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This online supplementary material gives the proofs of Theorems 1 and 2

S1 Proof of Theorem 1

Let B be the class of Borel sets of RT and U = {0, {0}, {1},{0,1}}. For the
temporarily homogeneous Markov chain {o?} defined as o7 = g(o7_;,61-1), we
denote its state space by (RT x {0,1},B x U), and set its transition probability

function as

P(x,A) = f(y)dy for x € RT x {0,1} and A € B x U,
A

where A; = {y : g(x,y) € A} and f(-) is the density of ;. From Theorem 1 of
Feigin and Tweedi€ (T985) and Theorem 4 of Mweedid (I983), it is sufficient to

show the following claims:
(i) {o?} is a Feller Markov chain;

(ii) {o?} is ¢-irreducible for some measure ¢ on the state space (R* x {0, 1}, Bx
Uu);

(iii) There exists a compact set C' C RT x {0,1} such that ¢(C) > 0 and a
nonnegative continuous function (or test function) V : RT x {0,1} — R
such that

V(x) > 1, for any x € C,

and, for some 0 < ¢ < 1,
E{V(e})|o} | = x} < cV(x), for any x € C°,

where C¢ is the complement of C.
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We first prove Claim (i). Note that

Utz :(w(l) +al! )Ut2 15t 1 +5 Ut DI(e—1 <rpfora)
+ (WM +aWe? &7 + Mot R I(rp /o1 < ey <rp/oi_y)
+ (w®? 4 >o§ 2+ B8P V1= Re_)I(rp)or—1 < e4—1 < 71/01-1)
+ (w(2) + al? )af_let_l + 5@ Ut_l)f(&—l > ry/oi-1)
(S1.1)

and, for a bounded and continuous function h(,-),

E{h(o}, Ri)|(07_1, Rt—1) = (wl,wz)}
= E{h(wW + aWaiel_y + pWay, D)I(e—y < 7p/21)}
+ 2o E{h(w™ + aWaie? | + 8Wa 1) I(rp/zy < e-1 < ry/1)}
+(1- .'L'Q)E{h( @ 4 (2)3715? 1+ 6(2)951, 0)I(rp/z1 < ep—1 <ry/z1)}
+ E{h(w® + aPz1e2 | + P z1,0)I(e4—1 > ri/21)}.
(S1.2)

Denote gy (x1,e:-1) = h(wM+aMze? |+, 1) and C), = SUDy, 4, [P(21,22)] <
00. Due to the dominated convergence theorem and the fact that x; > min{w(l) ) w(Q)} >
0, it holds that

|E{gn(z1,60-1)I(e1—1 < rp/x)} — E{gn(at, e—1)1(e—1 < rr/x7)}]
< Elgn(x1,et-1) — gn(z],6t-1)| + Ch - E|I(g4—1 < rp/x1) — I(e4—1 < 7rp/a))]

rr/x1

= [1oner) = et s g+ Co [ Flwdy 0

rL/T]

as |x] —x1] — 0, i.e. E{gn(x1,e¢-1)I(e4—1 <rr/x1)} is continuous with respect
to x1. Similarly we can show that the other three terms at the right hand side of
(8T2) are continuous with respect to z1. As a result, E{h(0?, Ry)|(c7_;, Ri—1) =
(z1,72)} is continuous with respect to x; € RT, and hence with respect to
(w1, 79) € RT x {0,1}. Thus, the Markov chain {07} is a Feller chain.

We next prove the irreducibility at Claim (ii), and first consider the case
with 7, <ry < 0. Note that, if e; > 0 for all 0 < j < ¢ —1, then the process will
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stay at the upper regime up to time ¢ and, by (8I1),

t—1 1 t—
02 =@ (@@ 152) [w® S [[(@@e2, + 62 + o [[(@@e2, + 5O)
2

N

i=1 j=2 J

(51.3)
From the assumptions of this theorem, there exist a 7 > 0 and a 0 < p < 1 such
that a72 + 81 < p and o724+ 63 < p. Let M = w14+ (1 —p) 183 +1,
and denote by pps the restriction of the Lebesgue measure on (M, M*), where
M* > M is a fixed value, and we will introduce its selection in the proof for
Claim (iii). From (8T33), it can be verified that, if 0 < e; < 7 with 0 < j <t -2
and ;1 > 0, then

02 < L, + w® 1 g2ptt (2) .2
t S Loyt 1=, oyp a\Ver

where
(2) w® 2 t—1 | 2(2)
La,t:w + 1_p+00p 5 .

