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Abstract: We investigate a statistical framework for Phase I clinical trials that test

the safety of two or more agents in combination. For such studies, the traditional

assumption of a simple monotonic relation between the dose and the probability

of an adverse event no longer holds. Nonetheless, the dose toxicity (adverse event)

relationship does obey an assumption of partial ordering in that there will be pairs

of combinations for which the ordering of the toxicity probabilities is known. Some

authors have considered how to best estimate the maximum tolerated dose (a dose

providing a rate of toxicity as close as possible to some target rate) in this setting.

A related and equally interesting problem is to partition the two-dimensional dose

space into two sub-regions: doses with probabilities of toxicity lower and greater

than the target. We carry out a detailed investigation of this problem, using the re-

cently presented semiparametric dose finding method as the theoretical framework.

This results in a number of proposals, one of which can be viewed as an extension of

the product of independent beta probabilities escalation (PIPE) method. We derive

useful asymptotic properties, which also apply to the PIPE method when it is seen

as a special case of the more general method given here. Simulation studies provide

added confidence concerning the good behavior of the operating characteristics.

Key words and phrases: Bayesian method, dose-finding design, partial ordering,

phase I clinical trials, semiparametric method.

1. Introduction

The importance of multi-agent Phase I trials in drug development has grown

in recent years. The practical benefits of drug combinations are numerous: several

modes of action can be combined, or the negative side effects of one drug can

potentially be attenuated by the presence of a second compound. The aim of

Phase I oncology trials is to find one or more maximum tolerated dose (MTD)

combinations that have a probability of toxicity as close as possible to some

threshold α, specified in advance by clinicians (common values are 20%, 25%,

and 33%). Algorithmic designs remain a popular approach to identifying the
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MTD within a discrete set of levels, for both single-agent trials (Storer (1989))

and dual-agent trials (Huang et al. (2007)). These designs make no appeal to

any model, and the escalation/de-escalation rules are determined as a function

of the most recent set of observations. The simplicity of these methods leads to

their frequent implementation in practice. Algorithmic designs have a Markov

property, sometimes referred to in this context as a lack-of-memory property.

These methods are not efficient and lack desirable statistical properties, such as

almost sure convergence. Many model-based designs have been suggested, but

their widespread adoption in practice remains an unaccomplished goal. This

is particularly true in dual-agent trials because of the complexity and lack of

interpretability of some of the proposed models, as well as operational difficulties

that can discourage clinical investigators. Model-based designs come under two

headings: parametrics and nonparametric.

The design and analysis of dual-agent trials can be carried out based on the

work of Wages, Conaway and O’Quigley (2011), the partial-ordering continual

reassessment method (poCRM) and an extension of the CRM by Wang and

Ivanova (2005); the work of Thall et al. (2003) with a six-parameter logistic-type

model and the work of Braun and Wang (2010) who use beta distributions and

log-linear models. The second one is the class of nonparametric models. For dual-

agent trials, Mander and Sweeting (2015) proposed the product of independent

beta probabilities escalation design (PIPE), and Lin and Yin (2017) propposed

the Bayesian Optimal Interval (2d-BOIN). The primary focus of many methods

for dual-agent trials has been to find a single MTD for recommendation in Phase

II studies. However, an arguably more relevant task is centered around the idea

that, for combination studies, multiple, essentially equivalent MTDs may exist.

The collection of these MTDs form a maximum tolerated contour (MTC) in two-

dimensional space. In this case, the primary objective of the study may be to

identify multiple MTDs for further testing, and investigators may desire a trial

designed to meet this objective. This is particularly so as it is becoming common

to study more than a single dose in subsequent dose expansion cohorts (Iasonos

and O’Quigley (2016, DEC)).

Our motivation here is to describe a journey that starts with estimation of

the MTD and ends with estimation of the MTC. Our signposts are built from

illustrations and our ultimate purpose is to allow deeper study of the problem

of early-phase dose finding for combinations of treatments. We set out on our

journey (Section 2) via a look at the landscape, a look at the context in which

these problems arise, including an actual trial carried out at the University of

Virginia School of Medicine, and a particular hypothesized set of rates of DLT.
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Table 1. Scenario T corresponds to a hypothetical pattern of toxicity probability in a
study of Vinblastine and C6 Ceramide NanoLiposome (CNL). The 5×4 grid of dose com-
binations is fixed and chosen by the investigator. Dose combinations from the minimal
set are shown in bold (see Definition 2).

Toxicity probabilities (%) Scenario T
of dose combinations Drug A1: CNL

Level (mg/m2) 54 81 122 183 215
2.25 24 29 34 59 70

Drug A2: 1.5 13 18 22 49 53
Vinblastine 0.75 7 9 16 35 42

0.375 2 5 9 21 30

Next stop (Section 3) outlines the tools that we use in the more usual setting

of an MTD target, and Section 4 describes how to solve MTC estimation. Dose

finding in two dimensions is necessarily more complex, and Section 4.2 examines

how actual experimentation can be implemented. Although sample sizes will not

typically be large, large sample theory is helpful in providing confidence in how

well the designs should work in practice (Section 5). In particular, Theorem

1 shows that, for all the methods, the almost sure convergence to the MTD

is equivalent to the almost sure convergence to the MTC. Section 6 discusses

a simulated comparison with an available method (PIPE), and Section 7 re-

examines our original illustration (Section 2) and studies it in greater detail.

The online Supplementary Material contains a table of notation, a discus-

sion of the dose allocation strategies, how to calibrate the methods, numerical

experiments in the MTC setting, and proofs of the theorems and other properties.

