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BIVARIATE QQ-PLOTS AND SPIDER WEB PLOTS

John I. Marden
University of 1llinois

Abstract: QQ-plots are extremely useful in univariate data analysis. In this article,
Koltchinskii (1997) and Chaudhuri’s (1996) definition of multivariate quantile is
used to develop analogous plots for bivariate data. Bivariate qq-plots are exhibited
for comparing a sample to a given population distribution (the bivariate normal),
and for comparing two or more bivariate samples. The plots are based on drawing
arrows from the quantiles in one distribution to the corresponding quantiles in the
other. These plots can reveal differences in location, scale and skewness, as well as
outliers. Spider web plots are introduced for plotting a systematic set of quantiles
for a single sample without having to specify a reference population distribution.

Key words and phrases: Arrow plots, bivariate qg-plots, bivariate quantiles, bivari-
ate ranks, spider web plots.

1. Introduction

QQ-plots are popular and useful diagnostic tools in univariate analysis. They
provide graphical assessment of the fidelity of a sample to a particular distribution
F', or of the differences between two independent samples. The idea behind a
qg-plot is to match quantiles, that is, choose a set of quantiles q1,...,qr, then
plot the qlth quantile of the distribution F' versus the qfh quantile of the sample
(or the qfh quantile of one sample versus the other) for each [. The closer the
plotted points are to the 45°-line, the closer the two distributions.

When moving to two or more dimensions, there are three questions that must
be answered: What is a multivariate quantile? How are the quantiles to be plot-
ted chosen? How are the corresponding quantiles in the two distributions plotted
against each other? The purpose of this paper is to present some possible answers
to these questions, at least in the bivariate case. The next section defines the
multivariate quantiles we use. The definition is that of Koltchinskii (1997) and
Chaudhuri (1996). Section 3 looks at qg-plots for assessing bivariate normality,
and Section 5 uses qg-plots to compare bivariate samples. We generally let the
data choose the quantiles of interest. Arrow plots connect the quantiles of the
two distributions by drawing an arrow from the qfh quantile of one distribution
to the qlth quantile of the other. These plots are effective at revealing bivariate
location, scale, skewness, and outlier characteristics. In Section 4 we consider the
case in which one has a single sample but no particular reference distribution to
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compare it to. We take a systematic set of quantiles, and connect them with line
segments, creating a so-called spider web plot. These plots simplify the scatter
plot while keeping the main features intact.

The procedures in this paper are rotationally equivariant but not fully affine
equivariant. Chakraborti (1997) has developed affine-equivariant versions of
these procedures. Liu, Parelius, and Singh (1997) survey various measures of
data depth, and introduce several graphical approaches for assessing and com-
paring multivariate distributions based on these depths. Some of the latter tech-
niques are akin to those in this paper, in particular their DD plots perform a
similar role as our qg-plots, and their sunburst plots are analogous to our spider
web plots. These procedures are also fully affine invariant.

Friedman and Rafsky (1981) propose a different but very interesting and
novel approach to qg-plots for multidimensional data. They use minimal span-
ning trees fit to the individual samples, and rank the points within each sam-
ple one-dimensionally according to their locations on the tree. The usual one-
dimensional qg-plots can then be used.

2. Multivariate Quantiles

For a univariate distribution, quantiles are typically defined to range from 0
to 1. We will shift the definition of quantile slightly, so that ¢ has range (—1, 1),
and call the new quantiles g-quantiles (for geometric) in order to emphasize the
difference. The ¢! g-quantile is the value 7q such that

r(ng) = Er (SIGN(n, — X)) = q, (1)

where X ~ F and SIGN is the sign function, SIGN(z) = —1,0,1 as z <
0,= 0,> 0. For given ¢, the g-quantile may not exist or be unique. Note
that r(ng) = P(ng > X) — P(ny < X) = 2F(ng) — 1 if F is continuous at
ng, s0 that the ¢ g-quantile equals the [(1 + ¢)/2]"" quantile under the usual
definition. In particular, 7 is the median. One can interpret the ¢ in (1) as
being the average direction one must go to move from X to 7,, averaging over
the X’s. For p-dimensional data, Chaudhuri (1996) and Koltchinskii (1997) have
made a thorough examination of geometric quantiles. They are indexed by ¢
in the interior of the p-dimensional unit disk, QP = {q € R? | ||¢|| < 1}. The
¢"" geometric quantile is the point ng in RP for which the average unit vector
pointing from X to 7, is ¢, again averaging over the X’s. Thus the definition is
the same as (1) where for a vector z the sign is given by SIGN(z) = z/ ||z|| if
z # 0, and 0 if z = 0. The equation may not be satisfied exactly. However, the
precise definition is that 7, is the minimizer over »n of