Thus, conditional on 08 =x1,0<¢e <7with0<j<t-2and g1 >0,
the random variable o7 admits a density, f,(), positive on [Ly ¢, +00). For any
B C B and any x = (z1,22) € Rt x {0,1}, there exists a t* > 0 such that
Lst+ < M, and then

Po} € Bl(o}, Ro) = x}
> P{o2 € Bl0<ej <71 with0<j<t"—2epn1 >0, (0%, Ro) = x}

-P{0<eg;j <7with0<j<t"—2ex_1>0}

T t*—1 400
_ () d d
L | [ s [T s> 0

if upr(B) > 0. Define the measure p = pps X g on the space (R* x {0,1}, BxU),
where p is a measure on ({0,1},U) with p1({0}) = p1({1}) > 0. Hence, the
process {07} is p-irreducible. Similarly, we can show the irreducibility for the
case 0 < rp <ry by using the structure at the lower regime.

For the case of r;, < 0 < ry, the process will stay at the upper regime up to
time ¢ if Ry = 0 and ¢; > 0 for all 0 < j <t —1, while it will keep staying at the
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lower regime if Ry =1 and ¢; < 0 for all 0 < j <t —1. As a result, we can show
the irreducibility similarly, and hence finish the proof for Claim (ii).

Finally we prove Claim (iii). Consider the test function V(x) = 1 + |z1],
where x = (z1,22)". From (8§I), we have that

o7 < max{w,w®} + max{alV),a®}o? e | + max{8D, SO }o2 ,,

and
E{V(c})|o? | = x} < max{w™, w®} + ¢|ay],

where ¢ = max{a®, a®} + max{sM), 3*} < 1. Let

M1 @ 1
C:{x:|x1|<max<w . ’w . ,M+O.5>}

and C° be its complement, where M is defined as in the proof for Claim (ii). It

can be easily verified that
(a) V(x) > 1 when x € C, and
(b) E{V(e?)|o?_, =x} < cV(x) when x € C°.

1 _ 2 _
M*zm&x(w 17w 1,]\4)—1—17
c c

Let

and it holds that M < max{c¢ H(w® —1),¢ 1 (w® — 1), M + 0.5} < M*. Thus,

1) — @) _
u(€) = m({0.1}) [max<°" = 1,M+o.5)—M] >0,

where p is the irreducibility measure constructed previously. As a result, we

finish the proof for Claim (iii), and hence the proof of Theorem 1.

S2 Proof of Theorem 2

We first denote Ry = Ry(rp,ry,d), Rot = Ri(ror,rou, dp) and Ry = ]Aét(rL,rU,d)
for simplicity. Moreover, let || - || be the Euclidean norm, F; be the o-field
generated by {ey,e4-1,...}, and C be a generic constant which may vary from
line to line but independent of time ¢ and the parameter space.

We follow the standard arguments in Huber ([967) to show the strong con-

sistency of ;\n, and it is sufficient to verify the following three claims:
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(i) SUPG@® a<r, <ry<bdeD =10 [le(A) — 1(A)]] — 0 with probability one
as n — oo, where the parameter vector X = (6',rp,ry, d)’.

(ii) E[l(N)] > Elle(Ao)] for all A, and the equality holds if and only if A = Xg.

(iii) For any X,

E sup |[l:(A")—=UL(AN)]—=0 asn—0,
A" €Ux(n)

where Uy(n) = {\" : [|[A* = A|| <n}. Thus, E[l;(A\)] is a continuous function
of A.

We first show Claim (i). Let
v 5(1) @ (2)
BN ="t P R+ | ™ P (1—Ry),
Iy—1 Op—1)x1 Iy—1 Op—1)x1

and denote it by B;(A) when Ry in By(A) is replaced by Ry, where I, is the k x k
identity matrix, and Oy is a k-dimensional zero vector. From Lemma A.1 in L3

and Li (200R), it is implied by Assumption 1 that
i—1 ‘ i—1 » '
sup IT] B-iMlls = O(p")  and sup IT] BesMlls = 0(p"),  (S24)
j=0 j=0

where 0 < p < 1, and || - ||s is the spectral norm. Note that
e ~ 50 7
i) = [0+ oty + > BV ()| Ry
i=1 j=1