2. Context and Motivation

We describe a Phase 1 clinical trial on drug combinations that was carried out

at the University of Virginia School of Medicine. The trial involved C6 Ceramide

NanoLiposome (CNL) and Vinblastine in patients with relapsed/refractory acute

myeloid leukemia and patients with untreated acute myeloid leukemia. A grid

of five by four dose-combinations is considered: five levels for CNL (from 54 to

215 mg/m2), and four levels for Vinblastine (from 0.375 to 2.25 mg/m2). The

target rate α was taken to be 20%, and the maximum sample size was fixed at

60 patients. This particular application allows us to demonstrate the workings of

such a Phase I drug combinations design, and to introduce some of the essential

ideas developed in this paper. Table 1 describes a hypothesized dose toxicity

function, called Scenario T.
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Let dose d = (i, j) represent the combination of the ith dose of an agent

A1 and the jth dose of an agent A2, with i ∈ {1, . . . , I} and j ∈ {1, . . . , J}.
In Scenario T, I and J are respectively equal to five and four and dose (2, 3)

corresponds to 81 mg/m2 of CNL and 1.5 mg/m2 of Vinblastine. Let D be the set

of all dose combinations: D = {1, . . . , I}× {1, . . . , J}. The sequence (Xn, Yn)n∈N
is a sample of observations. At step n, corresponding to the nth patient enrolled

in the trial, the variable Xn is the dose selected among the I × J combinations.

The variable Yn is the observed binary response at this dose taking values {0, 1},
1 for a dose limiting toxicity (DLT), and 0 otherwise. Each combination of drug

d is associated with a toxicity probability Pd.

Assumption 1. ∀n ∈ N, P(Yn = 1|Xn = d) = Pd.

In Scenario T, P(2,3) is equal to 0.18. Note that the ranges {1, . . . , I} and

{1, . . . , J} are ordered in terms of the probability of toxic response. Such an

assumption is common in Phase I trials for cytotoxic agents. The ordering of the

marginal doses induces a partial ordering on the full range of doses D. The sign

< or ≤ will be used for the total ordering on R and the partial ordering on the

set of doses D: (i, j) ≤ (r, s) if and only if i ≤ r and j ≤ s .

Assumption 2. (i, j) < (r, s) ⇒ P(i,j) < P(r,s) .

In Scenario T, dose (2, 3) is ordered with dose (3, 3), as are their respective

toxicity probabilities, 18% and 22%. The ordering assumption is fundamental to

extracting information on a dose d from observations on neighboring doses. In

particular, given any dose d, the partial ordering allows a decomposition of the

set D into four subsets: D = {d} ∪ Ad ∪ Bd ∪ Cd, where Ad = {d′ ∈ D : d′ > d},
Bd = {d′ ∈ D : d′ < d}, and Cd = D \ (Ad ∪ Bd). Those combinations where

d belongs to the set Ad are associated with toxicity probabilities higher than

Pd. The set Bd contains those combinations of doses below d associated with

toxicity probabilities lower than Pd. The dose combinations in Cd are not ordered

with dose d, which means that no prior assumption of order exists between their

respective probabilities of toxicity. In Scenario T, the set C(2,3) contains doses

associated with toxicity probabilities below or above P(2,3) = 0.18, for example,

P(3,1) = 0.09 and P(1,4) = 0.24. Not unlike the single-agent setting, the primary

objective of a Phase I combination study is often to identify a single MTD for

further testing in the Phase II setting.

Numerous existing designs try to determine which combination d∗ among

those available in D has a probability of toxicity closest to the target toxicity

rate α so that d∗ = arg infd∈D |Pd − α|. For Scenario T, the MTD, dose (4, 1),
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is associated with a toxicity probability 0.21, just above the threshold, α = 0.2,

fixed by the investigators. However, in the context of dual-agent dose finding, the

notion of a single MTD is less clear cut. Indeed, aiming for the MTD is justified

by an assumption of an ordering on the probabilities of efficacy, corresponding to

an analogous ordering of the doses. For a single agent (full ordering), choosing the

MTD amounts to maximizing the efficacy probability (probability of observing a

sufficient therapeutic effect) under the constraint of being close to some chosen

threshold of toxicity. This is no longer true in the dual-agent setting. Indeed,

there exist situations in which a particular combination, less toxic than the MTD,

may be more efficacious overall (Karapanagiotou et al. (2012)). In Scenario T,

let the efficacy probabilities of doses (4, 1) and (2, 3) be equal to 0.10 and 0.90,

respectively. Such a situation is coherent with the partial ordering on D, be-

cause dose (2, 3) belongs to C(4,1). In this case, the MTD (4, 1) is not particularly

advantageous. As a result, a dual-agent trial may aim to locate more than one

MTD, forming an MTC (a cut or a contour) across the dose surface comprised

of multiple combinations with similar acceptable toxicity profiles. The objective

of the trial then becomes one of determining an MTD curve c∗ consisting of a set

of combinations with toxicity probabilities close to α. In Scenario T, the MTD

contour is represented by the line splitting the set of doses in two parts: the dose

combinations associated with toxicity probabilities below the target α and those

associated with toxicity probabilities above α. The minimal set related to this

specific contour contains the closest doses from the line according to the partial

ordering (see doses with bold toxicity probabilities in Table 1). This set is defined

more formally in Section 4.

However, a design aiming for a single MTD will be of interest in some sit-

uations. This is the case if there are too few patients available to determine a

complete contour of the MTD (20 or 30 patients in a grid of five by four), or

if the investigators have some strong prior assumptions or requirements on the

set of potential outcomes. We present an example of such an assumption. In

the context of CNL and Vinblastine combinations, the investigators may want to

reach a dose combination with a level of Vinblastine at least equal to 1.5mg/m2,

because this agent has previously shown positive results in term of efficacy at this

level. The general structure of the semiparametric class of dose finding methods

is described by a hierarchical model, where the first level deals with the goal of

the study - the doses themselves - and the second level is devoted to the dose-

response curve. Here, the goal of the study is to find a single MTD. The first

level of our model is then a distribution Π on the MTD itself. This distribution

is updated in the Bayesian setting after each patient (see Section 3 for further
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Figure 1. A simulated trial under scenario T using poSPM and the final posterior Π60,
which means the probabilties of each dose combination for being the MTD conditional
on observations on 60 patients. Red cross: dose limiting toxicity (DLT); black circle: no
toxicity response.

details).