Ep (|ln — XII = (n - X)'q), (2)
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which does satisfy (1) as long as the function in (2) is differentiable at 7,. This
definition is similar to that of regression quantiles in Koenker and Bassett (1978).
An interesting and fortunate property is that unless F' concentrates all its mass
along a single straight line, for each ¢, n, exists and is unique.

The discussion above is based on a distribution function F', but the definitions
also work for a sample 1, ..., x, of p-dimensional vectors, where F' is replaced by
the empirical distribution function. Thus the sample ¢** g-quantile 1)y minimizes
(1/n) Y (ln — x|l — (n — x;)'q) over n, and (at least approximately) satisfies

Z an — . 3)

Mg — il

The r in this equation and equation (1) denotes “rank”. It is the multivariate
rank function that corresponds to the geometric quantiles we are using. See
Koltchinskii (1997), Chaudhuri (1996), and M&ttonen, Oja, and Tienari (1997)
about this. In the multivariate case, 7y is the geometric or spatial median.
See Small (1990) for a comprehensive discussion of this and other multivariate
medians. An important property of the r function is its uniqueness, that is,
the values r(z) for all  uniquely determine the distribution function F. See
Koltchinskii (1997) in this regard.

QQ-plots are used to compare two distributions F} and F5. It may be that
both are population distributions, or one is a population distribution and one is
an empirical distribution based on a sample, or both are empirical distributions.
In any case, we choose a set of indices q1, ..., g, in QP, and find the corresponding
g-quantiles for the two distributions:

77(1)7"'7772)7 andn@)a"'an}?)a (4)

where nl(k) is the ¢/ g-quantile for Fy. If the two distributions are close, then

their corresponding g-quantiles should be close, 77[(1) ~ 771(2)- The way in which
the corresponding g-quantiles differ can give insight into the differences between
the distributions. We visualize the comparisons for the p = 2 case by drawing an
arrow from 77(1) to 771(2) for each [. Such plots we call bivariate qg-plots. Sections

3 and 5 contain examples of their use.

3. Bivariate Normal Plots

Given a sample y1,...,y, of bivariate observations, we would like to deter-
mine how close it is to a bivariate normal distribution. The reference distribution
in this case is F1 = N(0, I3), the bivariate normal distribution with mean zero
and covariance matrix the 2 x 2 identity. The second distribution F5 is based on
the data, but we take a linear transformation of the y;’s so that the observations
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are centered and scaled to conform with F;. We could subtract the sample mean
and multiply by the inverse square root of the sample covariance matrix, but
instead we use a procedure that is a bit more robust. The exact details of this
are given in Section 1 of the Appendix. For each i, let x; denote the transformed
observation y;, and F5 be the empirical distribution function of the x;’s. We wish
to compare each z; with what would be its value if the sample actually were nor-
mal. In one dimension, this is accomplished by taking the rank of z;, say j, and
finding the usual [j/(n + 1)]* (or something similar) quantile of the standard
normal. The procedure for the bivariate case is the same. The g-quantiles of
interest are the bivariate ranks r(x;) as in (3), so that L = n and ¢ = r(x;) for
Il =1,...,n. The g-quantiles for F} are thus the 77[(1) that satisfy (1) for each g,
and the g-quantiles for £, are simply the sample observations: nl(Q) = x;. The
qq-plot then draws an arrow from nl(l) to x; for each [. One can think of the
arrow as pointing from where the observation “should” be if the sample were
bivariate normal to where the observation actually is. Section 2 of the Appendix
shows how to calculate the g-quantiles of the spherical normal distribution. The
next examples exhibit bivariate normal qqg-plots.
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Figure 1. Iris data. s = Setosa, v = Versicolor, g = Virginica.

