assuming additional structure conditions on the variables. The rates of convergence

under various matrix norms are also established. The new method is shown to

exhibit excellent performance on simulated and real data.

Key words and phrases: Coordinate descent, exact recovery, Gaussian graphical

model, graphical Lasso, irrepresentable conditions, sparsity.

1. Introduction

In this study, we examine the problem of constructing a Gaussian graphical

model from n independent and identically distributed observations (i.i.d.) from a

multivariate Gaussian distribution. Suppose that X = (X1, X2, . . . , Xp)
T follows

a multivariate Gaussian distribution Np(µ,Σ
∗). Let Θ∗ = (θ∗ij) and Σ∗ = (Θ∗)−1

denote the precision matrix and the covariance matrix, respectively. It is known

that the (i, j) element of Θ∗ is zero if and only if variables Xi and Xj are

conditional independent, given all the other variables (Lauritzen (1996)). Thus,

data analysts often use the sparsity pattern of an estimated sparse precision

matrix to construct a Gaussian graphical model that describes the dependence

relationships between variables. As a result, the problem of estimating a large

sparse precision matrix has received increased attention in the past decade, for

a comprehensive review, see Chapter 9 of Fan et al. (2020), and the references

therein. Currently, the two most popular methods are neighborhood selection

(Meinshausen and Bühlmann (2006)) and the penalized likelihood estimator (i.e.,
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the graphical lasso)(Yuan and Lin (2007); Rothman et al. (2008); Friedman,

Hastie and Tibshirani (2008); Ravikumar et al. (2011).)

In this paper, we propose a new method for estimating an underlying graph.

In order to motivate our proposal, we first discuss the strengths and weaknesses

of the two most popular existing methods. Neighborhood selection was proposed

prior to the penalized likelihood estimator. It is a column-wise recovery method,

in the sense that it estimates the columns of Θ∗ one by one. As a result, the

matrix estimation problem is cast into p separate vector estimation problems,

making the computation easy by running a lasso linear regression. However, the

solution is usually not symmetric, and hence a post-processing step is necessary

to make the estimator symmetric. This was the major motivation for researchers

to study the penalized likelihood estimator. The graphical lasso delivers a

sparse symmetric precision matrix estimator by following the penalized likelihood

principle. In addition, the graphical lasso can be solved efficiently (Friedman,

Hastie and Tibshirani (2008)), making it the first choice for many users when

a sparse precision matrix estimator is needed. Theoretically, neighborhood

selection requires an irrepresentability condition (Zhao and Yu (2006); Zou

(2006)) in order to estimate each column of Θ∗. A similar matrix-version of the

irrepresentability condition is required for the graphical lasso (Ravikumar et al.

(2011)). Because these conditions are so stringent, theoretical support for the two

methods is not strong. Note that these issues cannot be removed by replacing

the lasso penalty with the adaptive lasso penalty or the concave penalty, because

the likelihood function or the “loss” function in neighborhood selection is a key

factor in creating these theoretical obstacles. See the discussion in Section 2.3

for details.

Based on the above discussion, we develop a new method for estimating a

sparse precision matrix that has three desirable properties:

1. the proposed method yields a symmetric matrix estimator, as in the case of

the graphical lasso;

2. the proposed method is computationally efficient;

3. the theoretical justification for the proposed method does not require the

irrepresentability condition or other strong structure conditions.

In other words, the proposed method enjoys the advantages of existing methods,

but avoids their major drawbacks.

In Section 2, we present the technical details of the proposed method, which

we call the simple graph maker (SGM). The SGM estimator is symmetric and

easy to compute. In Section 3, we prove its sparse recovery property and

establish its rates of convergence under several common matrix norms. In

Section 4, we present a simulation study and real-data examples to demonstrate

the performance of the proposed method, and compare it with Glasso, Galasso
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(Fan, Feng and Wu (2009)), CLIME (Cai, Liu and Luo (2011)) and Dtrace (Zhang

and Zou (2014)) methods. Technical proofs are relegated to the appendix.

2. Methodology

2.1. Notation

Here, we introduce the notation and definitions used throughout this paper.

For a vector v, ||v||max = maxi |vi|, ||v||min = mini |vi|, and |v|1 =
∑

i |vi|. We use

λmax(A) and λmin(A) to denote the largest and smallest eigenvalues, respectively,

of a matrix A. Denote by tr(A) the trace of a square matrix A. For a real matrix

A = (aij), ||A||max = maxi,j |aij|, ||A||min = mini,j |aij|, ||A||1 =
∑

i,j |aij|,
||A||ℓ∞ = maxi

∑
j |aij|, ||A||ℓ1 = maxj

∑
i |aij|, ||A||F =

√∑
i,j |aij|2, and

||A||2 =
√
λmax(ATA). We use A ≻ 0 to indicate that A is a positive-definite

matrix. We write A1 ⪰ A2 when A1 −A2 is a positive semidefinite matrix. We

use vec(A) to denote the vectorization of A in the column by column order. Let

ei be the ith column of the p-dimensional identity matrix. We use A◦B to denote

the Hadamard product of matrices A and B. Define Γ(Σ) = (1/2)(Σ⊗I+I⊗Σ),

where ⊗ is the Kronecker product. It is easy to see that Γ(Σ) is positive definite

when Σ is positive definite. Let S = {(i, j)|θ∗ij ̸= 0} denote the support set of

Θ∗, and Sc the complement of S. For each j, let Sj = {(i, j)|θ∗ij ̸= 0} be the

support set of the jth column of Θ∗, and let Sc
j be the complement of Sj. Let

d = maxj |Sj| and s = |S|.

2.2. The SGM

Let Σ̂ be the sample covariance matrix, and define Σ̃ = Σ̂ + a
√
log p/nI,

where a is a positive constant. If Σ̂ is positive definite, we can set a = 0. The

perturbation term a
√
log p/nI is primarily used to improve the numeric stability

of the estimator when Σ̂ has a zero or near zero eigenvalue. The theoretical upper

bound on a is given in the next section. In practice, we use a small a, such as

a = 0.05.

The SGM Θ̂SGM is defined as follows:

Θ̂SGM = argmin
ΘT=Θ

1

2
tr(ΘT Σ̃Θ)− tr(Θ) + λ1||W ◦Θ||1, (2.1)

where λ1 is a penalization parameter, and the adaptive weight matrix W = (wij)

is computed from

wij =

{
(min{|θ̂0ij|, |θ̂0ji|}+ u(n, p))−1 for i ̸= j

0 for i = j,

where (Θ̂0)ij = θ̂0ij is a pilot estimator of Θ∗, and u(n, p) is a positive-valued
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function of n and p. In theory, we can let u(n, p) = 0 and set the weight wij = ∞
if dividing by zero occurs. When wij = ∞, it automatically implies that θ̂SGM

ij = 0.

Any u(n, p) below a theoretical upper bound is good, in theory. In practice, we use

a small, but positive u(n, p) to avoid zero division, for example, u(n, p) = (np)−2.

