
Statistica Sinica 20 (2010), 1581-1607

SEMIPARAMETRIC ADDITIVE RISKS REGRESSION FOR

TWO-STAGE DESIGN SURVIVAL STUDIES

Gang Li and Tong Tong Wu

University of California, Los Angeles and University of Maryland, College Park

Abstract: In this article we study a semiparametric additive risks model (McKeague

and Sasieni (1994)) for two-stage design survival data where accurate information

is available only on second stage subjects, a subset of the first stage study. We

derive two-stage estimators by combining data from both stages. Large sample

inferences are developed. As a by-product, we also obtain asymptotic properties

of the single stage estimators of McKeague and Sasieni (1994) when the semipara-

metric additive risks model is misspecified. The proposed two-stage estimators are

shown to be asymptotically more efficient than the second stage estimators. They

also demonstrate smaller bias and variance for finite samples. The developed meth-

ods are illustrated using small intestine cancer data from the SEER (Surveillance,

Epidemiology, and End Results) Program.
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1. Introduction

Two-stage designs are useful in medical studies and other fields of research.
The first stage sample of a two-stage design consists of a set of subjects under
study with surrogate, inaccurate, or missing information. The second stage sam-
ple is a subset of individuals from the first stage with accurate and complete
data. Typical scenarios include measurement error and missing covariates prob-
lems. For example, when a complete survey is complicated, expensive, and time
consuming, researchers often use a simplified version for all study subjects in the
first stage. The complete version is taken only by a small subset of study sub-
jects. Two-stage data also arise in applications where certain information from
more recently available technology, such as a genome-wide scan, is collected only
for newly-diagnosed patients. A medical device postmarking surveillance exam-
ple was given by Li and Tseng (2008): St Jude Medical conducted a postmarket
surveillance study to evaluate the safety and efficacy of five pacing electrodes
by collecting information of the adverse events or failures. The database main-
tained by the medical device company, which contains all the market devices,
has serious under-reporting problems that might underestimate the failure and
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adverse event rates. To offset the under-reporting bias, St Jude Medical drew an
active follow-up sample and collected accurate and complete information on this
sample. This typical two-stage survival study consists of the company adminis-
trative data (first stage data) and the active follow-up data (second stage data).
In general, analysis based on the first stage data alone could be biased. On the
other hand, analysis based on the second stage data alone would not be the most
efficient since it does not utilize information from the first stage. It would be
desirable to combine data from both stages to increase efficiency of the second
stage data analysis.

The two-stage design has been studied extensively for complete data; see,
e.g., White (1982), Schill et al. (1993), Breslow and Holubkov (1997), and refer-
ences therein. However, there are relatively few methods available for analysis of
two-stage censored survival data, especially when both the outcome variable and
covariates are subject to error in the first stage sample. Among others, Zhou and
Pepe (1995) and Wang et al. (1997) studied the surrogate covariates problem for
a multiplicative semiparametric hazard model using regression calibration tech-
niques. Kulich and Lin (2000) proposed a corrected pseudo-score estimator for
the additive risks model of Lin and Ying (1994) with measurement errors on
covariates. Based on the work of Chen and Chen (2000) on regression models
in two-stage designs, Chen (2002) and Tseng (2004) studied the Cox model for
two-stage survival data, where both survival time and covariates are subject to
measurement error. Li and Tseng (2008) studied nonparametric estimation of
survival functions for two-stage survival data. Jiang and Zhou (2007) studied a
two-stage design problem for Lin and Ying ’s (1994) model.

In this paper we study the semiparametric additive risks model of McKeague
and Sasieni (1994) (referred to as MS hereafter) for analysis of two-stage survival
data where both the survival time and covariates are subject to measurement
errors. Let h(t|x, z) denote the conditional hazard function of a survival time
given x and z. The MS model postulates that

h(t|x, z) = α(t)′x + β′z.

The MS model provides a useful alternative to the Cox (1972) model when the
proportional hazards assumption is violated. Including Lin and Ying ’s (1994)
model as a special case, the MS is more parsimonious than Aalen’s (1978) additive
risks model.

We derive two-stage estimates for the parametric and nonparametric regres-
sion coefficients by bridging the first stage and second stage estimates through
their asymptotic joint distribution. The estimators introduced in this paper take
the form

θ̂2 = θ̂V
2 − Σ21Σ−1

11 (θ̂V
1 − θ̂1),
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where θ̂V
2 is the second stage estimator, θ̂V

1 and θ̂1 are first stage estimators for
different sample sizes, Σ21 is the covariance matrix between θ̂V

2 and θ̂V
1 , and

Σ11 is the variance of θ̂V
1 . The second stage estimator θ̂V

2 can be improved by
incorporating the information from the first stage, i.e. θ̂V

1 − θ̂1. The use of
information from both stages allows us to fit a model with full information. A
major challenge in establishing the asymptotic joint distribution of the first-stage
and second-stage estimates in our model is the loss of the martingale property,
which is the key to the theoretical development of the MS model for the single
stage estimates. Moreover, we need to derive the properties of the MS estimators
under a misspecified model. We use a different approach to study the asymptotic
joint distribution by deriving i.i.d. representations. The same approach is then
used to establish large sample properties of the proposed two-stage estimates and
to develop large sample inferences.

Our methods are developed under a very general setting that incorporates
measurement errors on both covariates and the survival outcome without re-
quiring specific model specifications for the errors. No assumption is needed for
the relationship between surrogate variables and target variables. We allow mis-
specified models for the first stage data and derive a robust sandwich variance
estimate for the MS model.

The paper is organized as follows. In Section 2, we study the properties of
the single stage MS estimators under misspecified models, and propose two-stage
estimators for the regression coefficients and the conditional survival function.
Large sample properties of our proposed estimators are given in Section 3. Point-
wise and simultaneous confidence intervals for the conditional survival function
are derived. Section 4 presents a simulation study to evaluate the performance
of our methods. In Section 5, we illustrate our method using small intestine
cancer data from the Surveillance, Epidemiology, and End Results (SEER) Pro-
gram supported by the National Cancer Institute (NCI). Section 6 provides some
concluding remarks. The proofs are provided in the appendix.

2. Two-Stage Estimators

2.1. Notation and assumptions

Supposed there are N subjects in the first stage and only coarse measure-
ments, denoted as (x1i, z1i, T1i, δ1i), i = 1, . . . , N , are available. Here x1i ∈
Rp1 , z1i ∈ Rq1 are the observed surrogate covariates that might depend on time,
T1i = min{T̃1i, C1i}, T̃1i is a survival time, C1i is a censoring time conditionally
independent of T̃1i given the covariates, and δ1i = I(T̃1i ≤ C1i) is the censoring
indicator. In the second stage, accurate data (x2i, z2i, T2i, δ2i), i ∈ V (n), are col-
lected for a random validation subsample V (n) of n subjects from the first stage,
where x2i ∈ Rp2 , z2i ∈ Rq2 , T2i = min{T̃2i, C2i}, T̃2i is the true survival time, C2i
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is a censoring time conditionally independent of T̃2i given the covariates x2i and
z2i, and δ2i = I(T̃2i ≤ C2i) is the censoring indicator.

