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S1. Scenarios for the MTC setting
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Table 1: Toxicity scenarios 1-4 for the two-drug combinations. Dose combinations in the

minimal set are in bold. Doses associated to a toxicity probability equal to 0.20 belong to

D− and D+ (see Section 4); they are always in the minimal set.

Dose Drug A2

Level 1 2 3 4 1 2 3 4

Scenario 1 Scenario 2

4 22 26 30 34 55 65 75 85

3 16 20 24 28 40 50 60 70

2 10 14 18 22 25 35 45 55

1 4 8 12 16 10 20 30 40

Drug

A1 Scenario 3 Scenario 4

4 11 21 31 41 10 30 50 80

3 10 20 30 31 6 15 30 45

2 9 19 29 30 4 10 15 20

1 8 18 28 29 1 2 3 4

S2. Notations
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Table 2: Important notations

Notation Description

d or X a dose combination

Y response in term of toxicity

D set of dose combinations

I and J number of doses for agent 1 and 2

Ad, Bd and Cd set of doses above, below and non-ordered with d

P a scenario, i.e a I × J matrix of bernoulli parameters

c and Mc a contour and a minimal set associated to this contour

Ac and Bc set of dose combinations above and below c

C set of possible contour in the range of dose combinations

d? true Maximum Tolerated Dose (MTD)

c? true Maximum Tolerated Contour (MTC)

Π distribution on the MTD or the MTC parameter

θ MTD parameter

γ MTC parameter

Λ = (Λθ)θ∈D distributions on the scenarios conditioned by the MTD parameter

Λ = (Λγ)γ∈C distributions on the scenarios conditioned by the MTC parameter

S, Sθ, Sγ support of Λ, Λθ and Λγ

Λdθ (or Λdγ) marginal at dose combination d

S3. Allocation strategy

In a minimal set, many of the doses are not ordered and the question of

allocation within this set needs to be addressed. This is not straightforward

and we do not exhaust all possibilities here. Several allocation strategies can

be made available and any particular choice will result in some particular
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trial behaviour. The allocation strategy introduced hereafter is a compro-

mise between one that spreads experimentation ‘equally’ against one that

tests those doses that will, in expectation, bring more information into the

study. We also need for experimentation to be restricted to an area of the

minimal set considered to be safe.

While allocating patients within the estimated minimal set, we want to

do our best to avoid the selection of dose combinations which are already

associated with having an unacceptably high toxicity probability. We can

address this issue by making use of a Bayesian test based on a uniform prior

U on the space of Bernoulli parameters. The set Hn describes those dose

combinations indicated as being too toxic following these local Bayesian

tests at each of the doses.

Hn = {d ∈ D : PU
[
Pd > θT |(nd, n1

d)
]
> δT} .

We are then in a position to use the partial ordering in D to extend these

exclusions to other doses that are unfavourably ordered with the doses

belonging to this set, e.g. a dose d′ in Ad with d belonging to Hn.

Exclusion rule: A dose d0 is excluded from the study if:

d0 ∈ Tn = {d ∈ D : ∃ d′ ∈ Hn, d ≥ d′} ,

where Tn is the set of dose combinations considered as overly toxic. A
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dose combination of the estimated minimal setMγ̂n will not be tested if it

belongs to Tn. Note that this exclusion rule corresponds also to a stopping

rule when the evidence of unacceptably high toxicity is associated with the

lowest dose. This rule is an extension in the context of partial ordering to

rules introduced by Ji et al (2010).

The approach based on a compromise between spreading the observa-

tions along the contour as opposed to making observations on those doses

that we estimate would bring more information into the study leans on two

quantities: (i) the number of doses which will potentially benefit from the

next observation through the partial ordering structure and (ii) the amount

of information already collected. Each dose d, can be associated with a value

kd corresponding to the number of dose combinations ordered with d plus

one: kd = #Ad + #Bd + 1, where the cardinality of a set E is noted E. The

value kd corresponds to the number of dose combinations on which we aim

to learn something subsequent to an observation on d. Observing a DLT at

dose d implies that the patient would have experienced a DLT for all the

doses in Ad, and conversely, all the doses in Bd would have been safe for a

patient who does not experience a DLT at dose d. This structure is natu-

rally taken into account by our model. When the objective is to optimize

the quantity of information obtained during the trial, those doses associated
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with the highest value kd are, in expectation, those that provide the most

information. Note that these doses are located along the diagonal going

from the combination (1, 1) to (I, J). The notion of entropy is our second

tool. It corresponds to a quantity of information per unit of data, in our

case the observation related to a single patient. As the goal of the study is

to determine doses that are close to α in term of toxicity probability, we will

use the concept of relative entropy between each observation and the target

α. If p and q denotes two Bernoulli distributions and their parameters, the

entropy of p relative to q is: H(p|q) = −q × log(p) − (1 − q) log(1 − p),

with the convention log(0) = −∞ and 0 × (−∞) = 0. Thus, n × H(α|1)

is the quantity of information relative to the target alpha which is brought

by n DLT (H(α|0) for the non toxic observations). It corresponds to the

log-likelihood in α. After n observations, the next dose Xn+1 is:

Xn+1 = min
d∈Mγ̂n\Tn

1

kd


 ∑
j∈Bd∪{d}

n0
j

×H(α|0) +

 ∑
j∈Ad∪{d}

n1
j

×H(α|1)

 .

(S3.1)

This allocation strategy spreads the observations along the estimated con-

tour and tests slightly more often the doses in the middle of the grid.

Since a DLT corresponds to a greater quantity of information those doses

with a smaller number of toxicities are tried more often (for α = 0.25 :

H(α|1)/H(α|0) = log(α)/ log(1− α) ≈ 4.82).
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S4. Numerical experiments: MTD setting

We evaluate the operating characteristics of poSPM and compared them to

the 2d-BOIN method (Lin et al., 2016) and the poCRM (Wages, Conaway

and O’Quigley, 2011). Performance evaluation was based on several met-

rics under 4 toxicity scenarios. Our goal is to evaluate: (1) how well each

method provides a recommendation of sets of doses at and around the tar-

get rate (i.e. acceptable MTD’s), and (2) how well each method allocates

patients to acceptable MTD’s. While traditional evaluation measures, such

as the percentage of recommendation and allocation to the true MTD’s

are useful in assessing performance, it is also beneficial to consider the en-

tire distribution of selected dose combination, as it provides more detailed

information as to what combinations are being recommended. For evaluat-

ing recommendation, Cheung (2011) proposes to use the accuracy index so

that, after n patients, he defines,

An = 1− I × J ×

I∑
i=1

J∑
j=1

(Pd − α)2 × ρd

I∑
i=1

J∑
j=1

(Pd − α)2

, (S4.1)

where Pd is the true toxicity probability at dose combination d = (i, j), ρd

is the percentage of trials in which combination d = (i, j) was selected as

the MTD, and n is the total sample size. For experimentation, the same
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formula can be used with ρd representing the percentage of patients treated

at combination d = (i, j). The maximum value of An is 1 with larger

values (close to 1) indicating that the method has high accuracy. For each

method, we simulated 10,000 trials under the 4 different sets of assumed

DLT probabilities in a 6 × 6 grid of combinations with varying positions

and number of true MTD’s, as shown in Table 3. The target toxicity rate is

α = 0.25 and the total sample size for each simulated study is 40 patients.

For each method, a cohort of size 1 is used. The calibration of the three

methods is fully described in Appendix S5.1 and S5.2.

Table 4 shows the operating characteristics of the 3 methods under

10 000 trials for the 4 scenarios considered. For each scenario, we report

the percentage of patient allocation (experimentation %) and percentage

of MTD selection (recommendation %) for doses contained within five dif-

ferent ranges of the true toxicity probabilities. Since α = 0.25, the target

interval containing the true MTD is [0.20, 0.30]. In Scenarios 1 and 2, the

poSPM and poCRM have very comparable performance, with each method

outperforming 2d-BOIN in terms of experimentation %, recommendation

%, as well as accuracy of experimentation and recommendation. For both

of these scenarios, 2d-BOIN induces a higher percentage of DLT’s, on av-

erage. In Scenario 3, the 2d-BOIN exhibits the best performance when
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Table 3: True toxicity probabilities for the four scenarios of a 6× 6 grid, with maximum

tolerated doses shown in bold

Dose Drug A1

Level 1 2 3 4 5 6 1 2 3 4 5 6

Scenario 1 Scenario 2

6 20 29 31 43 47 50 37 45 51 54 55 58

5 18 20 29 34 41 48 30 38 41 43 46 47

4 16 19 21 32 36 42 23 25 35 36 40 42

3 10 15 20 25 30 37 19 20 26 33 35 39

2 3 9 16 19 21 32 15 17 21 24 31 33

1 2 5 10 17 21 30 5 10 16 20 25 28

Drug

A2 Scenario 3 Scenario 4

6 11 13 15 17 25 33 65 70 76 80 84 90

5 9 11 13 15 16 25 55 63 69 77 80 85

4 7 9 11 14 15 17 45 56 60 72 76 79

3 5 8 10 11 13 15 35 42 52 65 70 73

2 3 6 7 9 12 13 25 34 46 54 60 64

1 1 3 5 7 9 11 15 25 36 43 49 55
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considering experimentation and recommendation percentages in the tar-

get interval. The accuracy of recommendation of the poSPM is very close

to that of the 2d-BOIN due to the higher recommendation percentage for

2d-BOIN on the toxicity probability interval [0, 0.10). In the final scenario,

poSPM is the best performing method according to all metrics.