In Figure 1, the posterior distribution on the MTD at the end of the trial is

summarized by a histogram. Throughout the trial, the next dose combination is

selected as the one maximizing the posterior Π according to the observations. The

prior distribution on the range of doses D is a matrix of positive weights summing

to one. It can easily be tuned to allow a progressive exploration in the range of

doses or to correspond to expert knowledge: here, if possible, the investigators

prefer to increase the level of Vinblastine until 1.5 mg/m2 (see Section S5.2 in

Supplementary Material for the exact prior distribution). This is what is done in

the trial. At the beginning, the method recommends increasing the dose levels

of Vinblastine while keeping the CNL level at 54 mg/m2. After 15 patients, the

method stays at dose (2, 3). This dose is the one recommended at the end of

the trial: nine patients among 48 treated at this dose experienced a DLT (rate

= 18.75%) accounting for 33.5% of the posterior mass. According to the posterior

distribution, the two other most probable dose combinations are (1, 4) and (3, 3)

which, respectively, account for 13.4% and 13.7% of the posterior mass. Note that

semiparametric methods can be easily adjusted either to meet a specific criteria or

to work under general conditions with uninformative priors. The analysis based

on the semiparametric methods for scenario T continues in Section 7.

The trial in Figure 1 shows the classical behavior of a model-based design

that tends to converge to a single MTD (Bayesian model in Section 3). However,
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a more useful goal may be to explore the MTD curve in order to determine

multiple safe dose combinations associated with potentially different probabilities

of efficacy (Section 4).

3. Semiparametric Methods and a Single MTD Target

We briefly recall the semiparametric dose finding method introduced in (Cler-

tant and O’Quigley (2017, SPM)), and then exploit these same ideas to tackle

the problem of partial ordering. We refer to this as poSPM. The way in which we

extend the simpler to the more complex situation is to build a model around the

non-ordered dose combinations. This extension corresponds to a non-informative

prior, structured in such a way that no distinction can be made between two

doses d1 and d2 on the basis of observations on a dose d3 that is not ordered with

respect to d1 and d2 : d3 ∈ Cd1 and d3 ∈ Cd2 .
Consider the set S ⊂ [0, 1]D, having elements P = (Pd)d∈D. Then, Pd pro-

vides the probability of toxicity for scenario P at dose d. The set S is partitioned

according to the different values (dose levels) that θ can assume.

S =
⋃
θ∈D

Sθ, where Sθ ⊂ {P ∈ S | ∀d ∈ D, |Pθ − α| ≤ |Pd − α|} .

S breaks down into I×J classes indexed by θ, where every scenario from the same

class has the same MTD. Any P belonging to Sθ is associated with the MTD

at dose θ. For more discussion on this topic, refer to (Clertant and O’Quigley

(2017, Sec. 4)). The definition of Sθ used in practice is expressed in Assumption

3 below. For a fixed P ∈ S, the likelihood that we can associate with the history

(Xn
1 , Y

n
1 ) = (Xk, Yk)1≤k≤n is:

L(P,Xn
1 , Y

n
1 ) =

n∏
k=1

(PXk)
Yk (1− PXk)

1−Yk =
∏
d∈D

P
n1
d

d (1− Pd)n
0
d , (3.1)

where n1
d represents the number of DLTs occurring at dose d, and nd = n1

d + n0
d

is the number of patients that are treated at dose d. Let Π be the prior for

the parameter θ. Then, Π is a probability measure on the discrete space D, that

is a matrix of positive numbers with I rows and J columns summing to one.

Each class Sθ is endowed with a prior denoted as Λθ = Λ(.|θ). The family of

distributions (Λθ)θ∈D and Π defines a prior on the whole set of scenarios. This

prior can be updated sequentially as observations are made. The posterior Πn

on the parameter of the MTD, θ, is obtained by integration over the support Sθ
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of the scenarios associated with this dose:

Πn(θ) = Π(θ|Xn
1 , Y

n
1 ) ∝

∫
Sθ

L(P,Xn
1 , Y

n
1 )Λθ(dP ) Π(θ). (3.2)

The family of distributions (Λθ)θ∈D plays a predictive role, and provides the basis

that underlies the practical implementation of the adaptive process. We call this

the prior model. In the sequential study, the next patient or cohort of patients is

allocated to the dose having the highest probability of being the MTD, according

to the posterior Πn. The MTD and the probability of toxicity at any dose d, Pd,

are estimated sequentially by

θ̂n = argmax
θ∈D

Πn(θ) and P̂
(n)
d = E(Λ⊗Π)n [Pd] =

∑
θ∈D

[∫
Pd Λθ,n(dPd)

]
Πn(θ).

(3.3)

The prior model is a family of I×J distributions on the set of scenarios. Moreover,

each scenario can be viewed as a matrix with I rows and J columns having ele-

ments Pd, the toxicity probability at dose d. The following assumption expresses a

simple structure for the prior Λθ. For this purpose, the Bernoulli parameter space

is broken down into three sets. The high and low toxicity probabilities belong to

A = [α+ ε, 1] and B = [0, α− ε], respectively. The probabilities of toxicity in the

neighborhood of the target α lie in the centered interval I = [α − ε, α + ε]. This

interval results from our choice of ε, and can be made arbitrarily small. Indeed,

it can be reduced to a single point, α, by choosing ε equal to zero. For the MTD

parameter θ, the marginal Λdθ distributes its probability mass according to the

relative position of the doses d. The prior Λθ weights only those scenarios in which

the MTD is θ. Given θ, Λdθ is the prior of the toxicity probability at dose d itself.

The position of d relative to θ, summarized in the following assumption, indicates

that: (i) if d = θ, as θ is the parameter indicating the MTD, the marginal weights

are on the centered interval I; (ii) if d > θ (i.e., d ∈ Aθ), then Λdθ puts its mass

on the highest probability interval A; (iii) if d < θ (i.e., d ∈ Bθ), then Λdθ puts its

mass on the lowest probability interval B; (iv) if the dose d is non-ordered with θ

(i.e., d ∈ Cθ), the marginal Λdθ is uninformative, and the weights are on the whole

interval [0, 1].