Assume the following MS model for the survival time T̃2i:

h2(t|x2i, z2i) = lim
∆t→0

Pr(t ≤ T̃2i < t + ∆t|T̃2i ≥ t, x2i, z2i)
∆t

= α2(t)′x2i + β′
2z2i,

for i ∈ V (n). For the second stage sample, let

β̂V
2 =

[∫ τ

0
(ZV

2 )′ĤV
2 ZV

2 dt

]−1 [∫ τ

0
(ZV

2 )′ĤV
2 dNV

2 (t)
]

,

ÂV
2 (t) =

∫ t

0
[(XV

2 )′Ŵ V
2 XV

2 ]−1(XV
2 )′Ŵ V

2 [dNV
2 (t) − ZV

2 β̂V
2 ds],

be the weighted least squares estimators of β2 and A2(t) =
∫ t
0 α2(u)du, respec-

tively (McKeague and Sasieni (1994)), where ZV
2 = ZV

2 (t) = [z21Y21(t), . . .,
z2nY2n(t)]′, XV

2 = XV
2 (t) = [x21Y21(t), . . . , x2nY2n(t)]′, Y2i(t) = I(T2i ≥ t) is the

at-risk process, NV
2 (t) = [N21(t), . . . , N2n(t)]′, N2i(t) = I(T2i ≤ t, δ2i = 1) is the

counting process,

ĤV
2 = Ŵ V

2 − Ŵ V
2 XV

2 [(XV
2 )′Ŵ V

2 XV
2 ]−1(XV

2 )′Ŵ V
2 ,

with Ŵ V
2 = Ŵ V

2 (t) = diag[1/ĥ21(t), . . . , 1/ĥ2n(t)], ĥ2i(t) is a uniformly consistent
estimate of the weight function h2i(t) ≡ h2(t|x2i, z2i) for subject i, and τ is the
last time point in the study (see a more rigorous definition in the appendix).
Similarly, we define the first stage estimators [β̂1, Â1(t)] and [β̂V

1 , ÂV
1 (t)] using

the first stage data based on all N subjects and the n subjects in the validation
sample, respectively.

2.2. Asymptotic properties of the MS estimators under misspecified
models

Our theorem gives large sample properties of β̂V
1 and ÂV

1 (t) without making
any model assumption for the first stage data. It is a nontrivial generalization
of the result of MS by allowing the model to be misspecified. Scheike (2002)
considered a particular misspecification of the MS model, where the form holds
only for the rate function and not the intensity, while our results work for general
misspecification.

It is shown in the appendix that
√

n(β̂V
1 − β1) is equivalent to a sum of

independent and identically distributed random variables with mean zero,

√
n(β̂V

1 − β1) = Φ−1
1

( 1√
n

n∑
i=1

w1i

)
+ op(1),
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where β1 = Φ−1
1 E

( ∫ τ
0 u1i(t)dN1i(t)

)
is the unknown working parameter, Φ1 =∫ τ

0 [R1(t) − V1(t)U−1
1 (t)V1(t)]dt, and

w1i =
{∫

u1i(t)dN1i(t) − E
( ∫

u1i(t)dN1i(t)
)}

−
∫ [

Y1i(t)
z1ix

′
1i

h1i(t)
− V ′

1(t)
]
U−1

1 (t)dF̃ x(t)

+
∫

V ′
1(t)U

−2
1 (t)

[
Y1i(t)

x1ix
′
1i

h1i(t)
− U1(t)

]
dF̃ x(t),

with

u1i(t) = Y1i(t)
[z1i − V ′

1(t)U
−1
1 (t)x1i]

h1i(t)
,

R1(t) = lim
n→∞

R̃V
1 (t), R̃V

1 (t) =
1
n

ZV
1 (t)′W V

1 (t)ZV
1 (t),

V1(t) = lim
n→∞

Ṽ V
1 (t), Ṽ V

1 (t) =
1
n

XV
1 (t)′W V

1 (t)ZV
1 (t),

U1(t) = lim
n→∞

ŨV
1 (t), ŨV

1 (t) =
1
n

XV
1 (t)′W V

1 (t)XV
1 (t),

F̃ x(t) ≡ lim
n→∞

F̃ x
n (t), F̃ x

n (t) =
1
n

∫ t

0
X ′

1Ŵ1dN1(s).

The variance of
√

n(β̂V
1 −β1) is therefore Φ−1

1 E (w⊗2
1i )Φ−1

1 and can be consistently
estimated by (Φ̂V

1 )−1[(1/n)
∑n

i=1(ŵ
V
1i)

⊗2](Φ̂V
1 )−1 with the unknown quantities re-

placed by their estimates.
Similarly, we prove in the appendix that

√
n[Â1(t) − A1(t)] =

1√
n

n∑
i=1

v1i(t) + op(1),

where

A1(t) =
∫ t

0
U−1

1 (s)[dF̃ x(s) − V1(s)β1ds], (2.1)

v1i(t) =
∫ t

0
U−1

1 (s)
[
Y1i(s)

x1i

h1i(s)
dN1i(s) − dF̃ x(s)

]
−

∫ t

0
U−2

1 (s)
[
Y1i(s)

x1ix
′
1i

h1i(s)
− U1(s)

]
dF̃ x(s)

+
∫ t

0
U−2

1 (s)
[
Y1i(s)

x1ix
′
1i

h1i(s)
− U1(s)

]
V1(s)ds · β1
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−
∫ t

0
U−1

1 (s)
[
Y1i(s)

x1iz
′
1i

h1i(s)
− V1(s)

]
ds · β1

−
∫ t

0
U−1

1 (s)V1(s)ds · w1i. (2.2)

The pointwise variance of the asymptotic Gaussian process can be estimated by
(1/n)

∑n
i=1[v̂1i(t)]⊗2, with the unknown quantities replaced by the estimates.

The asymptotic results for a misspecified MS model is summarized in the
theorem, and the proof is in the appendix.

Theorem 1. Under the regularity conditions (C1)−(C3) stated in the appendix,
in a misspecified model

√
n(β̂V

1 − β1) −→d N (0, Σβ,11) as n → ∞,

where Σβ,11 = Φ−1
1 E (w⊗2

1i )Φ−1
1 with a⊗2 = aa′. The variance Σβ,11 can be con-

sistently estimated by Σ̂β,11 = (Φ̂V
1 )−1

[
(1/n)

∑n
i=1(ŵ

V
1i)

⊗2
]
(Φ̂V

1 )−1, with Φ̂V
1 =

(1/n)
∫

(ZV
1 )′ĤV

1 ZV
1 dt and ŵV

1i defined in (A.2). Moreover,
√

n[ÂV
1 (·) − A1(·)] −→d WV

1 (·) in D[0, τ ] as n → ∞,

where D[0, τ ] is the standard Skorohod space on [0, τ ], τ = sup{t : S1(t|x, z)
S2(t|x, z)SC(t|x, z) > 0 for all x, z} (see regularity assumption (C1) in Appendix),
and WV

1 (·) is a zero-mean Gaussian process with covariance function κ1(t1, t2) =
E

{[ ∫ t1
0 v1i(s)ds

]
·
[ ∫ t2

0 v1i(s)ds
]′}. The variance function of

√
n[ÂV

1 (t)−A1(t)]
is given by ΣA,11(t) = κ1(t, t), which can be consistently estimated by Σ̂A,11(t) =
(1/n)

∑n
i=1[v̂1i(t)]⊗2 with the unknown quantities replaced by the estimates.

The estimators β̂1 and Â1(t), based on all the N first stage subjects, have
the same asymptotic properties as stated in Theorem 1. Notice that no model
is assumed for the first stage data in Theorem 1. If the MS model holds for the
first stage data, then β1 and A1(t) coincide with the regression parameters in the
true MS model.

2.3. Two-stage estimators of β and A(t)

To develop the two-stage estimator for β2, we first give the joint distribution
of (β̂V

1 , β̂V
2 ).