We anticipate that there will always be certain scenarios in which some

methods perform better than others. A useful tool in this regard for com-

paring dose-finding designs can be average performance over a range of

scenarios. Across the 4 scenarios, the poSPM method, the 2d-BOIN design

and poCRM methods demonstrated averages of 46.7%, 42.5%, and 43.3%

recommendation percentages for combinations in the true target interval

[0.20, 0.30], respectively. The overall percentage of observed toxicities of

the poSPM method, the 2d-BOIN design, and poCRM methods were on

average; 24.1%, 27.3%, and 23.1%, respectively. It is desirable for the value

to be as close as possible to the target rate α. This is achieved by the

poSPM. The average percentage of patients allocated to a dose combina-

tion in the target interval of the poSPM method, the 2d-BOIN design, and

poCRM methods were 34.13%, 30.75%, and 31.75%, respectively. Based

on the accuracy index for recommendation, the poSPM yielded an average

value of 0.77, the 2d-BOIN method produced an average value of 0.73, and
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Table 4: Experimentation and recommendation percentages for the poSPM, the BOIN

design and the poCRM in four scenarios of a 6 × 6 grid of true toxicity probabilities.

Column containing the MTD in bold.

Experimentation %

Scenario Method [0, 0.10) [0.10, 0.20) [0.20,0.30] (0.30, 0.40] (0.40, 1] A40 %DLTs

poSPM 11.1 18.7 42.3 22.3 6.6 0.35 23.9

1 BOIN 8.6 16.2 32.0 23.9 19.3 0.34 27.5

poCRM 11.0 26.0 43.0 17.0 4.0 0.37 22.2

poSPM 4.6 18.5 44.0 26.6 6.4 0.54 25.8

2 BOIN 4.3 15.3 40.0 31.2 18.2 0.26 29.3

poCRM 4.0 22.0 47.0 24.0 4.0 0.64 25.1

poSPM 14.6 52.6 17.7 15.1 0.0 0.38 17.5

3 BOIN 14.3 38.7 25.1 21.8 0.0 0.48 20.0

poCRM 25.0 57.0 10.0 9.0 0.0 0.20 14.6

poSPM 0.0 24.2 32.5 25.5 17.8 0.90 29.2

4 BOIN 0.0 18.4 25.9 24.4 28.9 0.83 32.3

poCRM 0.0 18.0 27.0 29.0 26.0 0.86 32.3

Recommendation %

[0, 0.10) [0.10, 0.20) [0.20,0.30] (0.30, 0.40] (0.40, 1] A40

poSPM 0.4 16.0 54.2 25.1 4.3 0.68

1 BOIN 1.2 16.9 46.6 27.4 7.45 0.65

poCRM 1.0 24.0 56.0 16.0 3.0 0.68

poSPM 0.1 10.1 56.5 29.6 3.7 0.74

2 BOIN 0.1 13.69 44.5 33.5 8.1 0.63

poCRM 0.0 15.0 59.0 25.0 3.0 0.76

poSPM 0.6 47.0 30.6 21.8 0.0 0.71

3 BOIN 2.5 44.3 37.4 15.8 0.0 0.72

poCRM 12.0 63.0 18.0 8.0 0.0 0.46

poSPM 0.0 17.5 45.5 28.7 8.2 0.95

4 BOIN 0.0 11.5 41.4 30.7 13.3 0.93

poCRM 0.0 12.0 40.0 35.0 11.0 0.94
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the poCRM design resulted in an average value of 0.71. For accuracy of

experimentation, the average index values over the four scenarios were 0.54,

0.48, and 0.52 for the poSPM, 2d-BOIN, and poCRM, respectively.

S5. Calibration

S5.1 poCRM, 2d-BOIN and PIPE methods

For poCRM, we utilized six possible orderings in all scenarios, arranging

the combinations across rows, up columns, and up or down any diagonal as

suggested by Wages and Conaway (2013). A uniform prior was placed on

the orderings. The skeleton values for poCRM were generated according

to the algorithm of Lee and Cheung (2009) using the getprior function in

R package dfcrm. Specifically, we used getprior(0.035,0.25,12,36), and

all simulation results were generated using the functions of the R package

poCRM.

For the BOIN method, we used the default cutoff values α1 = 0.6α

and α2 = 1.4α and a Beta(0.5, 0.5) prior for the toxicity probability at each

combination. The boundaries for the optimal interval for the BOIN method

are (0.197, 0.298).