Assumption 3. Λθ is a product of unidimensional distribution, i.e.

Λθ(dP ) =
∏
d∈D

Λdθ(dPd),
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and the support Sdθ of the distribution Λdθ(dPd) satisfies: d ∈ Aθ ⇒ Sdθ = A;

d ∈ Bθ ⇒ Sdθ = B; d ∈ Cθ ⇒ Sdθ = [0, 1]; d = θ ⇒ Sdθ = I.

The probabilities of toxicity in each set Aθ, Bθ, and Cθ are conditionally inde-

pendent once we have fixed Sθ. Marginally, of course, they are not independent.

Thus any independency assumption fails to be valid when considering the whole

model {(Λθ)θ∈D,Π}. This is intuitively clear when a stochastic order is chosen

for the marginal (Λdθ)θ∈D, at a certain dose r : ∀r , d < d′ ⇒ Λrd′,n � Λrd′,n. The

coherence principle introduced by Cheung (2005) can be extended to the case of

partial ordering.

Definition 1 (Partial ordering coherence). A method M is coherent if the se-

quence of selected doses satisfies: (Xn, Yn) = (d, 0)⇒ Xn+1 ∈ D\Bd and (Xn, Yn)

= (d, 1)⇒ Xn+1 ∈ D \ Ad.

This definition matches that in Cheung (2005) in the case of a single-agent

trial, and can be seen as a logical extension of this criterion in the case of partial

ordering. Note that the stochastic ordering implies that the poSPM is coherent.

Proposition 1. Under Assumption 3 (above) and Assumption 1 in Supplemen-

tary Material, the poSPM is coherent.

Working with a simple product of the marginals allows us to choose conjugate

priors for the likelihood, in particular, beta distributions, of which the uniform

distribution is a special case.

4. Identifying the Maximum Tolerated Contour (MTC)

4.1. Semiparametric model

In the setting of partially ordered doses, the semiparametric class of methods

on the contour (poSPMc) takes its inspiration from the PIPE model (Mander

and Sweeting (2015)) and a method for single agents (Clertant and O’Quigley

(2018a,b)).

The set of dose combinations D can be naturally partitioned into two subsets,

defined by the toxicity target α. The partition includes one set of dose combina-

tions associated with toxicity probabilities below α : D− = {d ∈ D : Pd < α},
and a second set of dose combinations associated with toxicity probabilities above

α : D+ = {d ∈ D : Pd > α}. We have: D = D− ∪ D+. The maximum toler-

ated contour, also called the MTC curve, is a line separating the set D− and

D+ (see Figure 2). The goal of poSPMc is to allocate patients at acceptable

doses around the contour in order to better study dose combinations close to the
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toxicity threshold. If these dose combinations are not ordered, then they do not

share information in terms of the probability of efficacy. In general, a contour

c is a line that separates the set of dose combinations into two ordered sets of

doses: one set of dose combinations above the contour, Ac, and another set of

dose combinations below the contour, Bc. For any given contour c, we note that

d ∈ Ac and d′ ∈ Bc ⇒ d > d′ or d and d′ non-ordered.

In Figure 2, we can describe any contour as a polygonal chain tracing out a

path from (0.5, J + 0.5) to (I + 0.5, 0.5), with steps of size 1 along the abscissa,

and of size −1 on the ordinate axis. Only rightward and downward steps are

permitted. As a result, for the range D containing I × J dose combinations,

there exist
(
I+J
I

)
possible contours c. Let C be the set of these contours, and c?

be the maximum tolerated contour (MTC) defined by the true unknown toxicity

probabilities at each dose combination. Estimating the MTC may appear to be

a considerable challenge, because the number of contours increases exponentially

with the number of doses: 70 possible contours for a 4×4 grid and 962 for a 6×6

grid. Fortunately, each contour c is associated with a minimal set Mc of dose

combinations on which we need to have observations in order, with probability

one, to confirm or disprove that this contour can be identified as the MTC. The

dose combinations belonging to Mc are the closest doses of the contour in our

partially ordered set of doses D (see Figure 2). In the following definition, the

minimum and maximum operators are applied to partially ordered sets.

Definition 2. The minimal set of dose combinations, Mc, associated with the

contour c is: Mc = minAc ∪maxBc.

For a grid with I doses for agent A1 and J doses for agent A2, the number of

dose combinations belonging to a minimal set varies between 1 and 2×min(I, J),

except in the case I = J, where the maximum is equal to 2I − 1. The average

number of combinations inside a minimal set is equal to 2IJ/(I+J). If a minimal

set contains only one dose combination, all of the toxicity probabilities (Pd)d∈D
are on the same side of the target, either below or above. If a minimal set contains

only two doses, it corresponds to a vertical or a horizontal contour.

Let Mc? be the minimal set associated with the MTC. Dose combinations

in Mc? are not necessarily those closest to α in terms of toxicity probabilities.

However, Mc? satisfies the following properties, which justify that a model for a

dose combination study focuses on the contour or the associated minimal set.
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Figure 2. Two contours called (a) and (b): the green squares represent the dose
combinations belonging to the minimal set. Contour (a) corresponds to that of Scenario
T (Table 1).

Proposition 2.

1) For all dose combinations d /∈ Mc? , there exists a dose d′ ∈ Mc? ordered

with d, such that: |Pd − α| > |Pd′ − α|.

2) The MTD belongs to the minimal set associated with the MTC: d? ∈Mc? .

The proof is immediate from Definition 2. The proposed model takes place in

the setting of SPM; γ is the parameter of interest, the MTC itself. As in Section

3, S is a broad set of scenarios, and P = (Pd)d∈D is an element of S, with Pd the

toxicity probability of the scenario P at dose d.