Lemma 1. Assume the regularity conditions (C1)−(C3) given in the appendix,
then

√
n

(
β̂V

1 − β1

β̂V
2 − β2

)
−→d N

(
0,

(
Σβ,11 Σβ,12

Σβ,21 Σβ,22

))
as n → ∞, (2.3)
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where Σβ,gg = Φ−1
g E (w⊗2

gi )Φ−1
g , Σβ,12 = Φ−1

1 E (w1i · w′
2i)Φ

−1
2 , and g = 1, 2 in-

dicates the stage. The covariance matrix can be estimated by Σ̂β,gg = (Φ̂V
g )−1 ·[

(1/n)
∑

i∈V (n)(ŵ
V
gi)

⊗2
]
(Φ̂V

g )−1, and Σ̂β,12 =(Φ̂V
1 )−1

[
(1/n)

∑
i∈V (n) ŵV

1i(t)·ŵV
2i(t)

′]
(Φ̂V

2 )−1. Here β2, Φ2, w2i(t), Φ̂V
2 , and ŵV

2i(t) are defined similarly as β1, Φ1,
w1i(t), Φ̂V

1 , and ŵV
1i(t).

It follows from (2.3) that E (β̂V
2 − β2|β̂V

1 − β1) ≈ Σβ,21Σ−1
β,11(β̂

V
1 − β1). This

suggests that β2 be estimated by

β̂2 = β̂V
2 − Σ̂β,21Σ̂−1

β,11(β̂
V
1 − β̂1). (2.4)

Next, we consider the joint distribution of ÂV
1 (t) and ÂV

2 (t).

Lemma 2. Let A2(t) and v2i(t) be defined similarly as (2.1) and (2.2), re-
spectively, based on the second stage sample. Under the regularity conditions
(C1)−(C3), as n, N → ∞, n/N → ρ,

√
n

(
ÂV

1 (t) − A1(t)
ÂV

2 (t) − A2(t)

)
−→d

(
WV

1 (t)
WV

2 (t)

)
in D[0, τ ]2 = D[0, τ ] × D[0, τ ], where [WV

1 (t),WV
2 (t)] is a zero-mean Gaussian

random field, with variance-covariance function(
ΣA,11(t1) ΣA,12(t1, t2)

ΣA,21(t1, t2) ΣA,22(t2)

)
,

where ΣA,kl(t1, t2) = E [vki(t1)·vli(t2)′] for k, l ∈ {1, 2}, and ΣA,gg(t) = ΣA,gg(t, t).
The variance and covariance functions can be consistently estimated by Σ̂A,kl(t1, t2)
as defined in (A.4) in the Appendix.

By Lemma 2 and the argument leading to (2.4), we take

Â2(t) = ÂV
2 (t) − Σ̂A,21(t)Σ̂−1

A,11(t)
[
ÂV

1 (t) − Â1(t)
]
, (2.5)

where Σ̂A,21(t) = Σ̂A,21(t, t).
Our two-stage estimators possess some appealing properties. In particular,

if the first stage data are barely correlated with the second stage data, then the
proposed estimate β̂2 is close to the second stage estimate β̂V

2 . This is a desirable
property since the first stage data are not expected to contribute much useful
information for estimating β2. The same comment applies to Â2(t). It can also
be easily verified that when the first stage sample contains precise and complete
information, the proposed estimates β̂2 and Â2(t) are identical to the estimates
β̂1 and Â1(t). This means that we should use all the first stage data to estimate
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the parameters and make statistical inference when no bias is present in the first
stage sample.

This method is general enough to allow variables to have different types of
coefficients in the two stages, as well as different sets of covariates for the first- and
second-stage models. However, we recommend using the same type of coefficients
for a variable in both stages whenever possible, based on the intuition that the
effects of a variable are expected to be similar for both stages. For example, we
use constant coefficients for age and gender for both the first- and second-stage
models in our data example in Section 5.

3. Asymptotic Properties and Inferences
3.1. Asymptotic properties of (β̂2, Â2(t))

The following result states the weak convergence property of the joint dis-
tribution of the proposed estimators β̂2 and Â2(t).

Theorem 2. Under conditions (C1)−(C3), we have

√
n

(
β̂2 − β2

Â2(t) − A2(t)

)
−→d

(
Z2

W2(t)

)
, (3.1)

where Z2 ∼ N (0, Σ∗
β2

) with Σ∗
β2

= Σβ,22 − (1− ρ)Σβ,21Σ−1
β,11Σβ,12, and W2(t) is a

zero-mean Gaussian process with covariance function

ζ(s, t) = ΣA,22(s, t) − [ΣA,21(s, t) −
√

ρΣA,21(s, t)] Σ−1
A,11(t)ΣA,12(t)

−ΣA,21(s)Σ−1
A,11(s) [ΣA,12(s, t) −

√
ρΣA,12(s, t)]

+ΣA,21(s)Σ−1
A,11(s) [ΣA,11(s, t) − 2

√
ρΣA,11(s ∧ t)

+ρΣA,11(s, t)] Σ−1
A,11(t)ΣA,12(t),

with ΣA,kl(s, t) defined in Lemma 2. The variance of W2(t) is Σ∗
A2

(t) = ζ(t, t) =
ΣA,22(t)− (1−ρ)ΣA,21(t)Σ−1

A,11(t)ΣA,12(t). The covariance between Z2 and W2(t)
is

Σ∗
β2A2

(t) = Σβ2A2(t) − (1 −√
ρ)Σβ2A1(t)Σ

−1
A,11(t)ΣA,12(t)

−(1 −√
ρ)Σβ,21Σ−1

β,11Σβ1A2(t)

+(1 − 2
√

ρ + ρ)Σβ,21Σ−1
β,11Σβ1A1(t)Σ

−1
A,11(t)ΣA,12(t),

where n/N → ρ for some constant 0 < ρ < 1 as n,N → ∞, and ΣβkAl
(t) =

Φ−1
k · E {wki · vli(t)′} for k, l ∈ {1, 2}.

Furthermore, Σ∗
β2

can be consistently estimated by Σ̂∗
β2

= Σ̂β,22−(1−(n/N))Σ̂β,21·
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Σ̂−1
β,11Σ̂β,12, and Σ∗

A2
(t) can be consistently estimated by Σ̂∗

A2
(t) = Σ̂A,22(t) −

(1 − (n/N))Σ̂A,21(t)Σ̂−1
A,11(t)Σ̂A,12(t) for any t ∈ [0, τ ]. The covariance function

Σ∗
β2A2

(t) can be estimated by

Σ̂∗
β2A2

(t) = Σ̂β2A2(t) − (1 −
√

n

N
)Σ̂β2A1(t)Σ̂

−1
A,11(t)Σ̂A,12(t)

−(1 −
√

n

N
)Σ̂β,21Σ̂−1

β,11Σ̂β1A2(t)

+(1 − 2
√

n

N
+

n

N
)Σ̂β,21Σ̂−1

β,11Σ̂β1A1(t)Σ̂
−1
A,11(t)ΣA,12(t)

with Σ̂βkAl
(t) = Φ̂−1

k · {(1/n)
∑n

i=1 ŵki · [
∫ t
0 v̂li(s)ds]′}.

Obviously, Σ∗
β2

≤ Σβ,22 (i.e. Σβ,22 − Σ∗
β2

is nonnegative definite). Hence
our proposed two-stage estimators are asymptotically more efficient than the
estimators using the second stage data alone. We will compare their finite sample
performance in Section 4.

3.2. Estimation of the conditional survival function

We consider the problem of estimating the conditional cumulative hazard
function H2(t) = H2(t|x0, z0) and the conditional survival function S2(t) =
S2(t|x0, z0), for some given covariates x0, z0. Let Ĥ2(t) = Â2(t)′x0 + β̂′

2z0 · t

and Ŝ2(t) =
∏

s≤t

[
1 − ∆Ĥ2(s)

]
, where ∆Ĥ2(s) = Ĥ2(s) − Ĥ2(s−).