The prior distributions for PIPE are set to be the true DLT probabilities

taken from Scenario 1 in Table 1. PIPE uses a neighbourhood dose-skipping
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constraint, as well as the closest doses chosen from the admissible dose set.

The dose escalation algorithm employs the smallest sample size strategy,

and a weak prior distribution (1/16) is specified.

S5.2 poSPM

The marginals of the prior model are beta distributions truncated accord-

ing to their support (Assumption 3). Let BI(a, b) be the truncated beta

distribution with parameters a and b and let BI(m,T ) be an alternative

parametrization of this distribution such that: BI(m,T ) = B(m × T +

1, (1−m)× T + 1). Then, m is the mode of the beta distribution and T is

a dispersion parameter.

The family of I × J matrix (mθ)θ∈D is associated with the prior model

(Λθ)θ∈D. The element of the matrix mθ in position d, noted md
θ, is the mode

of the marginal Λd
θ. The value T1 and T2 are the dispersion parameters used

on the different marginals. In the Bayesian setting, they can be equated

to a number of pseudo observations providing toxicities and non-toxicities.

The rank of a dose combination θ = (i, j), noted θ, is equal to i + j. All

the doses on the same diagonal have the same rank. Let r1 and r2 be two

positive values used for the calibration of the prior Π. The poSPM model
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used in the simulations can be summarized by:
Λθ ∼

∏
d∈Bθ

BB(md
θ, T1)×

∏
d∈Aθ

BA(md
θ, T1)×

∏
d∈Cθ

B[0,1](m
d
θ, T2)× BI(m

θ
θ, T1)

Π(θ) ∝ rθ−2
1 × rθ−3

2 ,

We set: A′θ = {d ∈ A : θ + 1 < d} and B′θ = {d ∈ B : θ > d + 1}. The

parameters of the prior model are : md
θ = α(1 + 0.41Aθ(d) + 0.21A′θ(d) −

0.41Bθ(d) − 0.21B′θ(d)), T1 = 40 and T2 = 10. The parameters r1 and r2

are chosen to produce a progressive allocation in the range of doses. The

goal is to obtain a prior Π that is non-informative with the purpose of

compensating the weight given to the highest dose combinations by the

first non-toxic observations. For α = 0.25, we choose: r1 = 0.942724 and

r2 = 0.95566. In order to explore the diagonal going from (1, 1) to (I, J)

before a DLT is observed, a very small weight (10−5) is added to these doses.

Thus, the poSPM follows the sequence of dose combinations (1, 1), (1, 2),

(2, 2), (2, 3), (3, 3), . . . until a first DLT is observed. After N observations,

the final recommendation is made by using our current estimator θ̂N , which

corresponds to the most probable MTD according to the posterior ΠN .

S5.3 poSPMc

We use the same notation as for the poSPM calibration. The poSPMc

model fulfills Assumption 4. The allocation strategy defined by Equation
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(4.3) is used. The family of I × J matrix (mγ)γ∈C is associated with the

prior model (Λγ)γ∈C . The rank of a contour γ, noted γ, is the number of

dose combination in Bγ. T is the dispersion parameter of the truncated beta

distributions, r1 and r2 are two positive values used for the calibration of

the prior Π.

Λγ ∼
∏
d∈Bγ

B[0,α](m
d
γ, T )×

∏
d∈Aγ

B[α,1](m
d
γ, T1),

Π(γ) ∝ rγ−2
1 × rγ−3

2 ,

The parameters of the prior model are: md
γ = α(1+0.51Aγ (d)+0.251Aγ\Mγ (d)−

0.41Bγ (d)−0.21Bγ\Mγ (d)) and T = 25. The parameters r1 and r2 are chosen

to produce a progressive allocation in the range of dose combinations. The

goal is to obtain a prior Π that is non informative with the idea of com-

pensating the weight given to the highest contour in term of rank by the

the first non-toxic observations. For α = 0.2, we choose r1 = 0.8739592

and r2 = 0.9749345 and for α = 0.3, we choose r1 = 0.8117365 and

r2 = 0.950334. For the exclusion rules (End of section 4.2), we choose to

exclude a dose when the probability of our posterior on the upper interval

attains 95% : δ = 0.95. An ε = 10−5 is added to the part multiplying 1/kd

such that the value kd drives the allocation between dose combinations for

which we do not yet posses any observations. After N observations, we
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recommend all the dose combinations in the estimated minimal set Mγ̂N ,

except the doses for which we have less than 2 observations and the doses

in H ′n which are considered as toxic:

H ′n = {d ∈ D : PU
[
Pd > α + 0.05|(nd, n1

d)
]
> 0.9} .

