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Abstract: A challenging problem in the analysis of an incomplete contingency table

is that the use of nonignorable nonresponse models requires explicit specification

of missing data mechanism. In this paper we propose a data analytic approach

to aid in distinguishing between plausible nonignorable log-linear models for an

incomplete contingency table. The proposed method involves the computation

of a set of response odds and nonresponse odds that are directly connected with

the magnitude of the parameters representing types of nonignorable mechanism

assumed in the log-linear models. These odds can be easily estimated from observed

counts. We illustrate the performance of the proposed method with simulation and

data. We also discuss a generalizability of the proposed method in two directions,

its applicability for a three-way incomplete contingency table and its applicability

for nonignorable nonresponse models other than the log-linear models.
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sponse.

1. Introduction

Categorical variables subject to missing data can be summarized in the form

of an incomplete contingency table. By the incomplete contingency table we

mean a data set with a completely classified table and its supplemental mar-

gins summarizing missing data on at least one of the variables. For meaningful

inference, one needs to take account of the missing data mechanism.

Missing data mechanism is termed missing completely at random (MCAR)

if missingness is independent of both observed and unobserved response, missing

at random (MAR) when missingness depends only on observed response, and not

missing at random (NMAR) if the missingness depends on both observed and

unobserved response. In the likelihood framework MCAR and MAR are ignorable

in that the statistical inference is valid without explicitly modeling the missing

data mechanism. NMAR is termed nonignorable as it requires the explicit form

of the missing data mechanism (Little and Rubin (2002)).

https://doi.org/10.5705/ss.202015.0472


1888 KIM AND KIM

A challenging issue in using nonignorable nonresponse models is that the

types of nonignorable mechanism assumed in the models are not empirically ver-

ifiable. Molenberghs et al. (1999) and Molenberghs et al. (2008) showed that

different nonignorable nonresponse models may provide the same fit to the ob-

served data, but give different prediction of unobserved data. To aid the model

selection and the assessment of untestable assumptions for the missing data mech-

anism, several methods for sensitivity analysis have been proposed (Copas and

Eguchi (2001); Molenberghs, Kenward and Goetghebeur (2001); Baker, Ko and

Graubard (2003); Troxel, Ma and Heitjan (2004); Vansteelandt et al. (2006); Xie,

Qian and Qu (2011)).

To incorporate missing data mechanism for the analysis of incomplete two-

way contingency tables, two main approaches have been used: the selection model

(Fay (1986); Baker and Laird (1988); Little and Rubin (2002)) and the pattern

mixture model (Little (1993); Park and Brown (1994); Forster and Smith (1998)).

As an alternative approach, a family of nonignorable nonresponse models

based on a log-linear parameterization, called nonignorable log-linear models,

was proposed (Baker and Laird (1988); Baker, Rosenberger and Dersimonian

(1992)). It was shown that the log-linear model for an incomplete two-way table

is equivalent to the selection model when only one variable is subject to missing

data (Clarke and Smith (2004)), and it has the aspects of both selection model

and pattern mixture model when both variables are subject to missing values

(Molenberghs et al. (1999)).

In this paper we propose a data-analytic method to perform model selection

within a family of nonignorable log-linear models given by Baker, Rosenberger

and Dersimonian (1992) for an incomplete two-way contingency table. We de-

velop the measures directly associated with the magnitude of the parameters

for the types of nonignorable mechanism assumed in the nonresponse models.

These measures are based on a set of response odds computed from the com-

pletely classified table and nonresponse odds computed from the supplemental

margins. We prove that, for log-linear models describing differential missingness

of one variable by the other variable, the inequalities relating nonresponse odds

to the range of counterpart response odds indicate the presence of the parameters

representing such informative missingness.

We show that the inequalities based on the proposed measures can be esti-

mated using only the observed counts. Thus, without fitting the nonignorable

log-linear models to the data, they can be used as a data analytic aid to dis-

tinguish between plausible types of nonignorable missingness assumed in the
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models.

The rest of the paper is organized as follows. Section 2 specifies the eight

nonignorable log-linear models for an incomplete two-way contingency table. Sec-

tion 3 presents the theoretical properties of the log-linear models with respect to

the proposed measures. Section 4 proposes an easy-to-use method to aid in the

assessment of the nonignorable log-linear models. In Section 5 the performance

of the proposed method is illustrated with simulations and data example. Section

6 discusses the generalizability of the proposed method in two directions, its ap-

plicability for a three-way incomplete table and its applicability for nonignorable

nonresponse models other than the nonignorable log-linear models.

2. Nonignorable Multinomial Log-Linear Models

Let Y1 and Y2 be the row and column variables with I and J categories,

respectively. Let R1 and R2 be the indicators of missingness for Y1 and Y2,

respectively, with Ri = 1 if Yi is observed and Ri = 2 otherwise, i = 1, 2.

For the full array of Y1, Y2, R1, and R2, we have an I × J × 2 × 2 table with

the cell counts y = {yijk`} and the cell probabilities π = {πijk`} where i =

1, . . . , I, j = 1, . . . , J , k, ` = 1, 2 and πijk` = Pr(Y1 = i, Y2 = j, R1 = k,R2 =

`). What we observe is the incomplete I × J table shown in Table 1, with

yobs = ({yij11}, {yi+12}, {y+j21}, {y++22}), where “+” in the subscripts denotes

summation over the corresponding subscript.

Assume that the observed counts yobs in Table 1 are a realization of a

multinomial distribution with the cell probabilities π and a fixed total count

N =
∑

i,j,k,` yijk`. Then the log-likelihood is

` =

I∑
i=1

J∑
j=1

yij11 log πij11 +

I∑
i=1

yi+12 log πi+12

+

J∑
j=1

y+j21 log π+j21 + y++22 log π++22,

where πijk` = mijk`/
∑

i,j,k,`mijk` and m = {mijk`} is the matrix of the expected

cell counts.

To analyze Table 1 under the nonignorable mechanism, Baker, Rosenberger

and Dersimonian (1992) considered the multinomial log-linear models, as shown

in Table 2. The subscript of each λ-term in the models indicates the variable(s) of

the (main effect/interaction) parameter and the superscript the level of a variable

shown in the subscript. The sum of each λ-term over each of the superscripts is
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Table 1. Incomplete I × J table.

R2 = 1 R2 = 2
Y2 = 1 · · · Y2 = J Y2

Y1 = 1 y1111 · · · y1J11 y1+12

R1 = 1 · · · · · · · · · · · · · · ·
Y1 = I yI111 · · · yIJ11 yI+12

R1 = 2 Y1 y+121 · · · y+J21 y++22

Table 2. Nonignorable multinomial log-linear models for Table 1.