Theorem 3. Assume that n/N → ρ for some constant 0 < ρ < 1 as n,N → ∞.
Under the regularity conditions (C1)−(C3),

En(t) =
√

n[Ĥ2(·) − H2(·)] −→d V2(·) in D[0, τ ],
√

n[Ŝ2(·) − S2(·)] −→d S2(·)V2(·) in D[0, τ ],

where V2(·) is a zero-mean Gaussian process with covariance function Σ∗
H2

(t1, t2)
equal to x′

0ζ(t1, t2)x0 + z′0Σ
∗
β2

z0 · t1t2 + z′0Σ
∗
β2A2

(t1)x0 · t1 + z′0Σ
∗
β2A2

(t2)x0 · t2; this
can be consistently estimated by replacing each term by its estimate.

Thus at any t ∈ [0, τ ], 100(1 − α)% pointwise confidence intervals for H2(t)

and S2(t) are given by Ĥ2(t)±z1−α/2

√
Σ̂H2(t), and Ŝ2(t)±z1−α/2Ŝ2(t)

√
Σ̂H2(t),

where z1−α/2 is the (1 − α/2)th percentile of the standard normal distribution.
Notice that the proposed estimator Ŝ2(t) is not necessarily monotonically

non-increasing in t. As mentioned by Li and Tseng (2008), this problem is local
and minor, especially when the sample size is large. In practice, one can improve



1590 GANG LI AND TONG TONG WU

the estimates by the ‘Poor-Adjacent Violator’ algorithm (Barlow et al. (1972))
or some simpler modification (c.f. Lin and Ying (1994)).

Theorem 3 cannot be readily applied to construct simultaneous confidence
bands for S2(t) over a given interval [τ1, τ2] since the distribution of sup |Ŝ2(t)−
S2(t)| is intractable. Using an idea similar to that in Lin and Ying (1994), we
develop a Monte Carlo method for constructing simultaneous confidence bands
for H2(t) and S2(t). It can be shown that the process En(t) in Theorem 3 is
asymptotically equivalent to a sum of i.i.d. random variables. Specifically,

En(t) = z′0 ·
√

n(β̂2 − β2) · t + x′
0 ·

√
n[Â2(t) − A2(t)]

= z′0 ·
{ 1√

n

n∑
i=1

Φ−1
2 w2i − Σβ,21Σ−1

β,11

[ 1√
n

n∑
i=1

Φ−1
1 w1i

− 1√
N

√
n

N

N∑
i=1

Φ−1
1 w1i

]}
· t

+x′
0 ·

{ 1√
n

n∑
i=1

v2i(t) − ΣA,21(t)Σ−1
A,11(t)

[ 1√
n

n∑
i=1

v1i(t)

− 1√
N

√
n

N

N∑
i=1

v1i(t)
]}

+ op(1).

To approximate the distribution of En(t), we define another process Ên(t) as

Ên(t) = z′0

{ 1√
n

n∑
i=1

(Φ̂V
2 )−1ŵV

2iGi − Σ̂β,21Σ̂−1
β,11

[ 1√
n

n∑
i=1

(Φ̂V
1 )−1ŵV

1iGi

− 1√
N

√
n

N

N∑
i=1

Φ̂−1
1 ŵ1iGi

]}
t

+x′
0

{ 1√
n

n∑
i=1

v̂V
2i(t)Gi − Σ̂A,21(t)Σ̂−1

A,11(t)
[ 1√

n

n∑
i=1

v̂V
1i(t)Gi

− 1√
N

√
n

N

N∑
i=1

v̂1i(t)Gi

]}
,

where Gi are i.i.d. N (0, 1). We prove in the appendix that En(t) and Ên(t) have
the same limiting distribution.

Theorem 4. Conditioned on the data (x1i, z1i, T1i, δ1i), i = 1, . . . , N , and (x2j,
z2j , T2j , δ2j), j ∈ V (n), the random process Ên(t) converges weakly to V2(t) in
D[0, τ ].
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Theorem 4 suggests that the limiting distribution of En(t) can be approxi-
mated by that of Ên(t). The latter can be obtained by generating a large num-
ber of independent Monte Carlo random samples G1, . . . , GN from the standard
normal distribution. Similar to Lin and Ying (1994), the confidence bands for

H2(t) and S2(t) can be obtained as φ−1{φ[Ĥ2(t)]∓n−1/2qα/g(t)} and exp{−φ−1

{φ[Ĥ2(t)]±n−1/2qα/g(t)}}, where qα is the critical value of Pr(supt∈[τ1,τ2] |
√

ng(t)
φ′[Ĥ2(t)]Ên(t)| > qα) = α, g is a weight function, and φ is a known transforma-
tion function with non-zero and continuous first derivative φ′. Specifically, we
consider g(t) = Ĥ2(t)/Σ̂∗

Ĥ2
(t) to get an equal-precision band, and set φ(t) = log(t)

to obtain bands on meaningful ranges and to attain better coverage probabilities.

4. Simulation Studies

We present a small simulation study to illustrate and evaluate the finite sam-
ple performance of the proposed two-stage estimators. The two-stage estimators
are compared with the second stage estimators in terms of bias, variance, mean
square error (MSE), and achieved confidence interval coverage probabilities.

The weight matrices Wg(t), g = 1, 2, in Section 2.1 require consistent es-
timates of the conditional hazard functions hgi(t|xgi, zgi); they are given by
ĥgi(t|xgi, zgi) = α̂g(t)′xgi + β̂′

gzgi, where

α̂g(t) =
1
b

∫ ∞

−∞
K

(
t − s

b

)
dÂg(s),

K(t) is a kernel function, and b is the bandwidth. In the simulation study, we
used the Epanechnikov kernel, K(x) = 3(1 − x2)/4 for |x| < 1, with b = 0.4τ ,
around a given point t. The boundary effects are corrected by the modified asym-
metric kernel proposed by Gasser and Muller (1979). In a more comprehensive
simulation, Wu (2006) observed that both second stage and two-stage estimators
are not very sensitive to the choice of the smoothing parameter.

The second stage survival time was generated from h2(t|x2i, z2i,1, z2i,2) =
α2,0(t) + α2,1(t)x2i + β2,1z2i,1 + β2,2z2i,2, where α2,0(t) = 1, α2,1(t) = t, β2,1 =
β2,2 = 1 (q2 = 2), and x2i, z2i,1, z2i,2 ∼ i.i.d. Unif[0, 1]. The random censor-
ing times C2i, i = 1, . . . , n, were generated from h(c|x2i, z2i) = 0.1 + 0.1cx2i +
0.5z2i,1 + 0.5z2i,2. About 20 percent of the subjects were censored under this
model. In the first stage, we considered a general situation by incorporating
both the measurement error problem and missing covariate problem. The work-
ing model for the stage data was h1(t|x1i, z1i,1) = α1,0(t) + α1,1(t)x1i + β1,1z1i,1,
where T̃1i = T̃2i + Unif[0, 0.1], x1i = x2i + Unif[0, 0.1], z1i,1 = z2i,1 + Unif[0, 0.5],
and the covariate z2i,2 is missing for all subjects. We generated 1,000 Monte
Carlo samples for each size (n,N) = (100, 1, 000), (500, 1, 000), and (500, 2, 000).
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With different sample sizes at both the first and second stages, we can evaluate:
(1) the performance of the variance estimator under a misspecified model at fi-
nite sample sizes; and (2) the improvement of the second stage estimator when
incorporating different amount of information form the first stage.