Given the weight matrix, it is easy to solve the optimization problem in (2.1).

In order to handle the symmetry constraint, we parametrize Θ = (θij) with θij =

θji. Then we recast the constrained optimization problem as an unconstrained

ℓ1 penalization problem in which the unknowns are θii, for 1 ≤ i ≤ p, and θij,

for j > i. Note that the objective function in (2.1) is a quadratic function of the

unknowns plus the weighted ℓ1-penalty term. Following Friedman, Hastie and

Tibshirani (2010), we use the coordinate descent algorithm and computational

tricks, such as active set update and warm start, to solve (2.1) for a grid of λ1

values.

We now discuss the pilot estimator from which we compute the weight matrix.

The primary goal is to ensure that the SGM estimator recovers the true graph

with probability going to one as the sample size and the dimension grow together.

Our analysis of the SGM estimator reveals a sufficient condition for the weight

matrix under which the exact recovery property of the SGM estimator holds.

Based on that analysis, we design a pilot estimator Θ̂0 as follows:

Θ̂0 = argmin
Θ

1

2
tr(ΘT Σ̃Θ)− tr(Θ) + λ0||Θ||1, (2.2)

where λ0 is a tuning parameter.

Remark 1. A seemingly natural pilot estimator is

Θ̃0 = argmin
ΘT=Θ

1

2
tr(ΘT Σ̃Θ)− tr(Θ) + λ0||Θ||1. (2.3)

Although we do not deny the legitimacy of Θ̃0 as a pilot estimator for the SGM

estimator, we prefer to use Θ̂0, for computational convenience. We can use the

coordinate descent algorithm for solving (2.1) to solve (2.3). It turns out that

(2.2) is even easier to compute, owing to the removal of the symmetry constraint.

Let θj denote the jth column of Θ. Observe that

1

2
tr(ΘT Σ̃Θ)− tr(Θ) + λ0||Θ||1 =

p∑
j=1

(
1

2
θT
j Σ̃θj − θjj + λ0|θj|1

)
.

Therefore, if θ̂j is the minimizer of (1/2)θT
j Σ̃θj−θjj+λ0|θj|1, then Θ̂ = [θ̂1 · · · θ̂p]

is the minimizer of (1/2) tr(ΘT Σ̃Θ)− tr(Θ)+λ0||Θ||1. Hence, we can solve (2.2)

by solving p ℓ1-penalized quadratic problems in parallel.
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The construction of the SGM estimator is traced back to the penalized Dtrace

loss estimator (Zhang and Zou (2014)),

min
Θ⪰ϵI

LD(Θ, Σ̂) + λ||Θ||1, (2.4)

where the loss function LD(Θ,Σ) = (1/2) tr(ΘTΣΘ)−tr(Θ) is called the Dtrace

loss. Note that the graphical lasso estimator is minΘ≻0 LG(Θ, Σ̂) + λ||Θ||1, with
LG(Θ,Σ) = tr(ΣΘ)− logdet(Θ). The LG loss function is essentially the negative

log-likelihood function (up to a scale factor and a constant term). The Dtrace

loss was originally proposed as a nonlikelihood-based approach to estimate a large

precision matrix. However, the penalized Dtrace loss estimator also requires a

kind of irrepresentability condition in order to recover the true graph consistently.

That motivated us to use an adaptive lasso penalty (Zou (2006)) to replace the

lasso penalty in (2.4). Further, if we aim to recover the true graph, we need only

have the symmetry constraint, and can be free with the eigenvalue constraint.

Thus, we remove this constraint to explore the fact that LD is a quadratic function

of Θ. As a result, we can use the coordinate descent algorithm to compute

a solution path of the SGM estimator. If we choose to keep the eigenvalue

constraint, the state-of-the-art algorithm for (2.4) with an adaptive lasso penalty

is the alternating direction method of multipliers (ADMM) (Boyd et al. (2011)).

We need to run the ADMM algorithm for each penalization parameter. Thus, it

is computationally much more expensive than the SGM estimator.

Remark 2. We comment on the tuning of the SGM estimator. Suppose that we

have a training set and a validation set. Denote by Θ̂tr
0 (λ0) the pilot estimator,

with λ0 as its penalization parameter. Let Σ̂v be the sample covariance matrix

from the validation data. Then, the validation error is defined as ValErr(λ0) =

LD(Θ̂
tr
0 (λ0), Σ̂v), which we can use to compute the cross-validation (CV) error,

if necessary. After computing the solution path of the pilot estimator for a grid

of λ0 values, we can pick the one yielding the smallest validation (or CV) error.

Then, we fix λ0 (and hence the pilot estimator and the weight matrix) when

selecting λ1 in (2.1). Likewise, let Θ̂SGM
tr (λ1) be the SGM estimator with λ1 as

its penalization parameter. Then, its validation error is defined as ValErr(λ1) =

LD(Θ̂
SGM
tr (λ1), Σ̂v), which we can use to compute the CV error, if necessary. After

computing the SGM estimator for a grid of λ1 values, we pick the one with the

smallest validation (or CV) error. The procedure is similar to the tuning of the

graphical lasso, in which LG (instead of LD) is used to compute the validation

(or CV) error.

2.3. Comparison with related estimators

In this section, we discuss several other related estimators. As noted earlier,

neighborhood selection and the graphical lasso require the irrepresentability

condition in order to be consistent in terms of recovering the true graph. The
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irrepresentability condition is caused by the lasso penalty. A natural remedy is to

use the adaptive lasso penalty in these two methods. For neighborhood selection,

we can first fit the lasso regression, and then fit an adaptive lasso regression to

estimate the support of each column of the precision matrix. For j = 1, 2, . . . , p,

(N1). First solve minβ

∑n
i=1(Xi,j−

∑
l ̸=j Xilβl)

2+λ0

∑
l ̸=j |βl| and let wl = (|β̂l|+

u(n, p))−1.

(N2). Then, solve minβ

∑n
i=1(Xi,j −

∑
l ̸=j Xilβl)

2 + λ1

∑
l ̸=j wl|βl|.

For the graphical lasso, the modified procedure is as follows:

(G1). First solve minΘ≻0 LG(Θ, Σ̂) + λ0||Θ||1 and let wij = (|θ̂ij|+ u(n, p))−1.

(G2). Then, solve minΘ≻0 LG(Θ, Σ̂) + λ1||W ◦Θ||1.

For their theoretical justification, we need to show that the estimator is good

enough such that the next step delivers the right solution, in theory. For the

lasso regression, the rate of convergence of β can be established without using

the irrepresentability condition. Still, we need to assume other conditions on the

Gram matrix, such as the restricted eigenvalue condition or the compatibility

condition, that remain difficult to satisfy in practice; see Bühlmann and van de

Geer (2011) and Fan et al. (2020). For a more general lasso problem, such

conditions are imposed on the Hessian of the loss function. In other words, the

two estimators still require some structure assumptions in addition to the sparsity

assumption of Θ∗.