The set S is partitioned according to γ : S =
⋃
γ∈C Sγ , where Sγ = {P ∈

[0, 1]D : d ∈ Aγ ⇒ Pd > α and d ∈ Bγ ⇒ Pd < α}. Furthermore, S is

partitioned into
(
I+J
I

)
classes indexed by γ, where every scenario of the same

class has the same MTC.

Let Π be the prior for the parameter γ, which means that Π is a probability

measure on the discrete space C. Each class Sγ is endowed with a prior denoted

as Λγ = Λ(.|γ), and the family (Λγ)γ∈C is called the prior model. This family

can be easily shaped by the following assumption and the use of truncated beta

distributions for each marginal.
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Figure 3. Model of two competitive contours: The blue and green models corre-
spond to contours (a) and (b) (Figure 2). Figures (a) and (b) show the modes of Λd

(a)

and Λd
(b), for each dose d in comparison to the target α = 0.20. Figures (c) and (d)

represent the sampling of marginal scenarios under these models when agents A1 and
A2, respectively, are fixed at dose level 3.

Assumption 4. Λγ is a product of one-dimensional distributions, i.e.

Λγ =
∏
d∈D

Λdγ ,

where Λdγ is a prior for Pd, the toxicity probability at dose d. The support Sdγ of

the distribution Λdγ satisfies: d ∈ Aγ ⇒ Sdγ = [α, 1]; d ∈ Bγ ⇒ Sdγ = [0, α].
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In Figure 3, the distribution Λγ is illustrated where γ represents the two contours

in Figure 2. The parameters of these two distributions are those used in the

numerical experiments. Note that, in Figure 3 (d) the marginal prior model Λ(a)

is steeper than Λ(b); the doses (2,3) and (3,3) are in the minimal set for contour

(a), but not for contour (b).

The family of distributions (Λγ)γ∈C and Π define a prior on the whole set

of scenarios S. The posterior Πn on the parameter of the MTC, given the data

(Xn
1 , Y

n
1 ), is:

Πn(γ) ∝
∫
Sγ

L(P,Xn
1 , Y

n
1 )Λγ(dP ) Π(γ). (4.1)

The current estimate of the contour is

γ̂n = argmax
γ∈D

Πn(γ). (4.2)

The algorithm used to allocate a patient (or the next cohort of patients) during a

trial is based on the following two steps: (i) the prior Πn is updated and the most

probable contour γ̂n is selected; and (ii) the dose for the next patient is selected

using an allocation strategy in the most probable minimal set, according to our

posterior: Xn+1 ∈Mc? . Such an allocation strategy that spreads the observations

inside the estimated minimal set is developed in Section 4.2.

The PIPE method (Mander and Sweeting (2015)) might be seen as the first

example of using a semiparametric method on the contour. However, it has some

strong limitations in terms of calibration, because it does not clearly specify

priors on the MTC and the space family (Sγ)γ∈C . For this method, the toxicity

probability at each dose d is modeled by a weak beta prior with parameters ad
and bd. For each contour, a posterior probability is obtained by multiplying the

posterior of the interval [0, α] for every dose below the contour and the posterior of

the interval [α, 1] for those doses above the contour. Let BI(a, b) be the truncated

beta distribution with parameters a and b on the interval I, and let B(x, a, b) be

the incomplete beta function. In the SPM setting, the PIPE model is defined by:
Λc ∼

∏
d∈Bc

B[0,α](ad, bd)×
∏
d∈Ac

B[α,1](ad, bd)

Π(c) ∝
∏
d∈Bc

B(α; ad, bd)×
∏
d∈Ac

(1−B(α; ad, bd)).

Note that, for the PIPE method, the prior model (Λc)c∈C and the prior on the

contour Π are defined by the I×J prior of the toxicity probabilities at each dose

combination. The indirect calibration of the prior model and the prior on the set
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of contours can undermine the performance of this method. In particular, the

prior Π defined using the PIPE model is not chosen to allow a progressive explo-

ration of the range of doses, but is dependent on the target toxicity probability

α.

4.2. Allocation strategy

In a minimal set, many of the doses are not ordered and the question of

allocation within this set needs to be addressed. This is not straightforward,

and we do not exhaust all possibilities here. Several allocation strategies can

be made available and any particular choice will result in some particular trial

behaviour. The allocation strategy introduced here is a compromise between

one that spreads experimentation ”equally” and one that tests doses that will,

in expectation, bring more information into the study. We also need to restrict

experimentation to an area of the minimal set considered to be safe. After n

observations, the next dose Xn+1 is

Xn+1 = min
d∈Mγ̂n\Tn

1

kd


 ∑
j∈Bd∪{d}

n0
j

×H(α|0) +

 ∑
j∈Ad∪{d}

n1
j

×H(α|1)

 ,

(4.3)

where H(p|q) is the entropy of p relative to q : H(p|q) = −q × log(p) − (1 −
q) log(1−p), with the convention log(0) = −∞ and 0×(−∞) = 0, and kd = #Ad+
#Bd+1. In Equation 4.3, the relative entropy, which corresponds to a quantity of

information, is counter-balanced by kd, the number of dose combinations ordered

with d, that is, the number of dose combinations on which we aim to learn

something subsequent to an observation on d.

The next dose Xn+1 is selected from among the safe dose combinations in

the estimated minimal set: Mγ̂n \ Tn. The set of dose combinations on which

we already have some evidence of overly toxicity is denoted Tn. It is estimated

by using local Bayesian tests at each of the doses and the assumption of partial

ordering. A dose d0 is excluded from the study if

d0 ∈ Tn = {d ∈ D : ∃ d′ ∈ Hn, d ≥ d′} ,

with Hn = {d ∈ D : PU
[
Pd > θT |(nd, n1

d)
]
> δT } , and U is the uniform prior on

the parameter space [0, 1].

This allocation strategy spreads the observations along the estimated con-

tour, and tests slightly more often the doses in the middle of the grid. Be-

cause a DLT corresponds to a greater quantity of information, those doses with a
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smaller number of toxicities are tried more often (for α = 0.25 : H(α|1)/H(α|0) =

log(α)/ log(1−α) ≈ 4.82). A longer description of this allocation strategy can be

found in Supplementary Material (S3).