Notation Model

(αi·, βi·) logmijk` = λiY1
+ λjY2

+ λkR1
+ λ`R2

+ λijY1Y2
+ λk`R1R2

+ λikY1R1
+ λi`Y1R2

(α·j , β·j) logmijk` = λiY1
+ λjY2

+ λkR1
+ λ`R2

+ λijY1Y2
+ λk`R1R2

+ λjkY2R1
+ λj`Y2R2

(αi·, β·j) logmijk` = λiY1
+ λjY2

+ λkR1
+ λ`R2

+ λijY1Y2
+ λk`R1R2

+ λikY1R1
+ λj`Y2R2

(α·j , βi·) logmijk` = λiY1
+ λjY2

+ λkR1
+ λ`R2

+ λijY1Y2
+ λk`R1R2

+ λjkY2R1
+ λi`Y1R2

(α··, βi·) logmijk` = λiY1
+ λjY2

+ λkR1
+ λ`R2

+ λijY1Y2
+ λk`R1R2

+ λi`Y1R2

(α··, β·j) logmijk` = λiY1
+ λjY2

+ λkR1
+ λ`R2

+ λijY1Y2
+ λk`R1R2

+ λj`Y2R2

(αi·, β··) logmijk` = λiY1
+ λjY2

+ λkR1
+ λ`R2

+ λijY1Y2
+ λk`R1R2

+ λikY1R1

(α·j , β··) logmijk` = λiY1
+ λjY2

+ λkR1
+ λ`R2

+ λijY1Y2
+ λk`R1R2

+ λjkY2R1

constrained to be zero for identification purposes.

The models in Table 2 differ by the types of nonignorable mechanism char-

acterized by interactions between (Y1, Y2) and (R1, R2). To better understand

them, Baker, Rosenberger and Dersimonian (1992) used the parameterization,

αij =
πij21
πij11

, βij =
πij12
πij11

. (2.1)

The expressions of αij and βij are different for each model in Table 2, as shown in

Section S1 of the Supplementary Material: αij is concerned with the dependence

of R1 on Y1 and Y2, while βij is associated with the dependence of R2 on Y1 and

Y2. For example, for the models with λikY1R1
, αij depends on only the subscript i

(αij = αi·) and, for the models with λjkY2R1
, αij is dependent only on j (αij = α·j).

For the models with neither λikY1R1
nor λjkY2R1

, αij is independent of both i and j

(αij = α··). Similarly, βij = βi· for models with λi`Y1R2
, βij = β·j for the models

with λj`Y2R2
, and βij = β·· for the models with none of λi`Y1R2

and λj`Y2R2
. As shown

in the first column of Table 2, each model is denoted by the combination of the

forms of αij and βij .

For notational simplicity, we take (αi·, β�) and (α·j , β�) as a group of models

with λikY1R1
and λjkY2R1

, respectively, where β� can be one of β··, βi·, β·j . Similarly,
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(α�, βi·) and (α�, β·j) denote a group of models with λi`Y1R2
and λj`Y2R2

, respectively,

where α� can be one of α··, αi·, α·j .

Baker, Rosenberger and Dersimonian (1992) also discussed the identifiability

of the log-linear models in Table 2. When I = J , all eight models are identifiable

and the first four models are saturated. If I > J , the models (αi·, β�) are

unidentifiable. For a case of I < J , the models (α�, β·j) are unidentifiable.

Remark 1. One can consider the ignorable nonresponse models for Table 1 as

the important baseline models (Rubin (1976); Copas and Eguchi (2001); Xie,

Qian and Qu (2011)). The MCAR model is represented as the log-linear model

without any interaction between (Y1, Y2) and (R1, R2) : logmijk` = λiY1
+ λjY2

+

λkR1
+ λ`R2

+ λijY1Y2
+ λk`R1R2

. For the MCAR log-linear model, αij and βij in

(2.1) are independent of i and j (we denote the MCAR model as (α··, β··)). No

MAR model for Table 1 can be represented as a log-linear model with interaction

between (Y1, Y2) and (R1, R2), as such log-linear model cannot satisfy the MAR

conditions given in Molenberghs et al. (1999). For details, see Section S2 in the

Supplementary Material.

3. Properties of Nonignorable Log-Linear Models

In this section we propose measures to provide a theoretical basis for distin-

guishing between the different nonignorable log-linear models in Table 1. The

proposed measures are based on a set of response odds obtained from the com-

pletely classified table and nonresponse odds from the supplemental margins.

Given a pair (j, j′) of Y2, define the response odds νi(j, j
′) to be a ratio of

probabilities of column j and j′ within the i-th row of the completely classified ta-

ble (R1 = R2 = 1) and the nonresponse odds ν(j, j′) to be a ratio of probabilities

of column j and j′ in the supplemental column margin (R1 = 2, R2 = 1):

νi(j, j
′) =

πij11
πij′11

, ν(j, j′) =
π+j21
π+j′21

. (3.1)

We define the response odds intervals for νi(j, j
′) in (3.1) by

OIν(j, j′) =
(
νn(j, j′), νm(j, j′)

)
, (3.2)

where νn(j, j′) = mini νi(j, j
′) and νm(j, j′) = maxi νi(j, j

′) are the minimum and

maximum value of νi(j, j
′) over all i at each pair (j, j′) of Y2, respectively.

Similarly, for a given pair (i, i′) of Y1, we define odds as

ωj(i, i
′) =

πij11
πi′j11

, ω(i, i′) =
πi+12

πi′+12
, (3.3)

where the response odds ωj(i, i
′) is a ratio of probabilities of rows i and i′ within
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column j of the completely classified table and the nonresponse odds ω(i, i′) is

a ratio of probabilities rows i and i′ in the supplemental row margin (R1 = 1,

R2 = 2). We denote the response odds intervals for ωj(i, i
′) in (3.3) by

OIω(i, i′) =
(
ωn(i, i′), ωm(i, i′)

)
, (3.4)

where ωn(i, i′) = minj ωj(i, i
′) and ωm(i, i′) = maxj ωj(i, i

′) are the minimum

and maximum value of ωj(i, i
′) over all j at each pair (i, i′) of Y1, respectively.