In practice, the modified neighborhood selection estimator is still not

symmetric. Thus, the modified graphical lasso procedure is preferred, which

we refer to as Galasso, and include it in our numerical study.

An alternative is to use the folded concave penalty (Fan and Li (2001)) in step

(N2) and step (G2) (Fan, Feng and Wu (2009)). The theory for folded concave

penalized estimation also requires a reasonably good estimator (Fan, Xue and

Zou (2014)). There is no fundamental difference in theory between using the

folded concave penalty and the adaptive lasso penalty. We must deal with the

nonconvexity problem when using the folded concave penalty. When applicable,

the coordinate descent algorithm often finds a suboptimal local solution of the

folded concave penalized problem, as shown by examples in Fan, Xue and Zou

(2014). A better algorithm is the local linear approximation algorithm (Zou and

Li (2008)), which is shown to find the oracle solution within two iterations with

a high probability under ultrahigh dimensions (Fan, Xue and Zou (2014)). Each

iteration is an adaptive lasso penalized problem.

3. Theory

Our analysis uses the following well-known proposition, which is shown under

the sub-Gaussian assumption for the distribution of X = (X1, X2, . . . , Xp)
T .
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Proposition 1. For any 0 < ϵ < 1, there exists some c0 > 0, such that

P(||Σ̂−Σ∗||max > ϵ) ≤ p2 exp(−c0nϵ
2).

Proposition 1 is obtained by the union bound and the bound on |Σ̂ij − Σ∗
ij|

by the sub-Gaussian assumption (Ravikumar et al. (2011)).

First, we show the validity of the pilot estimator. The pilot estimator is

only used to compute the weight matrix in the SGM estimator. We do not need

to worry about whether it can recover the true graph with a high probability.

Because the weight matrix is defined entrywise from the pilot estimator, the

analysis of the SGM estimator shows that it is sufficient to require the pilot

estimator to be close to the true precision matrix under the matrix max norm.

This property of the pilot estimator is established in Theorem 1.

Theorem 1. Let M = ||Θ∗||ℓ1, and take 0 < a ≤ λ0/(4M). With probability at

least 1− p2 exp(−c0nλ
2
0/(16M

2)),

||Θ̂0 −Θ∗||max ≤ 5

2
λ0M.

Based on Theorem 1, we can set λ0=c1
√
log p/n where c1>

√
(32 + 16t0)/c0

M , and t0 > 0 is a constant. Pick any 0 < a ≤ c1/(4M). Then, with probability

at least 1− p−t0 , we have ||Θ̂0 −Θ∗||max ≤ (5/2)c1M
√
log p/n.

The next theorem concerns the exact recovery property of the SGM estimator

and its rates of convergence under some matrix norms.

Theorem 2. Let Ψ=min(i,j)∈S |θ∗ij|, G= ||(Γ∗
SS)

−1||ℓ∞ and H= ||Γ∗
ScS(Γ

∗
SS)

−1||ℓ∞,

where Γ∗ = Γ(Σ∗). Take λ0 ≤ (1/(5M))[{Ψ/(2H + 1 + dGΨ(1 +H))}−2u(n, p)]

where u(n, p) < Ψ/{2(2H + 1 + dGΨ(1 +H))}, λ1 < min{1/(2dG),Ψ2/(2G

(2+dGΨ)), λmin(Θ
∗)/(2min{

√
s, d}((2/Ψ) + dG)G)}, and 0<a ≤ min{λ0/(4M),

λ1/2}
√
n/log p. Then, with probability at least 1− p2 exp(−c0nmin{λ2

0/(16M
2),

λ2
1/4}), Θ̂SGM is positive definite and recovers the true graph, that is, {(i, j)|θ̂ij

̸= 0} = S. Furthermore, we have

||Θ̂SGM −Θ∗||max < 2

(
2

Ψ
+ dG

)
Gλ1,

||Θ̂SGM −Θ∗||F < 2
√
s

(
2

Ψ
+ dG

)
Gλ1,

||Θ̂SGM −Θ∗||2 < 2min{
√
s, d}

(
2

Ψ
+ dG

)
Gλ1.

Remark 3. Based on Theorem 2, we can take λ0 = c1
√
log p/n, λ1 = c2

√
log p/n,

where √
32 + 16t0

c0
M < c1 <

√
n

log p

1

10M

Ψ

2H + 1 + dGΨ(1 +H)
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and√
8 + 4t0

c0
< c2

<

√
n

log p
min

{
1

2dG
,

Ψ2

2G(2 + dGΨ)
,

λmin(Θ
∗)

2min{
√
s, d}((2/Ψ) + dG)G

}
.

Further, let the small perturbations a and u(n, p) satisfy 0 < a ≤ min{c1/(4M),

c2/2} and u(n, p) < Ψ/(4(2H + 1 + dGΨ(1 +H))), respectively. Then, with

probability at least 1−p−t0 , Θ̂SGM is positive definite and recovers the true graph,

with matrix bounds ||Θ̂SGM −Θ∗||max < 2((2/Ψ) + dG)Gc2
√
log p/n, ||Θ̂SGM −

Θ∗||F < 2
√
s(2/Ψ+dG)Gc2

√
log p/n, and ||Θ̂SGM−Θ∗||2 < 2min{

√
s, d}(2/Ψ+

dG)Gc2
√
log p/n. Comparing these with the results for the graphical lasso

in Ravikumar et al. (2011) under the irrepresentable condition, the SGM and

the graphical lasso have similar asymptotic rates of convergence under different

matrix norms.

Remark 4. Although the SGM estimator is positive definite with overwhelming

probability, it is not guaranteed to be positive definite for every data set. In all

of our numerical examples, we have checked that the computed SGM estimator is

positive definite. If the user only cares about recovering the graph, then this is not

important, as for neighborhood selection. On the other hand, if the application

demands using a positive-definite matrix estimator, and Θ̂SGM happens to have a

zero or negative eigenvalue, we can perform an additional optimization by adding

an eigenvalue constraint, as follows:

Θ̂SGM
+ = argmin

Θ⪰10−5I

1

2
tr(ΘT Σ̃Θ)− tr(Θ) + λ1||W ◦Θ||1, (3.1)

which can be solved efficiently using the ADMM algorithm in Zhang and Zou

(2014). Note too that we only solve (3.1) after tuning the SGM estimator, which

means that λ1 is the chosen penalization parameter in the final SGM estimator

and the weight matrix is given too. Thus, we run the ADMM algorithm only

once.

4. Numerical Results

4.1. Simulations

In the simulation study, we generate n i.i.d. samples from Np(0,Σ
∗) under

four different Θ∗ generation processes:

Model 1: Θ∗ is fixed, with θ∗ii = 1, and θ∗ij = 0.3 for |i − j| = 1, and θ∗ij = 0

otherwise.