Table 1 presents the bias, variance, estimated variance, and MSE of β̂V
1 , β̂1,

β̂V
2 , and β̂2, together with the achieved coverage probabilities of the respective

confidence intervals. When the second stage sample was small (n = 100), the
variance of the second stage estimate β̂V

2,1 (0.69) was underestimated (0.58). As
a comparison, we can see that the first stage estimates had large bias, which
indicates that the information from the first stage was biased. Even so, there was
gain from combining the first stage data of z1i,1. The estimated variance of β̂2,1

(0.23) was close to the variance (0.24), which was much smaller than the variance
of the second stage estimate. We also observed a better coverage probability of
β̂2,1 than β̂V

2,1. On the other hand, β̂2,2 showed little improvement over β̂V
2,2. This

can be explained by the fact that the first stage data contained no information on
z2i,2. As n increased to 500, the second stage estimates were improved with better
variance estimates and higher coverage probabilities – the variance estimator
for a misspecified model worked well when the sample size got bigger. Our
proposed estimates β̂2,1 had smaller variances, better variance estimates, and
better coverage probabilities. As N increased to 2,000 and n remained at 500,
the variance of β̂2,1 got further reduced since more information from stage one was
obtained. As for comparison, Tables 1 also shows the “ideal” estimates, denoted
as β̃21 and β̃22, using the complete and accurate information for all N subjects.
Figure 1 depicts the mean and variance of two-stage and second stage estimates

of A2,0(t), A2,1(t), and S2(t|z0 = (0.5, 0, 5), x0 = 0.5), respectively, for sample size
(n,N) = (100, 1, 000). The two-stage estimates (thick solid line) show less bias at
the right tail than the second stage estimates (dashed line). Moreover, the two-
stage estimates have much smaller variances throughout. Table 2 presents the
simulated coverage probabilities of the pointwise 95% confidence intervals of A(t)
and S(t|z0, x0) for (n,N) = (100, 1, 000). The coverage probabilities are quite
satisfactory for most time points. As sample size increases, the performance
is improved in the far right tail. The results for (n,N) = (500, 1, 000) and
(500, 2, 000) are similar and thus not reported here.

5. An Example

5.1. Data description

We illustrate our method using a data set on small intestine cancer from the
SEER program supported by NCI. Surgery and radiation therapy are the most
commonly used treatments for small intestine cancer. In this study we wanted
to know how these treatments affect both survival time and the development of
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Table 1. Simulated bias, variance, means square error (MSE), and 95%
coverage probability (CP) of β̂V

1 , β̂1, β̂V
2 = (β̂V

21, β̂
V
22) and β̂2 = (β̂21, β̂22).

The true parameter value was β2 = (β21, β22) = (1, 1).

(n,N) Estimate Bias Var Est. Var MSE 95% CP

(100, 1, 000) β̂V
11 (Stage 1) -0.290 0.380 0.310 NA NA

β̂11 (Stage 1) -0.320 0.037 0.033 NA NA
β̂V

21 (Stage 2) 0.040 0.690 0.580 0.690 0.910
β̂21 (Proposed) < 0.001 0.240 0.230 0.240 0.940
β̃21 (Ideal) < 0.001 0.060 0.061 0.061 0.950
β̂V

22 (Stage 2) -0.060 0.650 0.580 0.660 0.920
β̂22 (Proposed) -0.040 0.670 0.570 0.680 0.910
β̃22 (Ideal) -0.020 0.058 0.061 0.058 0.950

(500, 1, 000) β̂V
11 -0.320 0.075 0.075 NA NA

β̂11 -0.310 0.038 0.039 NA NA
β̂V

21 (Stage 2) -0.010 0.130 0.120 0.130 0.940
β̂21 (Proposed) -0.010 0.078 0.077 0.078 0.950
β̃21 (Ideal) < 0.001 0.060 0.061 0.060 0.950
β̂V

22 (Stage 2) 0.010 0.130 0.120 0.130 0.940
β̂22 (Proposed) 0.010 0.130 0.120 0.130 0.940
β̃22 (Ideal) -0.010 0.058 0.060 0.058 0.950

(500, 2, 000) β̂V
11 -0.310 0.074 0.075 NA NA

β̂11 -0.320 0.019 0.020 NA NA
β̂V

21 (Stage 2) < 0.001 0.120 0.120 0.120 0.950
β̂21 (Proposed) < 0.001 0.054 0.054 0.054 0.950
β̃21 (Ideal) < 0.001 0.030 0.031 0.031 0.950
β̂V

22 (Stage 2) < 0.001 0.130 0.120 0.130 0.940
β̂21 (Proposed) < 0.001 0.130 0.120 0.130 0.940
β̃21 (Ideal) < 0.001 0.030 0.030 0.030 0.950

Table 2. Simulated coverage probabilities of the nonparametric two-stage
estimators at nominal level 95%.

Time 0.2 0.4 0.6 0.8 1.0 1.2
Â2,0(t) 0.91 0.92 0.91 0.93 0.93 0.90
Â2,1(t) 0.95 0.96 0.96 0.95 0.92 0.90

Ŝ2(t|z0, x0) 0.95 0.95 0.95 0.94 0.93 0.92

subsequent tumors. Therefore, we defined the survival time as the time from the
diagnosis of the first primary small intestine cancer to the diagnosis of the second
primary cancer or death. We considered eleven covariates: surgery status (1 if
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Figure 1. Comparison of the two-stage estimates (thick solid line) and second
stage estimates (dash line) with the true coefficients (solid line) for sample
size (n,N) = (100, 1, 000). The top panel gives the estimates and variances
of ÂV

2,0(t) and Â2,0(t); the middle panel shows the estimates and variances
of ÂV

2,1(t) and Â2,1(t); the bottom panel gives the estimates and variances
of ŜV

2,0(t|z0, x0) and Ŝ2,0(t|z0, x0). The first column is the plot of point
estimates compared to the true value (solid line), and the second column is
the plot of variance estimates.
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Figure 2. Plots of cumulative hazard function for age and gender show linear
trends.

yes, or 0 if no), radiation therapy (1 if yes, or 0 if no), age at the first primary
cancer diagnosis (1 if age < 60, or 0 if age ≥ 60), gender (1 if male, or 0 if female),
dummy variable race (black, other races, and the reference group white), dummy
variable stage (regional stage, distant stage, and the reference group local stage),
and dummy variable tumor grade (grade II, grade III, grade IV, and the reference
group grade I).

To illustrate our method, we constructed a two-stage design data set as
follows. The second stage sample consists of 300 patients (censoring rate =
33.7%) randomly chosen from the 2,669 patients (censoring rate = 26.5%) in the
data set with all eleven covariates and survival information. The first stage data
include all 2,669 patients, however the variable tumor grade is missing. The 2,669
patients with all variables were used as the reference population.

5.2. Analysis results

With all eleven covariates as time-dependent variables, we plotted the cu-
mulative hazard function Â(t) =

∫ t
0 α(u)du for each variable based on the Aalen

(1978) nonparametric additive risks model (Wu (2006)). The linear trends of age
and gender (Figure 2) suggest that these two variables have time-independent
effects and might be used as Z (q2 = 2) in the MS model. The nonlinear trend
of the other nine covariates (radiation, race, tumor grade, stage, and surgery)
suggests that they be used as X (p2 = 9). For more information on how to assign
x and z, refer to Martinussen and Scheike (2006).

With age and gender as covariate Z (q2 = 2) with time-independent ef-
fects, and the other nine covariates (radiation therapy, black, other races, grade
II, grade III, grade IV, regional stage, distant stage, and surgery status) as X
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Table 3. Comparison of the second stage and the proposed two-stage esti-
mators for age and gender.