S6. Computation of minimal set

In the two dimensional case, I and J are the number of doses for each of

the agents. The set of contours could be described as all the polygonal

chains tracing out a path from (0.5, J + 0.5) to (I + 0.5, 0.5) with steps

of size 1 along the abscissae and of size −1 on the ordinate axis. Only

rightward and downward steps are permitted. This set is also equivalent to

all the combinations of I among I + J which could be generated with the

R function combn of package combinat. From there, it is easy to obtain

matrices indicating which dose combinations are below or above the contour

c that correponds to the sets Ac and Bc.

Computing the minimal set is equivalent to computing minAc and

maxBc. For the general problem ”computing the maximum of a partially

ordered set” the greatest calculation burden is O(n2) : in a set where no

element are a priori ordered, all the elements have to be compared to solve
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the problem. In the case of two drugs, the structure of N2 leads to a time

complexity O(n). Let matBc be a I × J matrix of 0 and 1 indicating the

dose combinations in Bc. From row N to 1:

1. Select the last element equal to 1 of the row in matBc , if it exists.

Otherwise, go to next row.

2. Compare the selected element to the previous one. Keep it, if they are

not ordered. Otherwise, delete it.

Finally, the selected elements are the maximum set of Bc.

Note that in order to save time, all the arrays containing the minimal

set associated to each contour can be saved for use in simulations. If we do

so, the O(n2) solution (exhaustive comparison two by two) could be used

as it is only applied one time.

S7. Proofs of two properties and a general theorem

S7.1 Coherence

When there is no confusion, we write Λθ(dPr) for Λr
θ(dPr), with r ∈ D We

then state a stochastic partial ordering assumption on the prior-model.

Assumption 1. Let d and d′ be two doses such that d < d′. For all marginal
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r ∈ D, the posterior Λr
d,n is stochastically greater than Λr

d′,n :

Λr
d,n([0, x]) ≤ Λr

d′,n([0, x])∀x ∈ [0, 1].

This assumption is satisfied by the calibration of poSPM presented in Sec-

tion S5.2.

Proposition 1. Under Assumptions 3 and 1 (supp. material), the poSPM

is coherent.

Proof. Suppose that Yn+1 = 1. The case Yn+1 = 0 can be solved in the

same way. By construction, we have

Πn+1(θ) ∝
[∫

P Λθ,n(dP )

]
Πn(θ).

Furthermore,∫
PrΛθ,n(dP ) =

∫ [∫
1{0≤x≤Pr}µ(dx)

]
Λθ,n(dPr)

=

∫
Λr
θ,n(]x, 1])µ(dx).

If θ̂n = r, then for all θ ∈ D, Πn(θ) ≤ Πn(r). Let t > r. According to

Assumption 1, we know that Λr
r,n(.) is stochastically greater than Λt

t,n(.),

i.e. ∫
Λr
r,n(]x, 1])µ(dx) ≥

∫
Λr
t,n(]x, 1])µ(dx),
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that is ∫
PrΛr,n(dP ) ≥

∫
PrΛt,n(dP ).

Finally Πn+1(r) ≥ Πn+1(t), which ends the proof.

S7.2 Conjugacy property

Proposition 3. For all n ∈ N, the probability Π̃n defined by Equation 7.1 is

the posterior on the set of dose combinations from the poSPM model (Λ̃, Π̃)

where:

Π̃(d) ∝ 1

Vd

∑
c∈Vd

Π(c) and Λ̃d =
∑
c∈Vd

rdcΛc with rdc =
Π(c)∑

c∈Vd
Π(c)

.

Proof. We have the following proportionnality relations:

Π̃n(d) ∝ 1

Vd

∑
c∈Vd

Πn(c) ∝ 1

Vd

∑
c∈Vd

[∫
Ln(P )Λc(dP )

]
× Π(c)∑

c∈Vd
Π(c)

×
∑
c∈Vd

Π(c)

∝

[∫
Ln(P )

∑
c∈Vd

rdc × Λc(dP )

]
×

(
1

Vd

∑
c∈Vd

Π(c)

)
∝
[∫

Ln(P )Λ̃d(dP )

]
× Π̃(d).

S7.3 Proof of Theorem 1

Proof. The proof is made by showing that the two first statements are

equivalent to the third one. As the proofs of these two equivalences are very

similar, we focus on: (i) ⇔ (iii). The implication (i) ⇐ (iii) is immediate
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by using the Law of Large Number for the frequentist estimators n1
d/nd at

each dose of the minimal set. We show (i) ⇒ (iii) by using a reductio ad

absurdum argument.