The inequalities relating nonresponse odds (ν(j, j′) in (3.1) and ω(i, i′) in

(3.3)) to the counterpart response odds intervals (OIν(j, j′) in (3.2) and OIω(i, i′)

in (3.4)) are associated with the magnitude of the interaction parameters repre-

senting types of nonignorable mechanism assumed in the log-linear models.

Theorem 1. Suppose that π = {πijk`} for an I × I × 2× 2 table is modeled by

1) the models with λjkY2R1
, (α·j , β�).

Then, one and only one of the following must hold for each pair (j, j′) of

Y2 :

(1) ν(j, j′) ∈ OIν(j, j′) if and only if

−0.5 logMν
m(j, j′) < λj

′2
Y2R1

− λj2Y2R1
< −0.5 logMν

n(j, j′),

(2) ν(j, j′) /∈ OIν(j, j′) if and only if

λj
′2
Y2R1
−λj2Y2R1

<−0.5 logMν
m(j, j′) or λj

′2
Y2R1
−λj2Y2R1

>−0.5 logMν
n(j, j′),

where Mν
m(j, j′) = νm(j, j′)/ν(j, j′) > 1, Mν

n(j, j′) = νn(j, j′)/ν(j, j′) < 1 in

the absence of all λjkY2R1
’s, and they are independent of all λjY2

’s and λkR1
’s.

2) the models without λjkY2R1
, (αi·, β�), (α··, βi·), (α··, β·j).

Then, ν(j, j′) ∈ OIν(j, j′) for any given pair (j, j′) of Y2.

3) the models with λi`Y1R2
, (α�, βi·). Then, one and only one of the following

must hold for each pair (i, i′) of Y1:

(1) ω(i, i′) ∈ OIω(i, i′) if and only if

−0.5 logMω
m(i, i′) < λi

′2
Y1R2

− λi2Y1R2
< −0.5 logMω

n (i, i′),

(2) ω(i, i′) /∈ OIω(i, i′) if and only if

λi
′2
Y1R2
−λi2Y1R2

<−0.5 logMω
m(i, i′) or λi

′2
Y1R2
−λi2Y1R2

>−0.5 logMω
n (i, i′),

where Mω
m(i, i′) = ωm(i, i′)/ω(i, i′) > 1, Mω

n (i, i′) = ωn(i, i′)/ω(i, i′) < 1 in

the absence of all λi`Y1R2
’s, and they are independent of all λiY1

’s and λ`R2
’s.

4) the models without λi`Y1R2
, (α�, β·j), (αi·, β··), (α·j , β··).

Then, ω(i, i′) ∈ OIω(i, i′) for any given pair (i, i′) of Y1.
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Proof. See Appendix A.1.

Theorem 1-1) shows that, for the models with λjkY2R1
(α·j , β�), the existence

of at least one pair (j, j′) of Y2 satisfying ν(j, j′) /∈ OIν(j, j′) is equivalent to the

existence of a subset of parameter space such that the value of |λj
′2
Y2R1

− λj2Y2R1
|

is far from zero and thus the presence of a strong interaction between Y2 and

R1. On the other hand, Theorem 1-2) shows that, for the models without λjkY2R1
,

ν(j, j′) ∈ OIν(j, j′) at all pairs (j, j′) of Y2.

In the same way, by Theorem 1-3) and 4), for the models with λi`Y1R2
(α�, βi·),

if there exist at least one pair (i, i′) of Y1 satisfying ω(i, i′) /∈ OIω(i, i′), then the

models (α�, βi·) have a strong interaction between Y1 and R2, compared to the

log-linear models with zero values of λi`Y1R2
’s, (α�, β·j), (αi·, β··), and (α·j , β··).

These observations have an important implication: the inequalities relating

nonresponse odds to the counterpart response odds intervals are useful in distin-

guishing the models with the interactions describing differential missingness of

one variable by the other variable, (α·j , β�) with λjkY2R1
and (α�, βi·) with λi`Y1R2

.

One can view the proposed inequalities as a tool to identify missingness in

an incomplete I × J table when there is substantial discrepancy between a sup-

plemental (column/row) margin and the corresponding margin of the completely

classified table; such substantial discrepancy indicates that the categories of the

dimension over which these margins collapse are weighted dissimilarly in these

two margins. Theorem 1 above formalizes the intuition for such missingness using

the proposed inequalities.

Remark 2. For an I × J × 2 × 2 table with I 6= J , Theorem 1 still holds for

the identifiable log-linear models in Table 2. For the MCAR log-linear model

(α··, β··) given in Remark 1, it can be shown that ω(i, i′) ∈ OIω(i, i′) for any

given pair (i, i′) of Y1 and ν(j, j′) ∈ OIν(j, j′) for any given pair (j, j′) of Y2. For

more details, see Section S2.1 in the Supplementary Material.

4. Assessment of the Nonignorable Log-Linear Models

This section proposes a data analytic method based on Theorem 1 to assess

the suitability of the models in Table 2 for incomplete I × I tables.

For the application of Theorem 1, we first give in Table 3 below the maximum

likelihood (ML) estimators of the response odds and the nonresponse odds in (3.1)

and (3.3) under the log-linear models in Table 2:

ν̂i(j, j
′) =

π̂ij11
π̂ij′11

, ν̂(j, j′) =
π̂+j21
π̂+j′21

, (4.1)
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Table 3. ML estimators for νi(j, j
′), ν(j, j′), ωj(i, i

′) and ω(i, i′).

Model ν̂i(j, j
′) ν̂(j, j′)

(αi·, β�), (α·j , β�)
yij11
yij′11

y+j21
y+j′21

(α··, βi·), (α··, β·j)
yij11
yij′11

y+j+1/y+j11
y+j′+1/y+j′11

∑
i yij11∑
i yij′11

y+j+1/y+j11
y+j′+1/y+j′11

Model ω̂j(i, i
′) ω̂(i, i′)

(α�, βi·), (α�, β·j)
yij11
yi′j11

yi+12

yi′+12

(αi·, β··), (α·j , β··)
yij11
yi′j11

yi+1+/yi+11

yi′+1+/yi′+11

∑
j yij11∑
j yi′j11

yi+1+/yi+11

yi′+1+/yi′+11

ω̂j(i, i
′) =

π̂ij11
π̂i′j11

, ω̂(i, i′) =
π̂i+12

π̂i′+12
, (4.2)

where π̂ij11, π̂i+12, and π̂+j21 are the ML estimators of πij11, πi+12, and π+j21;

their closed forms are provided in Section S3 of the Supplementary Material.