q p
+ 0@+ oyt + > B N | - R, 1<t<n,
i=1 j=1

(S2.5)

where the initial values (G3(X), ..., E%fp(k))’ = &2 are nonnegative random vari-

ables or even non-random. We then can show that

Sl)l\p\of(k)\ <C> pPauj and Sl}l\pﬁf(k)l <C | Paj+olodl],
§=0 §=0

(52.6)
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where 2, = 1+ >°7_, y2 .. Define
GH(A) = (1)+Za vi- Z+251)A2 Ry

q p
+ w0+ Y a2+ >8P (N 1-R), 1<t<n,

(S2.7)

where the initial values (G3(X), ..., 07_ (A) = &2 are the same as those for 52(\).

Accordingly, let [,(A) = y2/52(X) + log[6Z(A)]. Similarly, it can be shown that

sup N <C D P aj+llas (S2.8)
and
t—1
up 57 (N) =07 (A)] = sup |l [ Bi—;(N)[65 — a5 (V]| < 0<||&%H+s§p lag(N)I)e",
Jj=0
(S2.9)

where 1, = (1,0, ...,0)" is a p-dimensional vector, and a3(X) = (6§(A), ..., 07 _,(N))".
Note that E(>"}, p'y?) < pE(y?)/(1 — p). Hence, by (8ZH), (8Z), the com-
pactness of ® and the fact that log(xz) < x — 1, we can show that

th ) — (A
RN (N e I N N e R0

Sn; )\p{ 7 (N)f(A) yt+1g<1+ o7 (A) )‘} (52.10)
< CIH) + sup )| ( Zp j}jlzp>

—0

sup

with probability one as n — oo, where w = infeeg{w(l),w(z)} > 0.
Note that 0 < ¢ty < n and, from the proof of Theorem 2 in [Lief all (2015),
it holds that
P(lim ty = 0c0) = 0. (S2.11)

n—oo
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Without loss of generality, we assume that ty > p. When t > tg, it holds that
Ry = R, and, by (8Z2), (§ZH) and (§27),

t—to—1 5?{)(A) _8?0()\)

sg‘py&,?( ) =iV =sup|l, ] BN

j=0 ~ ~
! O-t207p+1(A) 0-15207p+1(A)
to
< Cp'™ > “sup [57(A) — 5N,
t=1 A
which implies that
C 1
- Z sup [57(X) — 57 (A )\Sf'*zsuplﬁf(k)—af(k)lv (52.12)
p n
i ltor A t=1 A

and

(e to
~ _ 1 ~ ~
- Z v; S G =GN < CpT0 ) plyf - — > sup|5E(A) =57 (A
"ot =1 t=1 A
(S2.13)
By the ergodic theorem, we have that

0 to 00 0
7ZZp]zt J—>Zp7E z—j) and ;ZyEijzt_j%ijE(yfzt_j)
t 1 j=0 =1 =0 =0

with probability one as ty — oo. This, together with (828), (§828) and (5211),
implies that

to o0

1 - 2C't0 1 2Cp o, _

L2l AR < 2 "5 e 2 0 (520
= tl] 0

1 N 2Ct0 1 _
;nysip\of(k) CACN Z ZP’% i+2C| 55 *Zp

(S2.15)
with probability one as n — oo. By a method similar to (8ZI0), together
with (§2ZT12)-(S2ZTH), we can show that supy |n~* Z?ZI[E(A) - E(A)H — 0, and
then supy [n~! 2?21[2;()\) — 1t(N)]] — 0 with probability one as n — co. This
completes the proof of Claim (i).
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We now prove Claim (ii). Note that x — 1 —logx > 0 for z > 0, and the
equality holds only when x = 1. We then have that

o2 o?
E[ls(X) = b(A0)] = E ( ;;(Af)) Siloe Jz%)) ="

and the equality holds if and only if 62(X) = 2(Ag) with probability one. It

is then sufficient for Claim (ii) to show that A = A¢ under the assumption of
02(X\) = 02(Xg) with probability one for all t.
Note that, with probability one,

0 =07(A) — 07 (Ao)

= WOR, + w®(1 = Ry)] — [w§" Rov + w§? (1 — Roy)]
q
+ 3 Ao B+ o (1= R)] — [ag) Rov + ) (1~ Ron)l o,
=1
p