T is a scenario whose the maximum tolerated dose is MTDT and the

maximum tolerated contour is MTCT . We choose this scenario T and a

dose d0 ∈ MTCT such that there exists a set of sequences of our sample,

A = {a = (x∞1 , y
∞
1 )} satisfying: (1) ∀ a = (x∞1 , y

∞
1 ) ∈ A , F (xn1 , y

n
1 ) →

MTDT , (2) PT (A) > 0, (3) ∀ a ∈ A , d0 /∈
∞
∩
N=1

∞
∪

n=N
{xn}. This is possible

as the absence of (3) for any dose contradicts the negation of (iii) and the

absence of (1) and (2) together contradicts (i). The point (3) implies that

there exists N0 ∈ N such that:

PT (B = {s ∈ A : @n > N0 , xn = d0}) > 0.

We introduce the two following sets: B′ = {ω ∈ Ω : ∃a = (x∞1 , y
∞
1 ) ∈

A , (X∞N0
, Y ∞N0

)(ω) = (x∞N0
, x∞N0

)} and B′′ = {ω ∈ Ω : ∃a = (x∞1 , y
∞
1 ) ∈

A , (XN0
1 , Y N0

1 )(ω) = (xN0
1 , xN0

1 )}. We have: PT (B) = PT (B′|B′′) × PT (B′′)

and then PT (B′|B′′) > 0. Let T ′ be a scenario such that, for all d ∈ D\{d0},

PT ′(Y = 1|X = d) = PT (Y = 1|X = d) and MTDT ′ = d0. We then have:

PT ′(B′|B′′) > 0, as the same method chooses the next dose being used for

the two scenarios and the dose is not tried after N0 for any sequence of B.
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Moreover, B′′ = ∪
(x∞1 ,y∞1 )∈A

{ω ∈ Ω : (XN0
1 , Y N0

1 )(ω) = (xN0
1 , xN0

1 )} with:

PT ′({ω ∈ Ω : (XN0
1 , Y N0

1 )(ω) = (xN0
1 , xN0

1 )}) ,

as the constraints are on the first N0 terms. Thus, PT ′(B) > 0 and on this

set of sequences of the sample the statistic F converges to MTDT 6= d0 =

MTDT ′ .

S8. Proof of asymptotic results for poSPM

S8.1 Proof of Theorem 2 (a)

This assumption leans upon the regularity of the prior model.

Assumption 2. The following conditions are valid except when Λθ
θ is a

Dirac measure.

(a) For all d ∈ D, the marginal distribution Λd
θ is absolutely continuous

with respect to the Lebesgue measure and λdθ denotes its density function.

(b) There exist two numbers s and S in R∗+, such that, for all θ and d

in D, we have:

∀Pd ∈ Sdθ , s < λdθ(Pd) < S .

Note that this assumption can be used for the poSPMc by replacing θ by γ,

the parameter of the contour.
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The second point is only useful for the sake of the demonstration when some

β(i,j) are equal to 0 or 1. In order to establish asymptotic properties for the

poSPM, we introduce the set D̃ to indicate those doses that are observed

infinitely often:

d ∈ D̃ ⇔ nd −→
n→∞

∞.

Proof. Let us start with the proof of ε-sensitivity. In this proof, we are

interested in the asymptotic behavior of poSPM, that is why we are able to

ignore those doses tested only a finite number of times and we can reason

as though they had never been used. Specifically, the doses in this proof

are always considered to be in D̃. We assume that E(I, P T ) is not empty

(P T denotes the true scenario). Let r ∈ D̃ \ E(I, P T ). We can distinguish

two cases. The first case is the existence of a dose d ∈ E(I, P T ) such that

d is ordered with r. We are then reduced to the SPM in the case of total

ordering and the proof can be found in Clertant and O’Quigley (2017).

The second case is where there exists no dose in E(I, P T ) ordered with

r. So there exists a dose d ∈ E(I, P T ) not ordered with r, because we

assume that E(I, P T ) is not empty. We want now to compare the integrals
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In,r and In,d, where g(p, n,m) = pn(1− p)m.