We let the estimators for the response odds intervals OIν(j, j′) and OIω(i, i′)

in (3.2) and (3.4) be denoted by, respectively,

ÔI
ν
(j, j′) =

(
ν̂n(j, j′), ν̂m(j, j′)

)
, ÔI

ω
(i, i′) =

(
ω̂n(i, i′), ω̂m(i, i′)

)
, (4.3)

where ν̂n(j, j′) = mini ν̂i(j, j
′), ν̂m(j, j′) = maxi ν̂i(j, j

′), ω̂n(i, i′) = minj ω̂j(i, i
′)

and ω̂m(i, i′) = maxj ω̂j(i, i
′).

We can see from Table 3 that ν̂i(j, j
′) and ν̂(j, j′) under the models (α·j , β�)

are the same as those under the models (αi·, β�). Thus, by Theorem 1-1) and

2), the existence of at least one pair (j, j′) of Y2 satisfying ν̂(j, j′) /∈ ÔI
ν
(j, j′)

corresponds to the presence of at least one large estimated value of |λj2Y2R1
| relative

to zero, and thus the plausible models for the data at hand are (α·j , β�), not

(αi·, β�). Likewise, ω̂j(i, i
′) and ω̂(i, i′) for the models (α�, βi·) are the same

as those for the models (α�, β·j). If there exist at least one pair (i, i′) of Y1
satisfying ω̂(i, i′) /∈ ÔI

ω
(i, i′) for a given data set, Theorem 1-3) and 4) indicate

the existence of at least one large estimated value of |λi2Y1R2
| relative to zero, and

thus the plausible models are (α�, βi·), not (α�, β·j).

By using the estimators under the models (α··, βi·), (α··, β·j), (αi·, β··) and

(α·j , β··) in Table 3, we can easily verify Theorem 1-2) and 4): under (α··, βi·)

and (α··, β·j), ν̂(j, j′) ∈ ÔI
ν
(j, j′) for all pairs (j, j′) and ω̂(i, i′) ∈ ÔI

ω
(i, i′) for

all pairs (i, i′) under (αi·, β··) and (α·j , β··).

In general, saturated models often provide the best fit for the observed data

and, whenever necessary, also offer useful information in the search for more par-

simonious models. Furthermore, as shown in Molenberghs et al. (2008), saturated
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nonignorable log-linear models can be used to construct MAR counterparts with

the same fit for an incomplete contingency table. We have easy-to-use conditions

to aid in assessing the four saturated nonignorable log-linear models in Table 2,

without fitting them to observed data.

Corollary 1. Suppose that the nonresponse odds in (4.1) and (4.2) and the

response odds intervals in (4.3) are computed using the estimators in Table 3

under the four saturated models (αi·, βi·), (α·j , β·j), (αi·, β·j), and (α·j , βi·). If

C1 : ν̂(j, j′) /∈ ÔI
ν
(j, j′)for at least one pair (j, j′) of Y2, and

C2 : ω̂(i, i′) /∈ ÔI
ω
(i, i′)for at least one pair (i, i′) of Y1,

then, the plausible saturated models are given by
(α·j , βi·) if both C1 and C2 hold,

(α·j , β·j), (α·j , βi·) if C1 holds and C2 does not hold,

(αi·, βi·), (α·j , βi·) if C1 does not hold and C2 holds,

(αi·, βi·), (α·j , β·j), (αi·, β·j), (α·j , βi·) if neither C1 nor C2 hold.

(4.4)

To assess the uncertainty of the accuracy of the proposed conditions in Corol-

lary 1, one can use the bootstrap procedure (Efron and Tibshirani (1993)): gener-

ate B bootstrap samples of size N from each of the selected models and compute

the percentage of bootstrap samples satisfying each of the two conditions under

each selected model. When a condition is satisfied (not satisfied) for the original

data, the corresponding bootstrap percentage close to 100% (0%) indicates that

the result of the condition for the original data is accurate.

In the search of more parsimonious nonignorable log-linear models, one needs

to consider nested models where one of two interactions between (Y1, Y2) and

(R1, R2) in the saturated model(s) selected by Corollary 1 is equal to zero, be-

cause such nested models also satisfy the properties of Theorem 1 under their

respective estimators in Table 3. We summarize the nested log-linear models in

Table 2 to be considered according to the results of Corollary 1:
(α··, βi·), (α·j , β··) if both C1 and C2 hold,

(α·j , β··), (α··, β·j), (α··, βi·) if C1 holds and C2 does not hold,

(α··, βi·), (αi·, β··), (α·j , β··) if C1 does not hold and C2 holds,

(α··, β·j), (α··, βi·), (αi·, β··), (α·j , β··) if neither C1 nor C2 hold.

(4.5)

If one is interested in the statistical significance of the interactions between

(Y1, Y2) and (R1, R2) in the selected saturated model (s), one can employ the
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commonly used model selection criteria such as the likelihood ratio test (LRT),

the Akaike information criterion (AIC) (Akaike (1974)) and the Bayesian infor-

mation criterion (BIC) (Schwarz (1978)) for the selected saturated model(s) and

the corresponding nested models.

Remark 3. For an incomplete I×J table with I 6= J , the ML estimators in Table

3 and the proposed conditions in Corollary 1 are available for the identifiable

log-linear models, the models except (αi·, β�) when I > J and the models except

(α�, β·j) when I < J . For the MCAR model in Remark 1, the ML estimators

of πij11, πi+12, π+j21 in (4.1) and (4.2) need to be obtained numerically, as their

closed forms are unavailable.

5. Numerical Examples

In this section we report on simulations and data analysis to examine the

proposed methods in Section 4 ((4.4) in Corollary 1 and (4.5)). In the Supplemen-

tal material (Section S5), we present another data example using the proposed

method. To verify the validity of the proposed method, we also employ the

commonly used model selection criteria, the LRT, AIC, BIC, and the deviance

statistic G2 evaluating the goodness-of-fit of the estimated model. The LRT is

performed between a saturated model and its nested models. The G2 is defined

to be 2(`Full − `Fit) where `Full is the log likelihood evaluated at (πij11, πi+12,

π+j21, π++22) = (yij11, yi+12, y+j21, y++22)/N , and `Fit is the log likelihood eval-

uated at (πij11, πi+12, π+j21, π++22) computed from the estimated model. Unlike

the proposed method, the use of the LRT, AIC, BIC, and G2 requires estimation

of the models using a numerical algorithm.