Model 2: Θ∗ is fixed, with θ∗ii = 1, and θ∗ij = 0.4 for |i − j| = 1, θ∗ij = 0.3 for



A SIMPLE METHOD FOR ESTIMATING GAUSSIAN GRAPHICAL MODELS 2051

|i− j| = 2, θ∗ij = 0.2 for |i− j| = 3, and θ∗ij = 0 otherwise.

Model 3: Θ∗ is generated randomly. First, let B = (bi,j) be a p× p matrix, such

that bj,i = bi,j
i.i.d.∼ Bernoulli(q), ∀i > j. The diagonal elements of B are

zero. Next, select δ ∈ R such that M = B + δI is positive definite and

the condition number of M equals to p. Finally, select a > 0 and let the

precision matrix Θ∗ = aM such that the diagonal elements of Θ∗ are equal

to 1. We set q = 0.05 in the simulations.

Model 4: Θ∗ is generated randomly. Let Θ1,Θ2, . . . ,Θ5 be five (p/5) × (p/5)

matrices generated independently by model 3, with q = 0.25. Then, the

precision matrix Θ∗ = diag{Θ1, . . . ,Θ5}.

Model 1 and model 2 are commonly used for precision matrix estimator

comparisons (Zhang and Zou (2014)). The generation process of model 3 is based

on that of model 2 in Cai, Liu and Luo (2011). Model 4 is the block-diagonal

version of model 3, corresponding to a graph with five unconnected parts, with

denser connections within each. We set q = 0.05 and 0.25 for model 3 and model

4, respectively, such that the overall sparsity levels of the precision matrices are

the same. In each model, we use three n, p combinations: (i) n = 400, p = 100; (ii)

n = 400, p = 500; and (iii) n = 100, p = 500. We compare theSGM with Glasso,

Galasso, the Dtrace estimator (Zhang and Zou (2014)), and CLIME (Cai, Liu

and Luo (2011)). Glasso and CLIME are implemented using the R packages

glasso and clime, respectively. Dtrace is implemented using the code from Zhang

and Zou (2014). The performance of each estimator is evaluated by the following

measures:

• Frobenius risk E||Θ̂−Θ∗||F ; spectral risk E||Θ̂−Θ∗||2; the ℓ1 risk E||Θ̂−
Θ∗||ℓ1 ; the max risk E∥Θ̂−Θ∗∥max

• Sensitivity = TP/(TP + FN), and Specificity = TN/(TN + FP ), where

TP, FP, TN and FN denote the numbers of true positives, false positives,

true negatives, and false negatives, respectively.

The results are summarized in Tables 1–12, where we report the mean and

standard error of each metric based on 100 independent repetitions. We also

report the running time of each method, in seconds. Note that when p = 500,

the code for CLIME gives an error message or does not finish the computation

within one hour. For these cases, we record NA for CLIME.

Several observations can be made from these tables. For the quality of the

estimates, under model 1 with n = 400 and p = 100 or n = 400 and p = 500,

the SGM performs similarly to Galasso, and both outperform the other methods.

For model 2 with n = 400, and p = 100 or n = 400 and p = 500, the SGM is a

clear winner among all the methods. When the precision matrices are generated

randomly, in the n = 400 and p = 100 scenario (table 7 and 10), the SGM gives
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the best estimates, measured by all the matrix norms, sensitivity, and specificity.

When n = 400 and p = 500, the SGM is the best measured by the l1-norm

for model 3, and the best measured by the spectral norm and the l1-norm for

model 4. In the scenario of n = 100 and p = 500, under all four data-generating

models, the SGM is among the best when measured by the l1-norm, and has a

slightly larger l2-norm. Overall, the simulation results provide numerical results

that confirm or complement the theoretical bounds for the SGM.

The SGM and Galasso have comparable computing time, and both are much

faster than Dtrace and CLIME. The ratio of the timing between the SGM and

Glasso is about five and the ratio of the timing between the SGM and Galasso is

about two. The ratio stays stable when p increases from 100 to 500, suggesting

that the SGM can scale as well as Glasso or Galasso for practical applications.

In addition, we observe that the SGM is the one of the most stable methods. In

some runs, CLIME, Glasso, and Galasso either report error messages or cannot

finish the computation within one hour. When an error message occurred, we do

not use that run to compute the average and standard error for that method. In

contrast, the SGM exhibits no such an issue in our simulations.

4.2. Real-data examples

We examine the performance of the SGM on two gene expression data sets.

Data set 1 contains data on prostate cancer, studied by Singh et al. (2002).

It contain 52 prostate tumor samples and 50 nontumor prostate samples, with

12,600 gene expression levels. Data set 2 contains data on breast cancer, analyzed

by Hess et al. (2006), and consists of 22,283 gene expressions of 133 subjects,

among which, 34 have pathological complete response and 99 have residual

disease. First, we randomly split each data set into training, validation, and

test sets of almost equal sizes. The splits are done in a stratified way, such that

the class proportions are preserved in each set. Then, using the training and

validation sets, we preprocess the data by screening the genes (Fan and Fan,

2008; Fan, Feng and Wu, 2009)) down to a subset of size ps, containing the most

significant genes, according to the two-sample t-tests between the two classes,

and standardizing the gene expressions.

To estimate the precision matrices, for each method, we fit it using the

training set on a grid of regularization parameter values, and choose the best

estimate by minimizing a loss function on the validation set. Here, the Dtrace

loss is used for the SGM and Dtrace, and the graphical lasso loss is used for

Glasso, Galasso, and CLIME. We report the ratios of nonzero entries in the

estimated precision matrices. A sparser estimate is usually more favorable, for

ease of interpretation. Because the true precision matrices are unknown, we

examine and compare the quality of the precision matrix estimates by using

a linear discriminant analysis (LDA) in which the resulting precision matrix

estimator can be used to fit the LDA rule. The rationale is that a better precision



A SIMPLE METHOD FOR ESTIMATING GAUSSIAN GRAPHICAL MODELS 2053

Table 1. Model 1 with n = 400 and p = 100.

∥ · ∥F ∥ · ∥2 ∥ · ∥l1 ∥ · ∥max Sen. Spe. Time(s)

SGM 1.170 0.302 0.419 0.206 1.000 0.995 1.701

(0.007) (0.004) (0.006) (0.003) (0.000) (0.000) (0.002)

Glasso 1.808 0.409 0.710 0.213 1.000 0.905 0.432

(0.007) (0.002) (0.006) (0.002) (0.000) (0.002) (0.002)

Galasso 1.161 0.297 0.417 0.192 1.000 0.993 0.949

(0.006) (0.004) (0.005) (0.002) (0.000) (0.000) (0.004)

CLIME 1.581 0.311 0.443 0.217 1.000 0.967 353.795

(0.005) (0.003) (0.004) (0.002) (0.000) (0.001) (0.165)

Dtrace 1.620 0.366 0.626 0.202 1.000 0.921 2.942

(0.006) (0.003) (0.006) (0.002) (0.000) (0.001) (0.016)

Table 2. Model 1 with n = 400 and p = 500. The code for CLIME gives an error message
or does not finish the computation within one hour.