In,r
In,d

=
∏
k∈D̃

Mk
n,r

Mk
n,d

=
∏
k∈D̃

∫
Skr
g (Pk, n

1
k, n

0
k) Λr (dPk)∫

Skd
g (Pk, n1

k, n
0
k) Λd (dPk)

(S8.1)

=
∏
k∈D̃

∫
Skr
g (Pk, n

1
k, n

0
k)λr (Pk) dPk∫

Skd
g (Pk, n1

k, n
0
k)λd (Pk) dPk

(S8.2)

≤ S

s

∏
k∈D̃

∫
Skr
g (Pk, n

1
k, n

0
k) dPk∫

Skd
g (Pk, n1

k, n
0
k) dPk

, (S8.3)

where Equation (S8.1) follows from Assumption 3, Equation (S8.2) from

Assumption 2 (a) and Inequation (S8.3) from Assumption 2 (b). We are

able to state the following property. For all functions f that are continuous

on [0, 1], we have∫
f (Pk)

g(Pk, n
1
k, n

0
k)

Beta(n1
k + 1, n0

k + 1)
dPk −→

nk→∞

∫
f (Pk)1{Pk} (Pk) γ (dPk) = f (Pk) ,

(S8.4)

where Beta(.) denotes the Beta function and γ the counting measure. Let

then k ∈ D̃. We are looking for the behavior, when nk increases without

bound, of

Rk =

∫
Skr
g (Pk, n

1
k, n

0
k) dPk∫

Skd
g (Pk, n1

k, n
0
k) dPk

.

The case Skr = Skd is straightforward. For the other cases, we use the

convergence expressed in Equation (S8.4). As d is not ordered with r, with

Assumption ??, we have six cases left to deal with.

• Skr = A or B or I and Skd = [0, 1]. Then Rk −→
nk→∞

1A
(
P T
k

)
or 1B

(
P T
k

)
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or 0. This last result is due to the fact that r /∈ E(I, P T ).

• Skr = [0, 1] and Skd = I. Then Rk −→
nk→∞

1, because d ∈ E(I, P T ).

• Skr = [0, 1] and Skd = A. Then Rk −→
nk→∞

1/1A
(
P T
k

)
= 1. As there is no

couple of ordered dose in E(I, P T ), P T
k belongs to A.

• Skr = [0, 1] and Skd = B. With the same argument as the previous case,

we have Rk −→
nk→∞

1.

Finally, going back to Inequality (S8.3), we conclude that In,r/In,d tends to

0 when n increases without bound. This leads to a contradiction because,

as r ∈ D̃, this ratio is greater than 1 infinitely often. So D̃ ⊂ E(I, P ), that

is, the poSPM is ε-sensitive.

We prove now that poSPM is also balanced. Assumption 3 allows us

to focus on the marginal ratio

Mk
n,r

Mk
n,t

=

∫
g(Pj, n

1
k, n

0
k) Λk

r(dPk)∫
g(Pk, n1

k, n
0
k) Λk

t (dPk)
and

In,r
In,t

=
∏
k∈D

Mk
n,r

Mn,tk
.

Assumption 2 involves:

d(P T
k , S

k
r ) = d(P T

k , S
k
t ) =⇒ 0 < lim inf

n→∞

Mk
n,r

Mk
n,t

≤ lim sup
n→∞

Mk
n,r

Mk
n,t

< +∞, a.s.

(S8.5)

The ε-balanced behavior corresponds to the case where, forall k ∈ D, P T
k /∈
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I. We show that

r /∈Mc? =⇒ P({nr →∞}) = 0 (S8.6)

By symmetry we can choose r ∈ D−. The setMc? ∩D− ∩Ar is not empty.

Let t be a dose in Mc? ∩D− ∩ Ar. By using Equation (S8.5), as At ⊂ Ar

and Skt = [0, 1] when k ∈ Ct, we have

∀k ∈ At ∪ Ct, P

(
lim sup
n→∞

Mk
n,r

Mk
n,t

<∞

∣∣∣∣∣ nk →∞
)

= 1.

If k ∈ (Br ∪ Cr) ∩ Bt then P T
k ∈ B and we obtain the same result

P

(
lim sup
n→∞

Mk
n,r

Mk
n,t

<∞

∣∣∣∣∣ nk →∞
)

= 1.

We consider now the ratios Mk
n,r/M

k
n,t when k ∈ (Bt ∩ Ar) ∪ {t, r}. In

that case, we have P T
k ∈ B, Skt = B and Skr equals to I or A. By using

Proposition 1, we have

∀k ∈ (Bt ∩ Ar) ∪ {t, r}, P

(
lim
n→∞

Mk
n,r

Mk
n,t

= 0

∣∣∣∣∣ nk →∞
)

= 1.

We then have

P
(

lim
n→∞

In,r
In,t

= 0

∣∣∣∣ nr →∞) = 1 and P
({

lim
n→∞

In,r
In,t

= 0

}
∩ {nr →∞}

)
= 0,

which proves Equation (S8.6). We achieve the proof of the ε-balanced

property by showing that

t ∈Mc? =⇒ P(nt →∞) = 1 (S8.7)
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By using Equation (S8.6), we have, for all r and t in Mc?