5.1. Simulation studies

We performed simulations of the 2 × 2 × 2 × 2 table where Y1 and Y2 are

dichotomous and R1 and R2 are their missingness indicators. In them, three fac-

tors were considered: the sample size (total count) N , the type of nonignorable

missingness, and its degree. We considered two levels of sample size, N = (5,000,

10,000). As to the type of nonignorable missingness, we considered the four satu-

rated models in Table 2, (αi·, βi·), (α·j , β·j), (αi·, β·j) and (α·j , βi·). Each of them

describes different types of missingness represented by the interactions between

(Y1, Y2) and (R1, R2): (λ11Y1R1
, λ11Y1R2

) for (αi·, βi·), (λ11Y2R1
, λ11Y2R2

) for (α·j , β·j),

(λ11Y1R1
, λ11Y2R2

) for (αi·, β·j), and (λ11Y2R1
, λ11Y1R2

) for (α·j , βi·). For identifiability,

there are only two parameters for interactions between (Y1, Y2) and (R1, R2) in
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each saturated model.

The degree of the nonignorable missingness assumed in each model was de-

termined by the magnitudes of two interaction parameters between (Y1, Y2) and

(R1, R2). We used four values for each interaction, (0.05, 0.1, 0.2, 0.4), and so

there were 16 pairs of values of two interactions in each saturated model. The

odds ratios of the four corresponding values of the interaction were 1.22, 1.49,

2.23 and 4.95, respectively. For detailed information on the parameter values

used in the simulation study, see Section S4.1 in the Supplementary Material.

The three simulation factors were fully crossed, leading to 128 experimental

conditions (= 2 for sample size × 4 for type of nonignorable missingness ×
16 for a combination of two interactions describing the degree of an assumed

missingness). Under each experimental condition, we generated 1,000 tables and

applied the proposed method in (4.4) of Corollary 1, as well as three commonly

used model selection criteria, AIC, BIC, and G2, to each simulated data set. We

then counted the number of cases where each of the four saturated models was

chosen as a plausible model by the four model selection criteria including the

proposed method. By a plausible model in the use of AIC, BIC, and G2, we

mean a saturated model producing the smallest value of AIC and BIC, giving

a perfect fit to the observed cell counts, and providing non-boundary solutions

for the estimates of unobserved cell counts (Clarke and Smith (2004)), non-zero

values of m̂+j+2 =
∑2

i=1

∑2
k=1 m̂ijk2 for all j’s and m̂i+2+ =

∑2
j=1

∑2
`=1 m̂ij2`

for all i’s.

Table 4 presents the number of the cases each of the four saturated models

was chosen by AIC, BIC, G2, and the proposed method in (4.4) when 1,000 tables

of size N = 5,000 are generated from each of the four types of nonignorable

missingness. The simulation results for N = 10,000 are provided in Section S4.2

of the Supplementary Material. The following observations can be made from

the simulation.

The performance of the proposed method in (4.4) was exactly the same

as those of AIC, BIC, and G2 in terms of the selection of saturated models,

regardless of the sample size, the type of nonignorable missingness and its degree.

Moreover, the true (simulation) model is always chosen to be plausible, regardless

of three simulation factors.

Given the sample size, the number of selected saturated models changes

depending on types of nonignorable missingness and its degrees. Thus, when

the type of nonignorable missingness is characterized by the simulation model

(αi·, βi·), the two saturated models (αi·, βi·) and (α·j , βi·) are always chosen.
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When λ11Y1R2
is small (e.g., 0.05, 0.1), the other two saturated models (αi·, β·j)

and (α·j , β·j) are additionally chosen in more than half the cases. This result

can be explained by Theorem 1-2) and 3). Under the simulation model (αi·, βi·),

ν(j, j′) ∈ OIν(j, j′) holds for any given pair (j, j′) of Y2 by Theorem 1-2), so the

condition C1 in Corollary 1 does not hold regardless of the size of λ11Y1R1
. On

the other hand, as shown in Theorem 1-3), the occurrence of ω(i, i′) /∈ OIω(i, i′)

depends on the magnitude of λ11Y1R2
, and so does the occurrence of the condition

C2 in Corollary 1.

The results for the other simulation models can be explained by Theorem 1

and Corollary 1 in a similar way. For example, under the simulation model

(αi·, β·j), Theorem 1-2) and 4) show that ν(j, j′) ∈ OIν(j, j′) and ω(i, i′) ∈
OIω(i, i′) always hold, independent of the magnitude of λ11Y1R1

and λ11Y2R2
, re-

spectively. This means that neither C1 nor C2 in Corollary 1 hold and all four

saturated models are plausible. For the simulation model (α·j , βi·), the occur-

rence of ν(j, j′) /∈ OIν(j, j′) and ω(i, i′) /∈ OIω(i, i′) depend on the magnitude of

λ11Y2R1
and λ11Y1R2

, respectively, by Theorem 1-1) and 3). Thus, when the values of

λ11Y2R1
and λ11Y1R2

are both large, both conditions C1 and C2 in Corollary 1 hold,

so the selected model is only (α·j , βi·).

5.2. Data analysis

Table 5 shows an incomplete 3 × 3 table, from the third National Health

and Nutrition Examination Survey, classified by bone mineral density (BMD,

Y1) and family income (FI, Y2) (Nandram, Cox and Choi (2005)). Using Table 5

we illustrate how the proposed methods, (4.4) and (4.5), can be used in assessing

the plausibility of nonignorable log-linear models in Table 2. We also consider the

ignorable nonresponse models as the important baseline models, MCAR model

(α··, β··) in Remark 1, and the MAR selection model in Molenberghs et al. (2008).

For the details of the MAR selection model, see Section S2.2 in the Supplementary

Material.

We evaluate the conditions C1 and C2 of Corollary 1 by using the estima-

tors in Table 3 to compute ν̂(j, j′) in (4.1), ω̂(i, i′) in (4.2), and ÔI
ν
(j, j′) and

ÔI
ω
(i, i′) in (4.3) under the saturated models (αi·, βi·), (α·j , β·j), (αi·, β·j), and

(α·j , βi·).

From Table 6 we observe that both conditions C1 and C2 hold: ν̂(j, j′) /∈
ÔI

ν
(j, j′) for two pairs (j, j′) of Y2 and ω̂(i, i′) /∈ ÔI

ω
(i, i′) for three pairs (i, i′)

of Y1. Thus, by (4.4), the plausible saturated nonignorable log-linear model

is only (α·j , βi·), the model with λjkY2R1
and λi`Y1R2

. To assess the uncertainty
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Table 4. Number of the cases where each of the four saturated models was chosen by AIC,
BIC, G2 and the proposed method Eq. (4.4) in Corollary 1 under the four simulation
models (types of nonignorable missingness) with N = 5,000.