∥ · ∥F ∥ · ∥2 ∥ · ∥l1 ∥ · ∥max Sen. Spe. Time(s)

SGM 2.863 0.374 0.538 0.256 1.000 0.998 197.519

(0.007) (0.003) (0.005) (0.003) (0.000) (0.000) (0.962)

Glasso 4.853 0.492 0.947 0.258 1.000 0.972 44.053

(0.007) (0.002) (0.008) (0.001) (0.000) (0.000) (0.234)

Galasso 2.789 0.370 0.538 0.249 1.000 0.980 78.001

(0.007) (0.003) (0.006) (0.003) (0.000) (0.000) (0.406)

CLIME NA NA NA NA NA NA NA

Dtrace 4.227 0.444 0.742 0.247 1.000 0.980 257.417

(0.006) (0.002) (0.004) (0.002) (0.000) (0.000) (3.967)

Table 3. Model 1 with n = 100 and p = 500. The code for CLIME gives an error message
or does not finish the computation within one hour.

∥ · ∥F ∥ · ∥2 ∥ · ∥l1 ∥ · ∥max Sen. Spe. Time(s)

SGM 8.208 0.839 1.346 0.499 0.738 0.998 273.517

(0.014) (0.009) (0.018) (0.009) (0.002) (0.000) (1.875)

Glasso 8.434 0.776 1.670 0.381 0.896 0.976 98.188

(0.010) (0.001) (0.010) (0.003) (0.002) (0.000) (0.549)

Galasso 7.968 0.788 1.319 0.416 0.773 0.996 138.960

(0.013) (0.005) (0.011) (0.006) (0.002) (0.000) (0.653)

CLIME NA NA NA NA NA NA NA

Dtrace 8.287 0.766 1.310 0.473 0.860 0.990 437.238

(0.011) (0.004) (0.015) (0.008) (0.002) (0.000) (0.574)
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Table 4. Model 2 with n = 400 and p = 100.

∥ · ∥F ∥ · ∥2 ∥ · ∥l1 ∥ · ∥max Sen. Spe. Time(s)

SGM 1.939 0.580 0.958 0.216 0.991 0.978 1.848

(0.011) (0.007) (0.011) (0.002) (0.000) (0.000) (0.004)

Glasso 4.503 1.242 2.049 0.290 0.998 0.689 0.434

(0.02) (0.006) (0.008) (0.002) (0.000) (0.003) (0.002)

Galasso 2.759 0.832 1.333 0.242 0.989 0.934 1.021

(0.018) (0.007) (0.011) (0.003) (0.001) (0.001) (0.004)

CLIME 3.830 0.751 1.458 0.384 0.991 0.848 374.404

(0.011) (0.006) (0.009) (0.004) (0.001) (0.003) (0.445)

Dtrace 3.108 0.888 1.582 0.236 0.999 0.771 3.017

(0.016) (0.007) (0.011) (0.002) (0.000) (0.004) (0.017)

Table 5. Model 2 with n = 400 and p = 500. The code for CLIME gives an error message
or does not finish the computation within one hour.

∥ · ∥F ∥ · ∥2 ∥ · ∥l1 ∥ · ∥max Sen. Spe. Time(s)

SGM 5.800 0.857 1.402 0.297 0.963 0.992 231.802

(0.017) (0.006) (0.009) (0.002) (0.000) (0.000) (2.340)

Glasso 13.397 1.630 2.758 0.368 0.975 0.897 46.049

(0.034) (0.004) (0.014) (0.001) (0.001) (0.002) (0.623)

Galasso 9.230 1.247 2.000 0.345 0.932 0.980 87.763

(0.035) (0.005) (0.010) (0.004) (0.001) (0.000) (1.064)

CLIME NA NA NA NA NA NA NA

Dtrace 9.678 1.243 2.036 0.315 0.991 0.938 218.368

(0.039) (0.006) (0.011) (0.002) (0.000) (0.001) (0.137)

Table 6. Model 2 with n = 100 and p = 500. The code for CLIME gives an error message
or does not finish the computation within one hour.

∥ · ∥F ∥ · ∥2 ∥ · ∥l1 ∥ · ∥max Sen. Spe. Time(s)

SGM 18.136 2.130 2.382 0.541 0.204 0.999 364.245

(0.012) (0.001) (0.004) (0.002) (0.001) (0.000) (3.469)

Glasso 17.940 2.099 2.773 0.510 0.358 0.984 96.880

(0.007) (0.001) (0.010) (0.002) (0.002) (0.000) (0.476)

Galasso 18.128 2.126 2.517 0.526 0.212 0.999 140.462

(0.008) (0.001) (0.007) (0.002) (0.001) (0.000) (0.690)

CLIME NA NA NA NA NA NA NA

Dtrace 17.962 2.106 2.396 0.521 0.286 0.993 463.535

(0.009) (0.001) (0.004) (0.002) (0.002) (0.000) (1.098)



A SIMPLE METHOD FOR ESTIMATING GAUSSIAN GRAPHICAL MODELS 2055

Table 7. Model 3 with n = 400 and p = 100.

∥ · ∥F ∥ · ∥2 ∥ · ∥l1 ∥ · ∥max Sen. Spe. Time(s)

SGM 1.424 0.369 0.669 0.210 0.998 0.986 2.353

(0.009) (0.005) (0.009) (0.003) (0.000) (0.000) (0.017)

Glasso 2.284 0.645 1.353 0.249 1.000 0.811 0.370

(0.019) (0.007) (0.014) (0.003) (0.000) (0.006) (0.006)

Galasso 1.577 0.443 0.762 0.219 0.998 0.987 0.905

(0.018) (0.007) (0.012) (0.002) (0.000) (0.001) (0.012)

CLIME 5.251 2.020 3.200 1.581 0.832 0.901 344.889

(0.092) (0.044) (0.074) (0.068) (0.026) (0.008) (0.491)

Dtrace 1.950 0.534 1.129 0.210 1.000 0.856 9.840

(0.007) (0.004) (0.011) (0.002) (0.000) (0.002) (0.068)

Table 8. Model 3 with n = 400 and p = 500. The code for CLIME gives an error message
or does not finish the computation within one hour.

∥ · ∥F ∥ · ∥2 ∥ · ∥l1 ∥ · ∥max Sen. Spe. Time(s)

SGM 9.001 1.563 3.145 0.309 0.643 0.984 267.299

(0.018) (0.008) (0.014) (0.003) (0.003) (0.000) (1.779)

Glasso 9.313 1.924 3.847 0.338 0.898 0.866 73.949

(3 NAs) (0.047) (0.011) (0.02) (0.004) (0.003) (0.004) (1.679)

Galasso 8.518 1.475 3.154 0.280 0.769 0.963 131.181

(3 NAs) (0.031) (0.011) (0.016) (0.004) (0.004) (0.001) (2.131)

CLIME NA NA NA NA NA NA NA

Dtrace 8.829 1.863 3.431 0.309 0.842 0.924 1,273.311

(0.013) (0.004) (0.014) (0.002) (0.002) (0.001) (4.490)

Table 9. Model 3 with n = 100 and p = 500. The code for CLIME gives an error message
or does not finish the computation within one hour.