β̂V
2 β̂2

Covariate Point Est. 95% Conf. Interval Point Est. 95% Conf. Interval
age 0.053 (0.017, 0.089) 0.062 (0.046, 0.078)

gender 0.036 (0.001, 0.072) 0.031 (0.016, 0.047)

(p2 = 9) with time-dependent effects, Table 3 compares the proposed and second
stage estimates for age and gender. Both methods show significant higher risks
associated with being male and older (≥ 60 years). We note that both confidence
intervals cover the reference parameter values obtained from the complete data
(“ideal” estimates), but the interval based on the two-stage estimates is much
narrower than the second stage estimate.

Figure 3 displays the estimates and confidence bands of the cumulative re-
gression functions for surgery and radiotherapy, which are of most interest in this
study. It is seen from Figure (3b) that, after adjusting for other factors, surgery
significantly reduces the risk of second primary cancer or death during the first
2.5 years; after this time period, the efficacy of surgery deceases. However, the
effects of surgery are inconclusive based on the second stage estimate (Figure
(3a)), since its confidence band is very wide and contains zero. Radiation ther-
apy, as opposed to surgery, seems to have no significant impact on subsequent
cancer development. We note that the proposed two-stage estimators are usually
closer to the reference estimate from the complete data, with much narrower
confidence bands than the second-stage estimator.

Figure 4 depicts a 95% simultaneous confidence band for the conditional
survival function for a white male patient who is diagnosed as cancer grade
IV, at distant stage, younger than 60, and treated by both surgery and radiation
therapy. The proposed two-stage estimate is more accurate with a much narrower
confidence band. For example, the survival probabilities at year 1 and year 3
are estimated to be 0.613 (with variance 0.0016) and 0.332 (0.0019), respectively,
using the two-stage estimator, and 0.625 (0.0065) and 0.340 (0.0088), respectively,
using the second stage data only.

6. Discussion

We propose two-stage estimators for the partial linear semiparametric haz-
ard model introduced by McKeague and Sasieni (1994) in a two-stage design
setting. We allow measurement errors for survival time, censoring time, and co-
variates in the first stage data. We also allow missing covariates in the first stage.
The proposed estimators are consistent and asymptotically normal. Confidence
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Figure 3. 95% confidence bands (dash line) of the second stage and two-
stage estimators (solid line) of Aj(t) for surgery and radiation therapy. The
thick solid line is obtained from the complete data.

bands are developed to assess time-varying covariate effects, and to predict con-
ditional survival probabilities. By utilizing information from the first stage, our
estimators are more efficient than the second stage estimators for both large and
small samples. Reduction in bias is also observed for small samples.

The estimators introduced in this paper take a form that is similar to that
of a trick used for variance reduction in the theory of Monte Carlo methods
(sometimes called “control variate”):

m∗ = m − σm

σt
ρmt(t − τ),

where m∗ and m are unbiased estimates for a parameter of interest, say µ, E (t) =
τ , σm and σt are variance of m and t, respectively, and ρmt = corr(m, t). In the
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Figure 4. 95% simultaneous confidence bands (dash line) for the conditional
survival function (solid line) for a white male patient who is diagnosed as
grade IV, at distant stage, younger than 60, and has both surgery and radi-
ation therapy. The thick solid line is obtained from the complete data.

control variate theory, σm, σt, and ρmt = corr(m, t) can be estimated across
the Monte Carlo replicates if they are known. The estimator m is improved by
incorporating the control variate t. Since E (t) = τ , the improved estimator m∗ is
unbiased and has the same expectation as m. In our method, since β1 and A1(t)
(τ) are unknown, we use the first stage estimates β̂1 and Â1(t) to replace their
expected values. On the other hand, β̂1 and Â1(t) are more efficient than β̂V

1

and ÂV
1 (t) due to larger sample sizes, and therefore can serve as good estimates

for β1 and A1(t). Another difference between our method and the control variate
method is that we use Σ21 = Cov(θ̂V

2 , θ̂V
1 ) instead of Cov(θ̂V

2 , θ̂V
1 − θ̂1), since

the subjects outside the validation set are independent of the subjects in the
validation set.

It is worth noting that our method also works for a working model other
than the MS model. For any working model, one can define an estimator of
the same form as our proposed estimator and obtain its asymptotic properties
following similar steps, provided that the parameter estimator has a similar i.i.d.
representation. An interesting question is then how to select the best possible
working model, if exists, for the first stage data in order to maximize the benefit
of combining information from the two stages. We do not have a definite answer
to this question by far. The issue can be very complicated since the answer may
depend on many factors, such as the form of the working model, the parameters to
be estimated, the surrogate variables involved, and the criterion for optimality.
Future research is warranted. However, as implied by the expression of the
asymptotic variance of the proposed estimator, for a given second stage model
the first stage working model should be chosen in a way such that the first
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and second stage estimators have high correlation coefficients. In practice, it
is convenient to use the same type of models in the two stages, a strategy that
would work well when the first stage data are similar (or highly correlated) to the
second stage data. Similarly, we suggest assigning the same type of coefficients
to a variable in the two stages. For instance, age and gender have constant
coefficients in both stages in our data example.

We only consider a simple design where the second stage is a simple random
sample from the first stage sample. In many studies, the second-stage subjects
are chosen with different selection probabilities depending on the outcomes of the
first stage, the covariates, or both. The unequal-selection-probability sampling
scheme is of special importance in medical and epidemiological studies, especially
for rare diseases. In a sequel, we will extend our methods to incorporate biased-
sampling problems.
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Appendix

A.1. Regularity assumptions

Let g ∈ {1, 2} be the stage, and let

ŨV
g (t) =

1
n

XV
g (t)′W V

g (t)XV
g (t),

Ṽ V
g (t) =

1
n

XV
g (t)′W V

g (t)ZV
g (t),

R̃V
g (t) =

1
n

ZV
g (t)′W V

g (t)ZV
g (t),

Ũ1(t) =
1
N

X1(t)′W1(t)X1(t),

Ṽ1(t) =
1
N

X1(t)′W1(t)Z1(t),

R̃1(t) =
1
N

Z1(t)′W1(t)Z1(t).

The following assumptions are made for the theoretical development.

(C1) Finite intervals. Let τ = sup{t : S1(t|x, z)S2(t|x, z)SC(t|x, z) > 0 for all
x, z} be a finite constant, where Sg(t|x, z) is the survival function of stage
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g, and SC(t|x, z) is the survival function for censoring time. The covariates
xgi and zgi are restricted to a bounded set.

(C2) Limiting bounds. The hazard functions hg(t|x, z), g = 1, 2, are bounded
uniformly below and above in t, x, and z by some constants b and B, re-
spectively.

(C3) Asymptotic limits. For the subjects in V (n), ŨV
g (t), Ṽ V

g (t), and R̃V
g (t)

converge in L∞ norm (defined as ‖M‖∞ = maxi
∑n

j=1 |mij | for a matrix M

of size m×n) uniformly in time t ∈ [0, τ ], in probability, to some determinis-
tic functions Ug(t), Vg(t), and Rg(t), respectively. The functions Ũ1(t), Ṽ1(t),
and R̃1(t) have limiting functions U1(t), V1(t), and R1(t), respectively. These
functions are uniformly continuous and bounded absolutely by the constant
matrices KU ,KV , and KR, respectively, in the interval [0, τ ]. All the ma-
trices are of full rank.