Simulation model Fitted saturated models Simulation model Fitted saturated models
(αi·, βi·) (α·j , β·j)

λ11Y1R1
λ11Y1R2

(αi·, βi·)(αi·, β·j) (α·j , βi·)(α·j , β·j) λ11Y2R1
λ11Y2R2

(αi·, βi·) (αi·, β·j) (α·j , βi·) (α·j , β·j)

0.05 0.05 1,000 996 1,000 996 0.05 0.05 998 998 1,000 1,000
0.1 0.05 1,000 992 1,000 992 0.1 0.05 803 803 1,000 1,000
0.2 0.05 1,000 992 1,000 992 0.2 0.05 1 1 1,000 1,000
0.4 0.05 1,000 992 1,000 992 0.4 0.05 0 0 1,000 1,000
0.05 0.1 1,000 634 1,000 634 0.05 0.1 996 996 1,000 1,000
0.1 0.1 1,000 632 1,000 632 0.1 0.1 768 768 1,000 1,000
0.2 0.1 1,000 644 1,000 644 0.2 0.1 1 1 1,000 1,000
0.4 0.1 1,000 652 1,000 652 0.4 0.1 0 0 1,000 1,000
0.05 0.2 1,000 0 1,000 0 0.05 0.2 998 998 1,000 1,000
0.1 0.2 1,000 0 1,000 0 0.1 0.2 789 789 1,000 1,000
0.2 0.2 1,000 0 1,000 0 0.2 0.2 0 0 1,000 1,000
0.4 0.2 1,000 0 1,000 0 0.4 0.2 0 0 1,000 1,000
0.05 0.4 1,000 0 1,000 0 0.05 0.4 1,000 1,000 1,000 1,000
0.1 0.4 1,000 0 1,000 0 0.1 0.4 769 769 1,000 1,000
0.2 0.4 1,000 0 1,000 0 0.2 0.4 1 1 1,000 1,000
0.4 0.4 1,000 0 1,000 0 0.4 0.4 0 0 1,000 1,000
0.05 0.05 1,000 1,000 1,000 1,000 0.05 0.05 998 988 1,000 990
0.1 0.05 1,000 1,000 1,000 1,000 0.1 0.05 774 768 1,000 992
0.2 0.05 1,000 1,000 1,000 1,000 0.2 0.05 1 1 1,000 990
0.4 0.05 1,000 1,000 1,000 1,000 0.4 0.05 0 0 1,000 995
0.05 0.1 1,000 1,000 1,000 1,000 0.05 0.1 996 635 1,000 638
0.1 0.1 1,000 1,000 1,000 1,000 0.1 0.1 786 531 1,000 666
0.2 0.1 1,000 1,000 1,000 1,000 0.2 0.1 1 1 1,000 663
0.4 0.1 1,000 1,000 1,000 1,000 0.4 0.1 0 0 1,000 639
0.05 0.2 1,000 1,000 1,000 1,000 0.05 0.2 998 1 1,000 1
0.1 0.2 1,000 1,000 1,000 1,000 0.1 0.2 784 0 1,000 0
0.2 0.2 1,000 1,000 1,000 1,000 0.2 0.2 0 0 1,000 0
0.4 0.2 1,000 1,000 1,000 1,000 0.4 0.2 0 0 1,000 1
0.05 0.4 1,000 1,000 1,000 1,000 0.05 0.4 997 0 1,000 0
0.1 0.4 1,000 1,000 1,000 1,000 0.1 0.4 784 0 1,000 0
0.2 0.4 1,000 1,000 1,000 1,000 0.2 0.4 2 0 1,000 0
0.4 0.4 1,000 1,000 1,000 1,000 0.4 0.4 0 0 1,000 0

Table 5. BMD (Y1) and FI (Y2) data.

R2 = 1 R2 = 2
Y2 = 1 Y2 = 2 Y2 = 3 Y2

(< $20,000) ($20,000, $45,000) (> $45,000)

R1 = 1
Y1 = 1 (normal) 621 290 284 135
Y1 = 2 (osteopenia) 260 131 117 69
Y1 = 3 (osteoporosis) 93 30 18 27

R1 = 2 Y1 456 156 266 45

of the accuracy of the proposed method, we performed bootstrap resampling:

generate 100,000 samples from the model (α·j , βi·) fitted to the data and compute

the percentages of bootstrap samples satisfying the conditions C1 and C2 in
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Table 6. ν̂i(j, j
′) and ν̂(j, j′) for the models (αi·, β�) and (α·j , β�), and ω̂j(i, i

′) and
ω̂(i, i′) for the models (α�, βi·) and (α�, β·j).

(j, j′) ν1(j, j′) ν2(j, j′) ν3(j, j′) ν(j, j′)
(1,2) 2.14(=621/290) 1.98(=260/131) 3.10(=93/30) 2.92(=456/156)
(1,3) 2.19(=621/284) 2.22(=260/117) 5.17(=93/18) 1.71(=456/266)
(2,3) 1.02(=290/284) 1.12(=131/117) 1.67(=30/18) 0.59(=156/266)

(i, i′) ω1(i, i′) ω2(i, i′) ω3(i, i′) ω(i, i′)
(1,2) 2.39(=621/260) 2.21(=290/131) 2.43(=284/117) 1.96(=135/69)
(1,3) 6.68(=621/93) 9.67(=290/30) 15.78(=284/18) 5.00(=135/27)
(2,3) 2.80(=260/93) 4.37(=131/30) 6.50(=117/18) 2.56(=69/27)

Table 7. Model selection for BMD data. Note that (C1, C2) represents the percentage
of bootstrap samples satisfying the conditions C1 and C2 in Corollary 1.

Saturated Nested Proposed method P -value G2 AIC BIC
model model (C1, C2) for LRT

(αi·, β·j) 20.6 14,574.51 14,585.13
(αi·, β··) 0.219 23.6 14,573.55 14,582.75
(α··, β·j) 0.024 28.0 14,577.96 14,587.16

(α·j , βi·)
√

(99.99, 96.47) 0 14,553.93 14,564.55
(α·j , β··)

√
0.066 5.4 14,555.36 14,564.56

(α··, βi·)
√

< 0.001 25.7 14,575.59 14,584.79
(αi·, βi·) 18.2 14,572.12 14,582.74

(αi·, β··) 0.066 23.6 14,573.55 14,582.75
(α··, βi·) 0.024 25.7 14,575.59 14,584.79

(α·j , β·j) 2.4 14,556.29 14,566.91
(α·j , β··) 0.215 5.4 14,555.36 14,564.56
(α··, β·j) < 0.001 28.0 14,577.96 14,587.16

Corollary 1. The computed percentages for C1 and C2 were 99.99 and 96.47,

respectively, which confirm the accuracy of the proposed method.