∥ · ∥F ∥ · ∥2 ∥ · ∥l1 ∥ · ∥max Sen. Spe. Time(s)

SGM 14.018 2.861 4.632 0.647 0.113 0.996 517.967

(0.020) (0.003) (0.022) (0.003) (0.001) (0.000) (8.861)

Glasso 12.684 2.676 4.958 0.480 0.405 0.934 125.451

(0.024) (0.005) (0.021) (0.003) (0.003) (0.001) (3.055)

Galasso 13.079 2.623 4.723 0.511 0.225 0.984 185.978

(0.017) (0.005) (0.021) (0.003) (0.002) (0.000) (3.349)

CLIME NA NA NA NA NA NA NA

Dtrace 13.071 2.795 4.624 0.565 0.269 0.934 1,327.819

(0.018) (0.003) (0.022) (0.003) (0.002) (0.001) (6.106)
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Table 10. Model 4 with n = 400 and p = 100.

∥ · ∥F ∥ · ∥2 ∥ · ∥l1 ∥ · ∥max Sen. Spe. Time(s)

SGM 1.542 0.463 0.824 0.223 0.998 0.986 2.073

(0.011) (0.009) (0.016) (0.003) (0.000) (0.000) (0.005)

Glasso 2.693 0.916 1.700 0.271 0.999 0.799 0.424

(0.017) (0.011) (0.019) (0.002) (0.000) (0.003) (0.003)

Galasso 1.747 0.599 1.030 0.234 0.996 0.970 0.915

(0.016) (0.011) (0.019) (0.002) (0.000) (0.001) (0.004)

CLIME 5.130 1.583 2.511 1.313 0.987 0.901 394.392

(0.034) (0.022) (0.035) (0.024) (0.004) (0.004) (0.253)

Dtrace 2.202 0.710 1.325 0.222 1.000 0.848 6.912

(0.011) (0.009) (0.016) (0.003) (0.000) (0.001) (0.048)

Table 11. Model 4 with n = 400 and p = 500. The code for CLIME gives an error
message or does not finish the computation within one hour.

∥ · ∥F ∥ · ∥2 ∥ · ∥l1 ∥ · ∥max Sen. Spe. Time(s)

SGM 10.745 2.266 4.007 0.336 0.525 0.986 245.181

(0.016) (0.008) (0.023) (0.003) (0.002) (0.000) (0.590)

Glasso 11.027 2.565 4.670 0.349 0.784 0.870 57.883

(0.028) (0.007) (0.023) (0.002) (0.003) (0.002) (0.419)

Galasso 10.797 2.330 4.152 0.329 0.590 0.971 111.813

(0.027) (0.010) (0.025) (0.003) (0.003) (0.001) (0.655)

CLIME NA NA NA NA NA NA NA

Dtrace 10.669 2.494 4.216 0.331 0.720 0.932 435.302

(0.011) (0.006) (0.022) (0.002) (0.002) (0.000) (1.566)

Table 12. Model 4 with n = 100 and p = 500. The code for CLIME gives an error
message or does not finish the computation within one hour.

∥ · ∥F ∥ · ∥2 ∥ · ∥l1 ∥ · ∥max Sen. Spe. Time(s)

SGB 14.677 3.223 4.806 0.607 0.105 0.997 395.848

(0.021) (0.006) (0.022) (0.003) (0.001) (0.000) (2.776)

Glasso 13.992 3.144 5.096 0.501 0.322 0.953 96.147

(0.021) (0.006) (0.021) (0.002) (0.002) (0.001) (0.908)

Galasso 14.137 3.087 4.903 0.516 0.179 0.990 155.107

(0.018) (0.006) (0.021) (0.002) (0.001) (0.000) (1.029)

CLIME NA NA NA NA NA NA NA

Dtrace 14.025 3.186 4.768 0.546 0.211 0.945 697.595

(0.021) (0.006) (0.021) (0.002) (0.001) (0.002) (2.629)
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matrix estimator leads to better classification accuracy. Similar comparison

methods based on the LDA are used in other work including Fan, Feng and Wu

(2009) and Cai, Liu and Luo (2011). Here, we do not repeat the LDA formula.

The classification performance is evaluated using the sensitivity, specificity, and

Mathews correlation coefficient (MCC) metrics. Let TP, FP, TN and FN

denote the numbers of true positives, false positives, true negatives and false

negatives, respectively, on the test set. Then, these metrics are defined as

Sensitivity = TP/(TP + FN), Specificity = TN/(TN + FP ), and MCC =

(TP × TN − FP × FN)/
√
(TP + FP )(TP + FN)(TN + FP )(TN + FN).

In the variable screening step, both Fan, Feng and Wu (2009) and Cai, Liu

and Luo (2011) reduce the numbers of variables down to n + 1, where n is the

training sample size. Typically, variable screening reduces the dimension from

p to n, n/ log(n), or 2n/ log(n) (Fan et al., 2020)). Fan, Feng and Wu (2009)

and Cai, Liu and Luo (2011) set the reduced dimension to n + 1 to emphasize

that the sample covariance matrix for the reduced dimension is still singular.

Following their practice, we similarly set ps to be marginally larger than the

training sample size, letting ps = 35 for data set 1 and ps = 50 for data set 2.

The corresponding training sample sizes are 33 and 44, respectively. Because

ps is larger than the training sample size, we can examine the performance of

the methods when the input sample covariance matrices are not invertible. The

tumor group of data set 1 and the pathological complete response group of data

set 2 are treated as “positive” when computing the classification metrics. We

performed 100 repetitions in order to have a more stable comparison. The results

are reported in Table 13 (prostate cancer data) and Table 14 (breast cancer

data). For the prostate cancer data, the methods perform similarly in terms of

classification performance, with the SGM and Dtrace having the highest average

MCC scores. The sparsity level of the SGM is significantly better than those

of the other methods. For the breast cancer data, the SGM has a significantly

higher sensitivity score than Glasso, Galasso, and CLIME, and its specificity score

is comparable with those of the other methods. The MCC score of the SGM is

the highest among these methods. The SGM again achieves the best sparsity

level.

5. Conclusion

In this paper, we have introduced a simple method that we call the SGM

for recovering a Gaussian graphical model under ultrahigh dimensions. The

SGM is based on a simple quadratic loss function, and hence allows us to

use a simple coordinate descent algorithm to achieve excellent computational

efficiency compared with that of the graphical lasso, which requires a much more

sophisticated algorithm. The SGM can easily handle the symmetry constraint,

which is an obvious advantage over methods such as CLIME and neighborhood
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Table 13. Performance comparison between SGM, Glasso, Galasso, CLIME, and Dtrace
on a prostate cancer data set.