∀k ∈ D, k 6= r and k 6= t, P

(
lim sup
n→∞

Mk
n,r

Mk
n,t

<∞

)
= 1.

Moreover, for all r ∈Mc? , P
T
r is included in Srt . As P T

r /∈ I = Srr , we have

∀r ∈Mc? , P
(

lim
n→∞

M r
n,r

M r
n,t

= 0

∣∣∣∣ nr →∞) = 1.

Let Er be the event {nr →∞} ∩ {nt →∞}c. Then,

P
(

lim
n→∞

In,r
In,t

= 0

∣∣∣∣ Er) = 1 and P
({

lim
n→∞

In,r
In,t

= 0

}
∩ Er

)
= 0,

As P(
∑
Mc?

nk → +∞) = 1, we have P(∪Mc?
Er) = 1, which proves Equa-

tion (S8.7) and ends the demonstration of the poSPM ε-balanced behav-

ior.

S8.2 Proof of Theorem 2 (b)

Proof. We set:

In,c =
∏
k∈D̃

Mk
n,c =

∏
k∈D̃

∫
Skc

g
(
Pk, n

1
k, n

0
k

)
Λc (dPk)

We note that the regularity assumption 2 involves:

δ(P T
k , S

k
r ) = δ(P T

k , S
k
t ) =⇒ 0 < lim inf

n→∞

Mk
n,r

Mk
n,t

≤ lim sup
n→∞

Mk
n,r

Mk
n,t

<∞, a.s.

We will show the following assertion

c ∈ C \ c∗ =⇒ P(nc →∞) = 0 (S8.8)
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As c 6= c∗, we have Mc 6= Mc? and there exists k ∈ Mc such that P T
k is

included in Skc∗ and not in Skc . By using Proposition 1, we have

P

(
lim
n→∞

Mk
n,c

Mk
n,c∗

= 0

∣∣∣∣∣nc →∞
)

= P

(
lim
n→∞

Mk
n,c

Mk
n,c∗

= 0

∣∣∣∣∣nk →∞
)

= 1,

where the first equality arises from Assumption 5(b). For all doses d ∈ D,

the distribution Λc∗ models correctly the probability of toxicity, in other

words P T
d ∈ SC∗ . We then have

P
(

lim
n→∞

In,c
In,c∗

= 0

∣∣∣∣nc →∞) = 1 and P
({

lim
n→∞

In,c
In,c∗

= 0

}
∩ {nc →∞}

)
= 0,

which ends the proof. (S8.8).

S9. A general bayesian property

The following property is used in the proof of asymptotic results. It has

already been proved in (Clertant and O’Quigley, 2018). Here, for the con-

venience of the reader, we reproduce this property without its proof.

The couple (Ω,A) denotes an abstract space endowed with its σ-field.

We denote by I a finite set and by (Xk)k∈N a sequence of independent

random variables taking their values in I. Let F be the set of functions

from I to the segment [0, 1]. For any element q ∈ F , qi denotes its value at

i ∈ I. Let S = {q ∈ F :
∑

i∈I qi = 1} be the probability space on which we

want to work. We say that a random variable X follows the distribution
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q if P{X = i} = qi , for all i ∈ I. Let Λ1 and Λ2 be two probabilities on

the Borel σ-field B of S. Let S1 and S2 be the topological supports of Λ1

and Λ2 respectively. We would like to know the asymptotic behavior of the

ratio of the expected likelihood under Λ1 on the one under Λ2. We define

the operator r as follows

r(Λ1,Λ2, n) =

∫ n∏
k=1

qXk Λ1(dq)∫ n∏
k=1

qXk Λ2(dq)

=

∫ ∏
i∈I

qnii Λ1(dq)∫ ∏
i∈I

qnii Λ2(dq)
,

where ni =
∑n

k=1 1{Xk=i}, for i ∈ I. We assume that, under the true prob-

ability β, the random variables Xk, k ∈ N are identically distributed. The

convergence of r(Λ1,Λ2, n) depends mainly on the localization of β com-

pared to the supports S1 and S2. To deal with this problem, we make use

of the usual concept of entropy. The entropy of q relative to p is H(q|p) =

−
∑

i∈I pi log qi, with the conventions log 0 = −∞ and 0 × −∞ = 0. We

suppose that β is closer to S1 than S2 in terms of entropy.

Assumption 3. Let V be a subspace of S2 satisfying Λ2(V ) > 0. There

exists δ > 0 such that

inf
q∈S1

H(q|β)− sup
q∈V

H(q|β) > 4δ.

This leads to a simple characterisation of the behavior of r(Λ1,Λ2, n).

Proposition 1. Under Assumption 3, we have r(Λ1,Λ2, n) −→
n→∞

0.
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