We also compared the result of the proposed method with the model selection

results of G2, AIC, and BIC in selecting the suitable saturated models. As shown

in Table 7, G2, AIC, and BIC chose the same saturated model as the proposed

method, (α.j , βi.): the model (α.j , βi.) has a zero value of G2 and the smallest

values of AIC and BIC among all saturated models. The expected cell counts

given in Section S5.1 of the Supplementary Material shows that the other three

saturated models gave a poor fit to the observed cell counts and/or the boundary

solutions for the estimates of the unobserved cell counts.

For the statistical significance of the interaction parameters in the selected

model (α.j , βi.), as suggested in (4.5), we considered the corresponding nested
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models (α··, βi·) and (α·j , β··) and used the LRT, AIC, BIC, andG2. From Table 7,

the nested model (α·j , β··) must also be selected, as the p-values of LRT is 0.066

and the AIC and BIC values between the full model (α.j , βi.) and the reduced

model (α·j , β··) have only small differences.

Finally, we applied the ignorable nonresponse models to the data, the MCAR

model (α··, β··) and the MAR selection model. The values of G2, AIC, and BIC

were (31.27, 14,577.20, 14,584.99) for (α··, β··) and (0, 14,553.93, 14,564.55) for

the MAR model. The MAR model performs better than the MCAR model. The

estimates for the expected cell counts under the ignorable nonresponse models

are given in Section S5.1 of the Supplementary Material.

From this analysis, we conclude that the plausible nonignorable log-linear

models for Table 5 are (α.j , βi.) and (α·j , β··), and the MAR selection model has

the same results as the selected saturated model (α.j , βi.) in terms of G2, AIC,

BIC and the estimates for the observed data, m̂ij11. However, the MAR model

and the selected saturated models (α.j , βi.) produce different predictions of the

unobserved cell counts. This means that the MAR selection model is the MAR

counterpart of the saturated model (α.j , βi.), and thus the empirical distinction

between MAR and MNAR is not possible (Molenberghs et al., 2008).

6. Discussion

We have proposed a data analytic method that aims to select nonignorable

log-linear models suitable for an incomplete two-way contingency table. The

proposed method involves only the computation of a set of response odds and

nonresponse odds that can be easily obtained from observed data. The simula-

tion results and data analysis showed the same performance between the proposed

method and the standard model selection criteria, AIC, BIC, and G2 in selecting

plausible saturated models. For the nonignorable log-linear model(s) selected

by the proposed method, one can perform a sensitivity analysis to better un-

derstand the parameters of interest (Molenberghs, Kenward and Goetghebeur

(2001); Vansteelandt et al. (2006)).

We here discuss the generalizability of the proposed method in two directions:

its applicability for a more than two-way incomplete contingency table and its

applicability for nonignorable models outside the framework of log-linear models.

We considered hierarchical log-linear models for three-way incomplete con-

tingency tables with the variables subject to missingness. As shown in Section

S7 of the Supplemental Material, we confirmed that the proposed method can be
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easily generalized to identify the types of misssingness assumed in the log-linear

models for incomplete three-way tables; the inequalities relating the nonresponse

odds to the response odds intervals enable one to identify the informative miss-

ingness represented by the (two-way and three-way) interaction parameters of

the assumed log-linear model.

We examined the applicability of the proposed method to a nonignorable

selection model (Fay (1986); Molenberghs et al. (1999)) for an incomplete two-

way table. As given in Section S8 of the Supplemental Material, the inequalities

relating the nonresponse odds to the response odds intervals are directly associ-

ated with the magnitudes of the parameters describing missingness assumed in

the selection model. We also demonstrated their performance on data.

Supplementary Materials

In the Supplemental Material, we provide some details on the eight log-linear

models given in Table 2, on the ignorable nonresponse models for an incomplete

I × J table, on the results of simulation studies and data analysis that were

omitted in Section 5, on the proofs of Theorem 1-3) and 4) in the paper, on

the log-linear models for incomplete three-way contingency tables, and on the

nonignorable selection model for an incomplete two-way contingency table.
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Appendix

A.1. Proof of Theorem 1 in Section 3

We show only the proof of Theorem 1-1) and 2). The proofs of Theorem 1-3)

and 4) are provided in Section S6 of the Supplementary Material.

Lemma 1. For a I × I × 2× 2 contingency table, the following inequalities hold

under all nonresponse models in Table 2. For all pairs (j, j′) of Y2,

λij
′

Y1Y2
− λmj

′

Y1Y2
> λijY1Y2

− λmjY1Y2
and λij

′

Y1Y2
− λnj

′

Y1Y2
< λijY1Y2

− λnjY1Y2
,

where m and n are subscripts corresponding to νm(j, j′) and νn(j, j′), respectively.
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Table 8. Decomposition of Rνm(j, j′) and Rνn(j, j′).

Model Hν(j, j′) Mν
m(j, j′) Mν

n(j, j′)

(α·j , β·j)

(α·j , β··)
exp

(
2λj

′2
Y2R1

− 2λj2Y2R1

) ∑
i exp

(
λiY1

+ λij
′

Y1Y2
− λmj

′

Y1Y2

)
∑
i exp

(
λiY1

+ λijY1Y2
− λmjY1Y2

) ∑
i exp

(
λiY1

+ λij
′

Y1Y2
− λnj

′

Y1Y2

)
∑
i exp

(
λiY1

+ λijY1Y2
− λnjY1Y2

)
(α·j , βi·) exp

(
2λj

′2
Y2R1

− 2λj2Y2R1

) ∑
i exp

(
λiY1

+ λi1Y1R2
+ λij

′

Y1Y2
− λmj

′

Y1Y2

)
∑
i exp

(
λiY1

+ λi1Y1R2
+ λijY1Y2

− λmjY1Y2

) ∑
i exp

(
λiY1

+ λi1Y1R2
+ λij

′

Y1Y2
− λnj

′

Y1Y2

)
∑
i exp

(
λiY1

+ λi1Y1R2
+ λijY1Y2

− λnjY1Y2

)
(α··, β·j) 1

∑
i exp

(
λiY1

+ λij
′

Y1Y2
− λmj

′

Y1Y2

)
∑
i exp

(
λiY1

+ λijY1Y2
− λmjY1Y2

) ∑
i exp

(
λiY1

+ λij
′

Y1Y2
− λnj

′

Y1Y2

)
∑
i exp

(
λiY1

+ λijY1Y2
− λnjY1Y2

)
(α··, βi·) 1

∑
i exp

(
λiY1

+ λi1Y1R2
+ λij

′

Y1Y2
− λmj

′

Y1Y2

)
∑
i exp

(
λiY1

+ λi1Y1R2
+ λijY1Y2

− λmjY1Y2

) ∑
i exp

(
λiY1

+ λi1Y1R2
+ λij

′

Y1Y2
− λnj

′

Y1Y2

)
∑
i exp

(
λiY1

+ λi1Y1R2
+ λijY1Y2

− λnjY1Y2

)
(αi·, β·j)