5. Large-Sample Theory

Two distinct and complementary asymptotic behaviors are described here.

The first kind of large sample behavior is that of ε-sensitivity, introduced by Che-

ung (2011). This corresponds to the almost sure convergence to a dose combina-

tion for which the true probability of toxicity lies inside the interval [α− ε;α+ ε].

Definition 3. Let ε ≥ 0 and I = [α−ε;α+ε]. We consider the set E(I, P ) of the

collection of dose combinations associated with a toxicity probability belonging

to I, that is, E(I, P ) = {d ∈ D : Pd ∈ I}. A method is ε-sensitive if for all

scenarios P = (Pd)d∈D, such that E(I, P ) 6= ∅, we have

P [∃N , ∀n > N : Xn ∈ E(I, P )] = 1.

The ε-sensitivity corresponds to strong consistency for a single dose associ-

ated with a toxicity rate close to the threshold α. This dose is not necessarily

the MTD if there exist two or more doses in the interval I. The almost sure

convergence to the MTD is obtained if the MTD is a unique dose in E(I, P ).

This assumption about the shape of the scenario is necessary in the light of the

impossibility theorem of Azriel, Mandel and Rinott (2011). In our semiparamet-

ric method for a single MTD (poSPM), the interval I is a parameter that can

be directly calibrated. This requires that we choose a small interval I, which

could potentially fail to contain any of the toxicity probabilities associated with

the given doses. For this reason, the complementary behavior of the ε-sensitivity

introduced by Clertant and O’Quigley (2017) is extended to the case of partial

ordering. We define as balanced behavior the almost sure convergence to a set

of doses. More precisely, a sequence (Xn)n∈N converges to a set B, denoted by

Xn
S−→ B, when

max
x∈B

(
lim inf
n→+∞

δ(Xn, x)

)
= 0 , (5.1)

and where δ(., .) is the Euclidean distance. In the case of a complete ordering,

the sequence (Xn)n∈N converges to the set consisting of the two consecutive doses

on either side of the target α. This set of two doses corresponds to the definition

of the minimal set for the maximum tolerated contour (see definition 2): Mc? =

maxD− ∪minD+.
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Definition 4. Let D be a range of doses. A method is balanced if, for all

scenarios, we have

Xn
S−→Mc? , a.s.

The doses recommended infinitely often by the current estimator of a bal-

anced method are all the doses in Mc? , and only these doses. The following

theorem completes in a natural way the impossibility theorem formulated by

Azriel, Mandel and Rinott (2011).

Theorem 1. For any allocation method, the three following statements are equiv-

alent:

(i) For all scenarios, there exists a statistic F on the sample (Xn
1 , Y

n
1 ) such

that F (Xn
1 , Y

n
1 )−→d? , a.s.

(ii) For all scenarios, there exists a statistic F on the sample (Xn
1 , Y

n
1 ) such

that F (Xn
1 , Y

n
1 )−→c? , a.s.

(iii) For all scenarios, there exists a set of dose combinations D′ with Mc? ⊂ D′

such that the sequence of recommended doses satisfies

Xn
S−→ D′ , a.s.

In particular, this basic theorem expresses a necessary condition for any

method: the minimal set Mc? is the smallest set of dose combinations on which

we need to have observations in order to find almost surely the MTD and the

MTC under general circumstances. Some assumptions are needed on our models

in order to obtain the desired asymptotic behavior. The regularity assumption 2

(Section S8.1 in Supplementary Material) on the prior model of the poSPM and

the poSPMc are readily met. The following assumption concerns the allocation

strategy.

Assumption 5.

(a) The next dose combination Xn+1 is selected from Mγ̂n.

(b) All the doses in the limit supremum of (Mγ̂n)n∈N are selected infinitely often:

∀d ∈
⋂
n≥1

⋃
k≥n
Mγ̂k ,

{
n∑
i=1

1{Xn=d} −→
n→∞

∞

}
, a.s.

Assumption 5 (b) means that if a contour is selected infinitely often by γ̂n, all

the doses in the minimal set associated with this contour are explored infinitely
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often (a.s). This is a necessary condition to obtain balanced behavior (a simple

consequence of Theorem 1’s proof). This constructive assumption is satisfied by

the allocation strategy defined in Section 4.2.

Theorem 2.

(a) Suppose that P T is the true scenario. Under assumptions 3 and 2 (Section

S8.1 in Supplementary Material), we have: if ε > 0 and E(I, P T ) contains

no couple of ordered doses then the poSPM is ε-sensitive; when ε = 0, the

poSPM is balanced.

(b) Under assumptions 4, 5 and 2 (Section S8.1 in Supplementary Material),

the poSPMc is balanced.

When ε = 0, the poSPM is balanced, which means that the method explores

all the dose combinations included in Mc? when the sample size becomes suffi-

ciently large. However, this only describes the asymptotic behavior and, at finite

sample sizes, the simulations will often converge to a single dose identified as the

MTD (see Figure 1). Conversely, the balanced behavior of poSPMc at a finite

sample size can be observed in Figure 4.

6. Numerical Experiments: MTC Setting

In the MTC setting, we compared the poSPM to the PIPE design in terms

of each method’s ability to identify and treat patients along a target MTC. Each

trial targets a toxicity level of α = 0.20, with a total sample size of 50 and one

patient per cohort. The calibration of the two methods is fully described in the

Supplementary Material S5.1 and S5.2.