A.2. Proof of Theorem 1
To simplify the notation, we omit the superscript V for the validation set. Let

û1i(t)=Y1i(t)[z1i− V̂ ′
1(t)Û

−1
1 (t)x1i]/ĥ1i(t), Û1(t)=(1/n)

∑n
i=1 Y1i(t)x1ix

′
1i/ĥ1i(t),

Φ̂1 = (1/n)
∫ τ
0 Z ′

1Ĥ1Z1dt, V̂1(t) = (1/n)
∑n

i=1 Y1i(t)x1iz1i/ĥ1i(t), and F̃ x
n (t) =

(1/n)
∫ t
0 X ′

1Ŵ1dN1(s) = (1/n)
∑n

i=1

∫ t
0 Y1i(s)(x1i/ĥ1i(s))dN1i(s). Let β1 =

Φ−1
1 E

( ∫ τ
0 u1i(t)dN1i(t)

)
, where Φ1 =

∫ τ
0 [R1 − V1U

−1
1 V1]dt. We have

√
n(β̂1 − β1) = Φ̂−1

1

( 1√
n

n∑
i=1

∫
û1i(t)dN1i(t)

)
−
√

nΦ−1
1 E

( ∫
u1i(t)dN1i(t)

)
= Φ−1

1

{ 1√
n

n∑
i=1

[ ∫
u1i(t)dN1i(t) − E

( ∫
u1i(t)dN1i(t)

)]}
+Φ−1

1

( 1√
n

n∑
i=1

∫
[û1i(t) − u1i(t)]dN1i(t)

)
+

(
Φ̂−1

1 − Φ−1
1

)( 1√
n

n∑
i=1

∫
u1i(t)dN1i(t)

)
+

(
Φ̂−1

1 − Φ−1
1

)( 1√
n

n∑
i=1

∫
[û1i(t) − u1i(t)]dN1i(t)

)
≡ I1 + I2 + I3 + I4.

It can be shown that

I2 = −Φ−1
1

(√
n

∫ [
V̂ ′

1(t) − V ′
1(t)

]
U−1

1 (t)dF̃ x(t)
)
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+Φ−1
1

(√
n

∫
V ′

1(t)U
−2
1 (t)

[
Û1(t) − U1(t)

]
dF̃ x(t)

)
+ op(1),

and I3 = op(1) and I4 = op(1) in L∞ norm in probability; see Wu (2006) for
more details. Thus

√
n(β̂1 − β1) = Φ−1

1

( 1√
n

n∑
i=1

w1i

)
+ op(1), (A.1)

where

w1i =
∫

u1i(t)dN1i(t) − E
( ∫

u1i(t)dN1i(t)
)

−
∫ [

Y1i(t)
z1ix

′
1i

h1i(t)
− V ′

1(t)
]
U−1

1 (t)dF̃ x(t)

+
∫

V ′
1(t)U

−2
1 (t)

[
Y1i(t)

x1ix
′
1i

h1i(t)
− U1(t)

]
dF̃ x(t).

It can be shown that E [w1i] = 0 and ‖w1i‖∞ ≤ K for some constant K. By
(A.1) and the Multivariate Central Limit Theorem, we have

√
n(β̂1 − β1) −→d

N (0, Σβ,11), where Σβ,11 = Φ−1
1 E (w⊗2

1i )Φ−1
1 .

Define

Σ̂β,11 = Φ̂−1
1

( 1
n

n∑
i=1

ŵ⊗2
1i

)
Φ̂−1

1 ,

where

ŵ1i =
∫

û1i(t)dN1i(t) −
( 1

n

n∑
i=1

∫
û1i(t)dN1i(t)

)
−

∫ [
Y1i(t)z1ix

′
1i − V̂ ′

1(t)
]
Û−1

1 (t)dF̃ x
n (t)

+
∫

V̂ ′
1(t)Û

−2
1 (t)

[
Y1i(t)x1ix

′
1i − Û1(t)

]
dF̃ x

n (t). (A.2)

The consistency of the variance estimator can be established by the consistency
of Φ̂1, Û1(t), V̂1(t), F̃ x

n (t), and β̂1.
Similarly, it can be shown that

√
n[Â1(t) − A1(t)] =

√
n

∫ t

0
Û−1

1 (s)[dF̃ x
n (s) − V̂1(s)β̂1ds]

−
√

n

∫ t

0
U−1

1 (s)[dF̃ x(s) − V1(s)β1ds]
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=
1√
n

n∑
i=1

v1i(t) + op(1). (A.3)

It follows from (A.3) and the Multivariate Central Limit Theorem that the fi-
nite dimensional distributions of

√
n(Â1(t) − A1(t)) converge to those of a mul-

tivariate normal distribution with covariance κ1(t1, t2) = E {v1i(t1) · v1i(t2)′}.
The ‘tightness’ can be checked using Theorem 13.5 in Billingsley (1999). Thus,√

n[Â1(·) − A1(·)] converges to a zero-mean Gaussian process.
The variance ΣA,11(t) = κ1(t, t) can be estimated by

Σ̂A,11(t) =
1
n

n∑
i=1

{
v̂1i(t)

}⊗2
,

where v̂1i(t) is obtained by replacing U1(t), V1(t), h1i(t), F̃ x(s), β1, and w1i in
(2.2) by their respective sample estimates Û1(t), V̂1(t), ĥ1i(t), F̃ x

n (s), β̂1, and
ŵ1i. The consistency of the variance estimator follows immediately from the
consistency of Û1(t), V̂1(t), ŵ1i, β̂1, and Â1(t).

A.3. Proof of Lemma 1

Similar to (A.1), it can be shown that

√
n

(
β̂V

1 − β1

β̂V
2 − β2

)
=

1√
n

n∑
i=1

(
Φ−1

1 w1i

Φ−1
2 w2i

)
+ op(1).

This, together with the Multivariate Central Limit Theorem, proves (2.3). The
uniform convergence of the variance and covariance estimators can be easily
verified using Theorem 1 of Rao (1963).

A.4. Proof of Lemma 2

Similar to the proof of Lemma 1, we can prove that the joint distributions
of

√
n[ÂV

1 (t1) − A1(t1), ÂV
2 (t2) − A2(t2)] converge to those of a zero-mean mul-

tivariate normal distribution. It can be verified that tightness holds. Therefore
we have

√
n[ÂV

1 (t1)−A1(t1), ÂV
2 (t2)−A2(t2)] converges to a zero-mean Gaussian

random field [WV
1 (t1),WV

2 (t2)] with the variance-covariance function(
ΣA,11(t1) ΣA,12(t1, t2)

ΣA,21(t1, t2) ΣA,22(t2)

)
.

The covariance function Σ̂A,kl(t1, t2) can be consistently estimated by

Σ̂A,kl(t1, t2) =
1
n

∑
i∈V (n)

{v̂ki(t1) · v̂li(t2)′}. (A.4)
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The uniform consistency of Σ̂A,kl(t1, t2) can be verified using Theorem 1 of Rao
(1963).

A.5. Proof of Theorem 2

As in Lemma 1, we can show that

√
n


β̂1 − β1

β̂V
1 − β1

β̂V
2 − β2

 =


√

n√
N

1√
N

∑N
i=1 Φ−1

1 w1i

1√
n

∑n
i=1 Φ−1

1 w1i

1√
n

∑n
i=1 Φ−1

2 w2i

 + op(1)

−→d N

0,


ρΣβ,11

√
ρΣβ,11

√
ρΣβ,12

√
ρΣβ,11 Σβ,11 Σβ,12

√
ρΣβ,21 Σβ,21 Σβ,22


 ,

where ρ = limn/N as n,N → ∞. The proposed estimator then can be written
as
√

n(β̂2 − β2)

=
√

n(β̂V
2 − β2) − Σβ,21Σ−1

β,11

[√
n(β̂V

1 − β1) −
√

n(β̂1 − β1)
]

+ op(1)

=
1√
n

n∑
i=1

Φ−1
2 w2i − Σβ,21Σ−1

β,11

( 1√
n

n∑
i=1

Φ−1
1 w1i −

√
n√
N

1√
N

N∑
i=1

Φ−1
1 w1i

)
+ op(1).