Sensitivity Specificity MCC Ratio of Nonzero Entries

SGM 0.899 0.920 0.822 0.095

(0.006) (0.008) (0.009) (0.004)

Glasso 0.900 0.899 0.806 0.330

(0.008) (0.009) (0.009) (0.004)

Galasso 0.902 0.904 0.812 0.143

(0.007) (0.009) (0.009) (0.002)

CLIME 0.894 0.904 0.803 0.822

(0.007) (0.008) (0.010) (0.007)

Dtrace 0.901 0.920 0.823 0.132

(0.006) (0.008) (0.009) (0.005)

Table 14. Performance comparison between SGM, Glasso, Galasso, CLIME, and Dtrace
on a breast cancer data set.

Sensitivity Specificity MCC Ratio of Nonzero Entries

SGM 0.753 0.736 0.448 0.063

(0.010) (0.008) (0.011) (0.002)

Glasso 0.543 0.800 0.339 0.266

(0.014) (0.008) (0.014) (0.003)

Galasso 0.626 0.779 0.387 0.102

(0.014) (0.008) (0.014) (0.002)

CLIME 0.663 0.766 0.403 0.653

(0.014) (0.008) (0.012) (0.008)

Dtrace 0.740 0.737 0.437 0.310

(0.010) (0.008) (0.012) (0.019)

selection. Although the SGM does not guarantee that the resulting precision

matrix estimator is positive definite, we provide a simple step to mitigate this

issue, and in our numerical experiments we check whether the SGM estimators

are positive definite in each run. We compare the rate of convergences of the

SGM and the graphical lasso, but the SGM does not require the irrepresentable

condition necessary for the graphical lasso. Our simulations confirm that the

SGM exhibits excellent and often improved performance over the graphical lasso.

Based on our results, we recommend using the SGM to estimate a large Gaussian

graphical model.
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Appendix

In this appendix we present the proof of the main theorems and the link for

downloading the code used in this paper.

A.1. Proofs

Proof of Theorem 1. We bound the difference between Θ̂0 and Θ∗ under

element-wise ℓ∞ norm under the event ||Σ̂−Σ∗||max ≤ λ0/(4M). Then

||Σ̃−Σ∗||max ≤ ||Σ̂−Σ∗||max + a

√
log p

n
≤ λ0

2M
.

Firstly, we show ||Σ̃Θ̂0−I||max ≤ λ0. Since Θ̂0 is the optimal solution, it satisfies

Σ̃Θ̂0 − I+ λ0Ẑ0 = 0,

where Ẑ0 = (ẑ0ij) is the sub-gradient of |Θ̂0| and

ẑ0ij

{
= sign(θ̂0ij) if θ̂0ij ̸= 0

∈ [−1, 1] if θ̂0ij = 0

where Θ̂0 = (θ̂0ij). Thus, ||Σ̃Θ̂0 − I||max = || − λ0Ẑ0||max ≤ λ0. Then we show

||Θ̂0||ℓ1 ≤ 3||Θ∗||ℓ1 . To prove this, it is sufficient to prove |θ̂0
i |1 ≤ 3|θ∗

i |1 for

i = 1, 2, . . . , p where Θ̂0 = (θ̂0
1, θ̂

0
2, . . . , θ̂

0
p) and Θ∗ = (θ∗

1 ,θ
∗
2 , . . . ,θ

∗
p). Let f

denote the function f(θi) = (1/2)θT
i Σ̃θi − eT

i θi + λ0|θi|1 and ∆i := θ̂0
i − θ∗

i ,

f(θ̂0
i ) =

1

2
(θ̂0

i )
T Σ̃θ̂0

i − eT
i θ̂

0
i + λ0|θ̂0

i |1

=
1

2
(∆i + θ∗

i )
T Σ̃(∆i + θ∗

i )− eT
i (∆i + θ∗

i ) + λ0|∆i + θ∗
i |1

= f(θ∗
i ) +

1

2
∆T

i Σ̃∆i +∆T
i Σ̃θ∗

i − eT
i ∆i + λ0|∆i + θ∗

i |1 − λ0|θ∗
i |1.

Since θ̂0
i is the optimal solution, f(θ̂0

i ) ≤ f(θ∗
i ). The term ∆T

i Σ̃∆i > 0 because

of the positive definiteness of Σ̃. We have

λ0|θ̂0
i |1 − λ0|θ∗

i |1 = λ0|∆i + θ∗
i |1 − λ0|θ∗

i |1
≤ eT

i ∆i −∆T
i Σ̃θ∗

i

= ∆T
i (Σ

∗ − Σ̃)θ∗
i .

Noticing

∆T
i (Σ

∗ − Σ̃)θ∗
i ≤ |∆i|1||(Σ∗ − Σ̃)θ∗

i ||max

≤ |∆i|1||Σ∗ − Σ̃||max|θ∗
i |1
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≤ λ0

2
|∆i|1

≤ λ0

2
|θ̂0

i |1 +
λ0

2
|θ∗

i |1,

it follows that |θ̂0
i |1 ≤ 3|θ∗

i |1 for any i. Therefore,

||Θ̂0 −Θ∗||max = ||Θ∗(Σ∗Θ̂0 − Σ̃Θ̂0 + Σ̃Θ̂0 − I)||max

≤ ||Θ∗||ℓ1 ||Σ∗ − Σ̃||max||Θ̂0||ℓ1 + ||Θ∗||ℓ1 ||Σ̃Θ̂0 − I||max

≤ 3

2
λ0M + λ0M

=
5

2
λ0M.

This completes the proof.

Proof of Theorem 2. For simplicity, we use Θ̂ to represent Θ̂SGM in this proof.

We first prove that Θ̂ recovers the true graph under the event ||Σ̂−Σ∗||max ≤
min{λ0/(4M), λ1/2}. First, we note that

||Σ̃−Σ∗||max ≤ ||Σ̂−Σ∗||max + a

√
log p

n
≤ min

{
λ0

2M
,λ1

}
.

Define Θ̃ as the optimal solution for the following problem:

Θ̃ = argmin
ΘSc=0,ΘT=Θ

1

2
tr(ΘT Σ̃Θ)− tr(Θ) + λ1||W ◦Θ||1.

It suffice to prove (i) Θ̃ recovers the true graph and (ii) Θ̃ = Θ̂. To show

(i) and (ii), we define two quantities ∆G = ||(Γ̃SS)
−1 − (Γ∗

SS)
−1||ℓ∞ and ∆H =

||Γ̃ScS(Γ̃SS)
−1 − Γ∗

ScS(Γ
∗
SS)

−1||ℓ∞ where Γ̃ = Γ(Σ̃). We first bound ∆G and ∆H .