Table 2 shows the operating characteristics of the 2 methods under the four

scenarios shown in Table 1 (Section S1 in the Supplementary Material). As in the

MTD setting, for each scenario, we report the percentage of patient allocation

(experimentation %) and percentage of MTD selection (recommendation %) for

doses contained within five different ranges of true toxicity probabilities. Because

α = 0.20, the target interval containing the true MTD is [0.15, 0.25]. In Scenarios

1 and 4, the poSPM and PIPE method have very similar operating characteristics

with regard to recommending and experimenting at combinations in the target

interval. The difference between the methods in Scenarios 1 and 4 can be observed

in the intervals outside the target range. In both scenarios, when outside the

target interval, the poSPM allocates to combinations below the target range,

whereas the PIPE method tends to be more aggressive. This has an impact

on the accuracy index (see Equation S4.1 in the Supplementary Material) for
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Table 2. Experimentation and recommendation percentages for the poSPM and PIPE
design. Column containing the MTD in bold. Scenarios 1 to 4 correspond to scenarios
A, C, E, G in Mander and Sweeting (2015). They can be found in the Supplementary
Material S.1.

Experimentation %

Scenario Method [0, 0.10) [0.10, 0.15) [0.15,0.25] (0.25, 0.30] (0.30, 1] Acc %DLTs
1 poSPM 9.0 25.8 56.9 7.7 0.4 0.35 16.9

PIPE 2.8 7.5 59.4 26.1 4.2 0.39 22.0
2 poSPM 0.0 26.4 45.0 9.4 19.1 0.88 23.5

PIPE 0.0 6.2 21.2 11.5 61.0 0.63 36.0
3 poSPM 12.2 27.0 36.1 22.8 1.9 0.38 18.0

PIPE 0.0 6.6 21.8 11.5 60.2 0.33 35.9
4 poSPM 31.2 19.4 32.4 13.7 3.2 0.67 14.2

PIPE 12.3 14.0 34.0 26.0 13.4 0.55 22.1
Recommendation %

[0, 0.10) [0.10, 0.15) [0.15,0.25] (0.25, 0.30] (0.30, 1] Acc NMTD

1 poSPM 2.0 19.9 71.6 6.3 0.0 0.63 3.73
PIPE 0.3 5.2 70.3 23.7 0.4 0.64 2.23

2 poSPM 0.0 17.8 54.3 12.8 15.0 0.92 2.60
PIPE 0.0 8.8 38.4 17.4 35.3 0.84 1.44

3 poSPM 3.8 29.1 36.6 29.5 0.9 0.44 3.18
PIPE 0.0 9.8 37.7 17.5 35.0 0.28 1.44

4 poSPM 20.1 22.6 39.1 16.8 1.2 0.77 4.2
PIPE 17.4 23.5 38.0 19.1 2.0 0.77 2.77

experimentation in Scenario 4, with the poSPM yielding a larger value: 0.67

versus 0.55. For both scenarios, the PIPE induces a higher overall percentage of

DLTs, on average.

In Scenario 2, the poSPM is the best performing method by all metrics. It

demonstrates better performance from the viewpoints of experimentation (45.0%

vs. 21.2%) and recommendation (54.3% vs. 38.4%) percentages in the target

interval. The PIPE again tends to be more agressive, allocating 61% of patients

to combinations with toxicity probabilities in the interval (0.30, 1.00]. The im-

provement of the poSPM over the PIPE is also reflected in the accuracy indices in

Scenario 2. In Scenario 3, the methods have similar operating characteristics in

terms of the recommendation percentage in the target interval (36.6% vs. 37.7%),

although the poSPM maintains an advantage when considering experimentation

and accuracy. Similarly to Scenario 2, the PIPE allocates 60.2% of patients to

combinations with toxicity probabilities in the interval (0.30, 1.00]. The more

aggressive behavior of the PIPE is further indicated in the overall percentage

of DLTs observed, as this value is both higher than the corresponding value for

poSPM, as well as larger than the target α = 0.20 in all scenarios. Considering

the average performance over the four scenarios, the poSPMc is the best method
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Table 3. Experimentation and recommendation percentages for poSPMc, poSPM1, and
poSPM2 on Scenario T. The column containing the MTD is shown in bold.

Experimentation %

Method [0, 0.10) [0.10, 0.15) [0.15,0.25] (0.25, 0.30] (0.30, 1] Acc %DLTs
poSPMc 27.5 8.8 47.3 8.9 7.4 0.52 18.1
poSPM1 14.7 19.4 55.7 8.7 18.7 0.48 22.2
poSPM2 10.7 20.1 42.9 14.1 11.9 0.48 21.6

Recommendation %

[0, 0.10) [0.10, 0.15) [0.15,0.25] (0.25, 0.30] (0.30, 1] Acc NMTD

poSPMc 13.9 8.4 60.7 11.5 5.4 0.63 4.31
poSPM1 5.4 2.2 73.0 9.1 10.1 0.67 1
poSPM2 1.7 18.2 62.9 11.5 5.6 0.65 1

by all the metrics. In particular, the poSPMc recommends a larger number of

doses (3.43 doses vs. 1.97), while maintaining greater accuracy than the PIPE

method (0.69 of accuracy recommendation vs. 0.63).

7. CNL and Vinblastine Combination: A Study of Scenario T

Three versions of our semiparametric class of methods are compared on Sce-

nario T introduced in Table 1 in the context of the CNL and Vinblastine combi-

nation:

- poSPMc is the semiparametric method targeting the MTD contour (or the

associated minimal set); the calibration is the same as that in Section 6,

- poSPM1 is the semiparametric method targeting a single MTD, without in-

cluding expert knowledge (uninformative prior); the calibration is the same

as that in the Supplementary Material S.4,

- poSPM2 is the semiparametric method targeting a single MTD that is

calibrated in line with expert knowledge, as described in Section 2 (‘if pos-

sible, the investigators prefer to increase the level of Vinblastine until 1.5

mg/m2’), the calibration is the same as that in the Supplementary Material

S4 except that the mass of the prior Π on doses (i, j) ∈ {2, . . . , 5} × {1, 2}
is divided by two.