(αi·, β··)
1

∑
i exp

(
λiY1

+ λi2Y1R1
+ λij

′

Y1Y2
− λmj

′

Y1Y2

)
∑
i exp

(
λiY1

+ λi2Y1R1
+ λijY1Y2

− λmjY1Y2

) ∑
i exp

(
λiY1

+ λi2Y1R1
+ λij

′

Y1Y2
− λnj

′

Y1Y2

)
∑
i exp

(
λiY1

+ λi2Y1R1
+ λijY1Y2

− λnjY1Y2

)
(αi·, βi·) 1

∑
i exp

(
λiY1

+ λi2Y1R1
+ λi1Y1R2

+ λij
′

Y1Y2
− λmj

′

Y1Y2

)
∑
i exp

(
λiY1

+ λi2Y1R1
+ λi1Y1R2

+ λijY1Y2
− λmjY1Y2

) ∑
i exp

(
λiY1

+ λi2Y1R1
+ λi1Y1R2

+ λij
′

Y1Y2
− λnj

′

Y1Y2

)
∑
i exp

(
λiY1

+ λi2Y1R1
+ λi1Y1R2

+ λijY1Y2
− λnjY1Y2

)

Proof. We show the proof for the model (αi·, β·j). The proofs for the other models

are similar. First, νi(j, j
′) is expressed as

νi(j, j
′) =

πij11
πij′11

= exp
(
λjY2
− λj

′

Y2
+ λijY1Y2

− λij
′

Y1Y2
+ λj1Y2R2

− λj
′1
Y2R2

)
(A.1)

for each pair (j, j′) of Y2. Comparison of νi(j, j
′) and νm(j, j′) in terms of (A.1)

gives λij
′

Y1Y2
− λmj

′

Y1Y2
> λijY1Y2

− λmjY1Y2
, because νm(j, j′) ≥ νi(j, j

′) for all i by the

definition of νm(j, j′). Similarly, we have λij
′

Y1Y2
− λnj

′

Y1Y2
< λijY1Y2

− λnjY1Y2
because

νn(j, j′) ≤ νi(j, j′) for all i by the definition of νn(j, j′).

We turn to proofs of Theorem 1-1) and 2).

Proof. For all models given in Table 2, let Rνm(j, j′) = νm(j, j′)/ν(j, j′) and

Rνn(j, j′) = νn(j, j′)/ν(j, j′). Then, Rνm(j, j′) and Rνn(j, j′) are decomposed into

two parts according to each model as shown in Table 8: Rνm(j, j′) = Hν(j, j′)

Mν
m(j, j′) and Rνn(j, j′) = Hν(j, j′)Mν

n(j, j′). By Lemma 1, for all eight log-linear

models, we have Mν
m(j, j′) > 1 for all pairs (j, j′) of Y2, as all other parameters

of Mν
m(j, j′) are same except λij

′

Y1Y2
− λmj

′

Y1Y2
in the numerator and λijY1Y2

− λmjY1Y2

in the denominator, as shown in Table 8. On the contrary, by Lemma 1, we

have Mν
n(j, j′) < 1 for all pairs (j, j′) of Y2 under all eight models. We have

Mν
m(j, j′) and Mν

n(j, j′) that equal to Rνm(j, j′) and Rνn(j, j′), respectively, under

the assumption λj2Y2R1
= 0 for all j’s (which makes Hν(j, j′) = 1 for all j’s).

Under the models (α·j , β�) (i.e., (α·j , β·j), (α·j , βi·), and (α·j , β··)), we show

the necessary and sufficient condition for ν(j, j′) ∈ OIν(j, j′). First, ν(j, j′) ∈
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OIν(j, j′) is the same as “Rνm(j, j′) > 1 and Rνn(j, j′) < 1”. Since Rνm(j, j′) =

Hν(j, j′)Mν
m(j, j′) and Rνn(j, j′) = Hν(j, j′)Mν

n(j, j′), “Rνm(j, j′) > 1 and Rνn(j, j′)

< 1” is equivalent to that Hν(j, j′) is larger than Mν
m(j, j′)−1 and less than

Mν
n(j, j′)−1, and thus − logMν

m(j, j′) < 2(λj
′2
Y2R1

− λj2Y2R1
) = logHν(j, j′) <

− logMν
n(j, j′). Since ν(j, j′) /∈ OIν(j, j′) is the complement of ν(j, j′) ∈ OIν(j, j′),

it is straightforward to show that the necessary and sufficient condition for

ν(j, j′) /∈ OIν(j, j′) is “logHν(j, j′) = 2(λj
′2
Y2R1

− λj2Y2R1
) < − logMν

m(j, j′) or

logHν(j, j′) = 2(λj
′2
Y2R1

− λj2Y2R1
) > − logMν

n(j, j′)”.

For the models (αi·, β�) (i.e., (αi·, β·j), (αi·, βi·), and (αi·, β··)), R
ν
m(j, j′) =

Mν
m(j, j′) and Rνn(j, j′) = Mν

n(j, j′), because Hν(j, j′) = 1 for all pairs (j, j′)

of Y2 as shown in Table 8. Since Mν
m(j, j′) > 1 and Mν

m(j, j′) < 1, we have

ν(j, j′) ∈ OIν(j, j′) for all pairs (j, j′) of Y2. For the models (α··, βi·) and (α··, β·j),

Hν(j, j′) = 1 for all pairs (j, j′) of Y2. So, Rνm(j, j′) = Mν
m(j, j′) and Rνn(j, j′) =

Mν
n(j, j′), which means ν(j, j′) ∈ OIν(j, j′).
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