∆G = ||(Γ̃SS)
−1(Γ̃SS − Γ∗

SS)(Γ
∗
SS)

−1||ℓ∞
≤ ||(Γ̃SS)

−1||ℓ∞ ||Γ̃SS − Γ∗
SS||ℓ∞ ||(Γ∗

SS)
−1||ℓ∞

≤ (G+∆G)dλ1G,

where we use inequalities ||AB||ℓ∞ ≤ ||A||ℓ∞ ||B||ℓ∞ and ||A+B||ℓ∞ ≤ ||A||ℓ∞ +

||B||ℓ∞ for any matrices A and B. It is easy to see

∆G ≤ dλ1G
2

1− dλ1G
. (A.1)

The bound is larger than 0 since λ1 < 1/(2dG).

∆H ≤ ||(Γ̃ScS − Γ∗
ScS)(Γ̃SS)

−1||ℓ∞ + ||Γ∗
ScS((Γ̃SS)

−1 − (Γ∗
SS)

−1)||ℓ∞
≤ (||Γ̃ScS − Γ∗

ScS||ℓ∞ + ||Γ∗
ScS(Γ

∗
SS)

−1(Γ̃SS − Γ∗
SS)||ℓ∞)||(Γ̃SS)

−1||ℓ∞
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≤ dλ1(1 +H)(G+∆G) (A.2)

≤ dλ1G(1+H)

1−dλ1G
.

Now we show (i). It is enough to show that none of the elements of Θ̃S is

zero. Note that Θ̃ satisfies the optimality condition(
1

2
(Σ̃Θ̃+ Θ̃Σ̃)− I+ λ1W ◦ Z̃

)
S

= 0,

where Z̃ denote the sub-gradient of |Θ̃|, and ||Z̃||max ≤ 1. Or equivalently,

(Γ̃ vec(Θ̃)− vec(I) + λ1 vec(W ◦ Z̃))S = 0. (A.3)

Using partitions Θ̃ = (Θ̃S, Θ̃Sc) = (Θ̃S,0), I = (IS, ISc) = (IS,0),W = (WS,

WSc) and Z̃ = (Z̃S, Z̃Sc), we have

Γ̃SS vec(Θ̃S)− vec(IS) + λ1 vec(WS ◦ Z̃S) = 0.

Thus, we have

vec(Θ̃S) = (Γ̃SS)
−1(vec(IS)− λ1 vec(WS ◦ Z̃S)). (A.4)

We rewrite (A.4) as follows:

vec(Θ̃S) = (Γ∗
SS)

−1(vec(IS)− λ1 vec(WS ◦ Z̃S))

+((Γ̃SS)
−1 − (Γ∗

SS)
−1)(vec(IS)− λ1 vec(WS ◦ Z̃S)).

Because Γ∗
SS vec(Θ

∗
S) = vec(IS) and ||AB||max ≤ ||A||ℓ∞ ||B||max,

|| vec(Θ̃S)||min ≥ || vec(Θ∗
S)||min − λ1G||WS||max −∆G(1 + λ1||WS||max)

≥ Ψ− 2λ1G(||WS||max + dG)

≥ Ψ− 2λ1G

(
2

Ψ
+ dG

)
> 0,

where the second inequality is due to (A.1) and the third inequality is due to the

following bound of ||WS||max:

||WS||max ≤ 1

min(i,j)∈S |θ̂0ij|
≤ 1

Ψ− (5Mλ0)/2
≤ 2

Ψ
. (A.5)

Now we show (ii). The objective function in (2.1) is strictly convex since its

Hessian matrix Γ̃ is positive definite. So any solution that satisfies optimality

condition is the unique optimal solution. Since (A.3) is already satisfied, we only
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need to show the following equation to prove Θ̃ = Θ̂.

(Γ̃ vec(Θ̃)− vec(I) + λ1 vec(W ◦ Z̃))Sc = 0,

which is equivalent to

|Γ̃ScS vec(Θ̃S)| ≤ λ1|WSc |.

It is sufficient to have

||Γ̃ScS vec(Θ̃S)||max ≤ λ1||WSc ||min. (A.6)

Partition Γ∗ vec(Θ∗)=vec(I). We have Γ∗
SS vec(Θ

∗
S) = vec(IS) and Γ∗

ScS vec(Θ
∗
S)

= vec(ISc) = 0. So vec(ISc) = Γ∗
ScS(Γ

∗
SS)

−1 vec(IS) = 0. By (A.4), we have

Γ̃ScS vec(Θ̃S) = Γ̃ScS(Γ̃SS)
−1(−λ1 vec(WS ◦ Z̃S))+(Γ̃ScS(Γ̃SS)

−1−Γ∗
ScS(Γ

∗
SS)

−1)

vec(IS), which implies

||Γ̃ScS vec(Θ̃S)||max ≤ (H +∆H)λ1||WS||max +∆H .

By (A.2), we get

||Γ̃ScS vec(Θ̃S)||max ≤ dλ1G+H

1− dλ1G
λ1||WS||max +

dλ1G(1 +H)

1− dλ1G

≤ (2H + 1)λ1||WS||max + 2dλ1G(1 +H).

(A.7)

On the other hand,

||WSc ||min =
1

max(i,j)∈Sc |θ̂0ij|+ u(n, p)
≥ 1

(5Mλ0)/2 + u(n, p)
. (A.8)

Then, (A.6) is obtained by combining (A.5), (A.7), (A.8) and λ0 ≤ (1/5M)

{Ψ/(2H + 1 + dGΨ(1 +H)) − 2u(n, p)}. This completes the proof that Θ̂

recovers the true graph.

Finally, we show results of various matrix norms. Because Θ̃ = Θ̂, it is easy

to use (A.1), (A.4) and (A.5) to show that

||Θ̂−Θ∗||max = || vec(Θ̃S)− vec(Θ∗
S)||max

= ||((Γ̃SS)
−1 − (Γ∗

SS)
−1) vec(IS)− λ1(Γ̃SS)

−1 vec(WS ◦ Z̃S)||max

≤ ∆G + λ1||WS||max||(Γ̃SS)
−1||ℓ∞

≤ ∆G + λ1

2

Ψ
(∆G +G)

< 2

(
2

Ψ
+ dG

)
Gλ1.
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Then

||Θ̂−Θ∗||F ≤
√
s||Θ̂−Θ∗||max < 2

√
s

(
2

Ψ
+ dG

)
Gλ1,

||Θ̂−Θ∗||2 ≤ min{
√
s, d}||Θ̂−Θ∗||max < 2min{

√
s, d}

(
2

Ψ
+ dG

)
Gλ1.

Because λ1 < λmin(Θ
∗)/{2min{

√
s, d}(2/Ψ+ dG)G}, ||Θ̂−Θ∗||2 < λmin(Θ

∗), so

λmin(Θ̂) > 0. This completes the proof.

A.2. Code

The code for implementing the SGM estimator is available at the follow-

ing Github link: https://github.com/songyng/A-Simple-Method-for-Estimating-

Gaussian-Graphical-Models .
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