In Table 3, the three methods are compared on Scenario T. The target α

is 20% and 60 patients are enrolled in the study. We simulate 10,000 trials for

each method. Cheung’s accuracy metric is defined in Section S4. The metric

NMTD is the average number of dose combinations recommended at the end of

the trial: 4.31 for the poSPMc (less than the number of doses in the minimal set
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Table 4. Experimentation and percentage of trials recommending at least a dose in sets
H1 = {(2, 3), (3, 3)}, H2 = {(3, 2), (3, 3)}, H3 = {(4, 1)}, and H4 = {(1, 4)} for poSPMc,
poSPM1, and poSPM2. Each set may be the only one containing dose combitions suffi-
ciently efficacious and not associated with overly high toxicity probabilities.

Experimentation %

Scenario T Method H1 H2 H3 H4

poSPMc 18.8 16.7 10.6 8.0
poSPM1 32.6 37.2 4.3 2.9
poSPM2 12.6 24.5 0.1 17.8

% of trials Recommendation

Scenario T Method H1 H2 H3 H4

poSPMc 65.2 74.3 64.8 62.8
poSPM1 44.9 43.6 6.5 3.75
poSPM2 21.3 41.3 0.2 20.2

of Scenario T), and one for the other methods. For the final recommendation

percentages in interval [0.15, 0.25], the poSPM1 outperforms the poSPM2 and

poSPMc. For the poSPM2, this is due to the steep toxicity profile around the

MTDs in the middle of the grid, rather than around the dose (1,4), which is then

more difficult to locate. The difference between the poSPMc and poSPM1 in

terms of allocation and recommendation percentage in interval [0.15, 0.25] is due

both to the exploration behavior of poSPMc and the multiple recommendation

at the end of the trial (it is more difficult to recommend 4 dose combinations in

the interval [0.15, 0.25] than it is to recommend one). However, the percentage

of dose combinations recommended by the poSPMc that are inside the interval

[0.15, 0.25] is still satisfactory (60.7%).

In order to show the benefits of targeting the MTD curve (poSPMc), four

hypotheses concerning the efficacy profile of CNL and Vinblastine are consid-

ered. The minimal set of Scenario T contains dose combinations (1,4), (2,3),

(3,2), (3,3) and, (4,1). Note that the true MTD always belongs to the minimal

set; for Scenario T, this is (4, 1). The hypotheses rely on the set of doses with suf-

ficient efficacy probabilities in the minimal set. In the four hypotheses, the only

dose combinations that are sufficiently efficacious and not associated with overly

toxicity probabilities belong to set H1 = {(2, 3), (3, 3)}, H2 = {(3, 2), (3, 3)},
H3 = {(4, 1)}, and H4 = {(1, 4)}, respectively. These four hypotheses are coher-

ent with the partial order applied to the efficacy probabilities. They represent

four possible profiles of efficacy. Note that a dose combination of CNL and Vin-

blastine is considered to have a sufficient efficacy profile if its efficacy rate exceeds

that associated with competitive therapies. The aim of the Phase I design is to
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Figure 4. A simulated trial under scenario T using the poSPMc and the final posterior
Π̃60 on the dose combinations. Red cross: dose limiting toxicity; black circle: no toxicity
response.

then recommend such a dose combination for further exploration in Phase II. In

Table 4, percentages of trials (among the 10,000) which recommend a dose in the

sets H1, H2, H3 and H4 are detailed for each of the three methods. The advan-

tage of the method targeting the MTD curve over methods aiming for a single

MTD is significant. For the poSPMc, the percentage of trials in which at least

one dose with a sufficient efficacy profile is recommended is between 60% and 75%

for all the hypotheses. The same metric goes from 2% to 45% for the poSPM1

and poSPM2. This does not mean that the two methods are not accurate, but

rather that they are not equipped to deal with this situation.

The balanced behavior of the poSPMc is outlined using a trial presented in

Figure 4. At the beginning of the trial, the method explores each of the dose

combinations of the progressive inverted diagonals (e.g. (1,2) and (2,1)) until a

first DLT is observed. Following the 20th patient, almost all the recommended

dose combinations are in the minimal set of Scenario T.

Note that the poSPMc updates a distribution Π on the possible maximum

tolerated contour. The method does not immediately lead to a posterior distri-

bution on the MTD. However, because the model (Λ,Π) is a distribution on the

range of scenarios, one can still calculate a distribution Π̃ on the MTD parameter

by integrating out the toxicity probabilities conditional upon each possible value

that could be assumed by the MTD. Instead of doing this complex calculation,

we use the following formula which holds for all n:
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∀c ∈ C , ∀d ∈ D , Π̃n ∝
1

Vd

∑
c∈Vd

Πn(c) , (7.1)

where Vd is a neighborhood in terms of the contours for dose combination d :

Vd = {c ∈ C : d ∈ Mc}, and Vd is its cardinality. The following proposition

shows that Π̃n is the desired result by considering a poSPM model (Λ̃, Π̃) for

which the updating process is conjugate with the one of the poSPMc model.

Proposition 3. For all n ∈ N, the probability Π̃n, defined by Equation 7.1, is the

posterior on the set of dose combinations from the poSPM model (Λ̃, Π̃), where

Π̃(d) ∝ 1

Vd

∑
c∈Vd

Π(c) and Λ̃d =
∑
c∈Vd

rdcΛc with rdc =
Π(c)∑

c∈Vd
Π(c)

. (7.2)

Thus, there always exists a model (Λ̃, Π̃) of the poSPM setting such that, for

all n ∈ N, the distributions Π̃n correspond to the posterior of Π̃. This conjugacy

property associates, with every poSPMc model on the MTD curve, a poSPM

model for a single MTD. However, this association is not trivial, and appealing

to an allocation strategy for the poSPMc allows the design to explore the full

MTD curve. At the end of a trial with the poSPMc, the final recommendation

relies on the posterior Π̃n. In Figure 4, more than 60% of the posterior mass of

Π̃ is on the minimal set of Scenario T.

Supplementary Material

The eight sections contain scenarios used in the simulation, a notation table,

a numerical experiment in the MTD setting, the calibration methods, and the

proofs of all the properties and theorems.
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