+ 3 A8 Ry + 87 (1 — Re)] — (85 Ror + B5) (1 — Ron)] ot (No).

j=1
(S2.16)

By conditioning the above equation on the o-field F;_s and from Assumption 2,

we have that
0" By + 0P (1 = Ry)] — o) Rot + ofy) (1 — Rop)] =

Note that E[RiRot| > P(Yt—qa < 7L, Yt—d, < 7Tor) > 0 and E[(1 — R;)(1 — Rot)] >
P(yi—q > U, Yt—dy > Tov) > 0. It then can be shown that agl) = ozéll), a§2) = ag)
and R; = Ry if aél) + aél) > 0, or a(l) = agz) =0if Ozl()ll) = a((ﬁ) = (. From the
definition of 0?(Xg) at (??) and by conditioning equation (§ZI8) on the o-field

Fi—3, we can further obtain that

0 ={[B" R, + 8P (1 - R)] — [BSY Row + B3 (1 — Roo)]} - [a§) Rou + a3 (1 — Roy)]
+ [0SRy + a8 (1= Ry)] — [aly Rot + aly) (1 — Rou)],

which implies that agl) = oz((]12), agz) = oz022, Bll B(l) and ﬁ(2 = ((ﬁ) if
(1) + 81) > 0, or aé ) = (()12), a(2) = ozé) and R; = Ry if oz(()l) = aE)Ql) =0 and
a(()12) (2) > 0, or ag ) = aéQ) =0 if a(l) = Oz[()l) = a((n) = (()22) = 0. Similarly, we

can show that 8 = 0(1) 02 = 9(2) and R; = Rg;.



S2. PROOF OF THEOREM 2

The fact of Ry = R leads to

= P(R;=0,Rp; = 1)
> P(Yt—dy < TorsYt—d > TU) + P(Yr—dy < T0LsTU = Yt—d > TL, Yt—d—1 > TU)

+ P(ror < Yt—dy < T0Us Yt—do—1 < TOL, Yt—d > TU),

which implies that d = dy, r; > ror and ry > roy. Similarly, we have that
rp < ror and ry < roy from P(R; = 1, Ry; = 0) = 0. Thus, d = doy, r = ror
and ry = 1oy, and we then complete the proof of Claim (ii).

We now consider proving Claim (iii). Let A* = (68*,75,r},,d) € Ux(n), and
denote A} = (0',7%,rf,d) and Rf = Ry(r},r};,d), where X = (0,7, ry,d)".
Note that

p
o7 (A}) — 07 (A) = &(A) )+ Z 'Ry +ﬂ (1= R)o7_;(A}) — o7 ;(N)],
j=1
and then
sup |07 (A) — o7 (A)] < CZMI& - sup  |Rj — Ry,
A eU(n) >\ EUA(M)

where &(X) = () —w®) + L (ot — a2, + 32 (8 — 8707, (A).

Moreover, from the proof of Theorem 2 in Lief all (2015H),

E sup |Ri(ry,rp,d) — Ri(rp,ru,d)| =0
A"eUx(n)
as 7 — 0. By a method similar to (8Z10), together with Holder inequality and
E|y|*° < 0o, we have that

E sup |lg(A]) = Lt(N)]

ATeUx(n)
1 yt2 27y % 2
<K a‘i‘ﬁ }\*SUP lo; (A1) — ap (N)]
= = €Ux(n)
/4y 4/ (440)
AL o a1
<CQFE ;4‘@ ij|ft—j()‘)| E sup |Ry — Ryl
= =/ ATeUx(n)
—0

(S2.17)
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as n — 0. Consider

do? (A >
5é ) =x4(A) + Z H Bt,j(/\)xt,i()\),
i=1 j=0
where x14(X) = (L, Y71, -, U7 g> 011 (A)s oy 07, (A)) and x,(A) = (X, (X) Ry, x4, (A) (1—
R:))'. By (§Z8) and the compactness of ®, we can show that
1 i\ 997 (M)
B s W) = bX)] < 0 Bsw| (s - ) - o),
PR 1 x NN oi(x)) 08
which, together with (§217), implies Claim (iii).

Following the standard argument for the strong consistency in Hubex (I967),

together with Claims (i), (i) and (iii), we can show that A,, — Ao with probability
one; see also Francq and Zakotan (2004) and Sfraumann and Mikosch (2008).

Hence, we finish the proof.
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