We have

√
n


Â1(t1) − A1(t1)

ÂV
1 (t2) − A1(t2)

ÂV
2 (t3) − A2(t3)

 =


√

n√
N

1√
N

∑N
i=1 v1i(t1)

1√
n

∑n
i=1 v1i(t2)

1√
n

∑n
i=1 v2i(t3)

 + op(1)

−→d


W1(t1)

WV
1 (t2)

WV
2 (t3)

 ≡ W(t),

with variance-covariance function among W1(t1),WV
1 (t2),WV

2 (t3) being
ρΣA,11(t1)

√
ρΣA,11(t1 ∧ t2)

√
ρΣA,12(t1, t3)

√
ρΣA,11(t1 ∧ t2) ΣA,11(t2) ΣA,12(t2, t3)

√
ρΣA,21(t1, t3) ΣA,21(t2, t3) ΣA,22(t3)

 .
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We can write
√

n[Â2(t) − A2(t)]

=
1√
n

n∑
i=1

v2i(t) − ΣA,21(t)Σ−1
A,11(t)

( 1√
n

n∑
i=1

v1i(t) −
√

n√
N

1√
N

N∑
i=1

v1i(t)
)

+ op(1).

The joint distribution of the proposed estimators β̂2 and Â2(t) is

√
n

(
β̂2 − β2

Â2(t) − A2(t)

)
=



1√
n

∑n
i=1 Φ−1

2 w2i − Σβ,21Σ−1
β,11

[
1√
n

∑n
i=1 Φ−1

1 w1i

−
√

n√
N

1√
N

∑N
i=1 Φ−1

1 w1i

]
1√
n

∑n
i=1 v2i(t) − ΣA,21(t)Σ−1

A,11(t)
[

1√
n

∑n
i=1 v1i(t)

−
√

n√
N

1√
N

∑N
i=1 v1i(t)

]


+op(1)

−→d

(
Z2

W2(t)

)
,

where Z2 ∼ N (0, Σ∗
β2

), the variance of
√

n(β̂2 − β2) can be derived easily by
Slutsky’s Theorem and the delta-method:

Var(
√

n(β̂2 − β2)) →p Σβ,22 + Σβ,21Σ−1
β,11

(
Σβ,11 + ρΣβ,11 − 2

√
ρΣβ,11

)
Σ−1

β,11Σβ,12

−2Σβ,21Σ−1
β,11

(
Σβ,12 −

√
ρΣβ,12

)
= Σβ,22 − (1 − ρ)Σβ,21Σ−1

β,11Σβ,12,

and W2(t) is a zero-mean Gaussian process with covariance function given by

ζ(s, t) = ΣA,22(s, t) −
[
ΣA,21(s, t) −

√
ρΣA,21(s, t)

]
Σ−1

A,11(t)ΣA,12(t)

−ΣA,21(s)Σ−1
A,11(s)

[
ΣA,12(s, t) −

√
ρΣA,12(s, t)

]
+ΣA,21(s)Σ−1

A,11(s)
[
ΣA,11(s, t) − 2

√
ρΣA,11(s ∧ t)

+ρΣA,11(s, t)
]
Σ−1

A,11(t)ΣA,12(t).

Covariance of the two-stage estimators β̂2 and Â2(t) converges to

Σ∗
β2A2

(t) = E
{[√

n(β̂V
2 − β2) − Σ̂β,21Σ̂−1

β,11

√
n(β̂V

1 − β̂1)
]

·
[√

n(ÂV
2 (t) − A2(t)) − Σ̂A,21(t)Σ̂−1

A,11(t)
√

n(ÂV
1 (t) − Â1(t))

]′}
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→ Σβ2A2 − (1 −√
ρ)Σβ2A1Σ

−1
A,11ΣA,12

−(1 −√
ρ)Σβ,21Σ−1

β,11Σβ1A2

+(1 − 2
√

ρ + ρ)Σβ,21Σ−1
β,11Σβ1A1Σ

−1
A,11ΣA,12.

The variance and covariance matrices can be estimated by replacing each term by
their respective sample estimates. The consistency can established by Slutsky’s
Theorem.

A.6. Proof of Theorem 4

To show that En(t) and Ên(t) have the same limiting distribution V2(t), we
define an intermediate processes E∗

n(t) as

E∗
n(t) = z′0 ·

{ 1√
n

n∑
i=1

Φ−1
2 w2iGi

−Σβ,21Σ−1
β,11

( 1√
n

n∑
i=1

Φ−1
1 w1iGi −

1√
N

√
n

N

N∑
i=1

Φ−1
1 w1iGi

)}
· t

+x′
0 ·

{ 1√
n

n∑
i=1

v2i(t)Gi

−ΣA,21(t)Σ−1
A,11(t)

( 1√
n

n∑
i=1

v1i(t)Gi −
1√
N

√
n

N

N∑
i=1

v1i(t)Gi

)}
.

It follows that, conditionally on the data, E∗
n(t) converges weakly in probability to

V2(t), which is the limiting Gaussian distribution of En(t), according to Theorem
2.9.6 in van der Vaart and Wellner (1996). To complete the proof, we need to
show that ‖Ên(t) − E∗

n(t)‖ →d 0. We write

Ên(t) − E∗
n(t)

= z′0 ·
{ 1√

n

n∑
i=1

(
(Φ̂V

2 )−1ŵ2i − Φ−1
2 w2i

)
Gi

− 1√
n

n∑
i=1

(
Σ̂β,21Σ̂−1

β,11(Φ̂
V
1 )−1ŵ1i − Σβ,21Σ−1

β,11Φ
−1
1 w1i

)
Gi

+
1√
N

√
n

N

N∑
i=1

(
Σ̂β,21Σ̂−1

β,11Φ̂
−1
1 ŵ1i − Σβ,21Σ−1

β,11Φ
−1
1 w1i

)
Gi

}
· t

+x′
0 ·

{ 1√
n

n∑
i=1

(
v̂V
2i(t) − v2i(t)

)
Gi
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− 1√
n

n∑
i=1

(
Σ̂A,21(t)Σ̂−1

A,11(t)v̂
V
1i(t) − ΣA,21(t)Σ−1

A,11(t)v1i(t)
)
Gi

− 1√
N

√
n

N

N∑
i=1

(
Σ̂A,21(t)Σ̂−1

A,11(t)v̂1i(t) − ΣA,21(t)Σ−1
A,11(t)v1i(t)

)
Gi

}
≡ Ed

n,1(t) + Ed
n,2(t) + Ed

n,3(t) + Ed
n,4(t) + Ed

n,5(t) + Ed
n,6(t).

Then ‖Ên(t)−Ê∗
n(t)‖ ≤ ‖Ed

n,1(t)‖+‖Ed
n,2(t)‖+‖Ed

n,3(t)‖+‖Ed
n,4(t)‖+‖Ed

n,5(t)‖+
‖Ed

n,6(t)‖. We first check that

‖Ed
n,1(t)‖ =

∥∥∥z′0

{ 1√
n

n∑
i=1

(
(Φ̂V

2 )−1ŵ2i − Φ−1
2 w2i

)}
Gi · t

∥∥∥
≤

∥∥∥z′0

{ 1√
n

n∑
i=1

(
(Φ̂V

2 )−1 − Φ−1
2

)
ŵ2i

}
Gi · t

∥∥∥
+

∥∥∥z′0

{ 1√
n

n∑
i=1

Φ−1
2

(
ŵ2i − w2i

)}
Gi · t

∥∥∥,

which converges to zero in probability uniformly in t. It can be similarly shown
that the other terms converge to zero in probability uniformly in t.
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