Example 3.1. Fisher’s iris data
Fisher (1936) analyzed data on three species of iris, Setosa, Versicolor, and
Virginica. There are 50 specimens from each species, and four variables measured
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on each. We will focus on two variables: Sepal Length and Sepal Width, which
are measured in centimeters. Figure 1 contains a scatter plot of the data, where
“s” denotes Setosa, “v”’ denotes Versicolor, and “g” denotes Virginica. For each
species, we take the linear transformation of the bivariate data as described in
the Appendix, Section A.1. Figure 2 (a), (b), and (c) have the bivariate normal
qq-plots for the individual samples. For Setosa, the arrows are all quite small,
revealing nothing to lead one to suspect that the data is not bivariate normal.
Versicolor has some longer arrows. The longest are four near the bottom. They
are pointing down and slightly to the right, which means that they are farther
from the bulk of the data than they should be in a normal sample. There is also
a cluster of smaller arrows at the right, pointing rightward. For the Virginica
sample, the arrows tend to be larger than for Versicolor. There are a couple of
points that are outlying to the upper right, and several to the lower right. The
arrows in the upper left are not very long, but are pointing to the lower right,
which suggests a skewness towards the lower right.
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Figure 2. Normal plots for iris data

Figure 2 (e), (f), and (g) contain normal plots for randomly generated data
from N (0, I3), each based on fifty points, to help calibrate what was seen in the
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other plots. Based on the lengths of the arrows in these three random plots,
it appears that the Setosa sample does have small enough arrows to believe
normality, while Versicolor and Virginica may be borderline too long. To give a
rough numerical assessment of the arrow lengths, we calculated the average arrow
length for the three iris plots, obtaining 0.092 for Setosa, 0.139 for Versicolor, and
0.169 for Virginica. For the three plots of simulated data, the average lengths are
0.140, 0.139, and 0.060. We then simulated 100 more sets of 50 bivariate normals,
and calculated the proportion of samples for which the average arrow was larger
than each of the iris species’ average. These proportions are estimated p-values
for testing bivariate normality. We obtained .85 for Setosa, .52 for Versicolor,
and .24 for Virginica. Thus, at least using this measure, all three species have
sepal dimensions that behave reasonably like a bivariate normal.

Example 3.2. Baseball data

This example uses the data set on major league baseball players discussed in
American Statistical Association (1988). Plot (a) in Figure 3 graphs 263 players’
career home runs per at bat through 1986 versus their 1987 salaries in thousands
of dollars.
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Figure 3. Baseball data

Plot (b) is the bivariate normal plot. Plot (c) is a normal plot based on a set of
263 simulated observations from N (0, I3). There is no question the data are not
bivariate normal. The points to the lower left are too close to the center, and the
points to the upper right are too far, indicating skewness towards the upper right.
There are several very large outliers. In order to see if the data can be transformed
to a sample that is closer to bivariate normality, we look at the variablewise Box
and Cox (1964) power transformations. That is, we choose powers (A1, \2), and
assess the bivariate normality of the transformed data (y;\f,y?f),i =1,...,n,
where y; = (i1, ¥i2)’, and the power 0 means logarithm.
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Figure 4. Baseball data — power transforms

Figure 4 contains the normal plots for \;’s taking the values 1,1/2,1/3, and
0. The parenthetical numbers in the plots are (A1, A2)’s. The table below contains
the average lengths of the arrows for these plots. For each cell, the number in
parentheses is the proportion among 100 normal plots using simulated sets of
data (263 observations from N (0, I3) for each set) whose average arrow length
exceeded that for that cell.

AL d— 1 1/2 1/3 0
1 0.247 (0) | 0.161 (0) | 0.155 (0) | 0.174 (0)
1/2 0.175 (0) | 0.081 (.10) | 0.082 (.10) | 0.121 (.01)
1/3 0.161 (0) | 0.061 (.43) | 0.066 (.29) | 0.114 (.01)
0 0.185 (0) | 0.084 (.07) | 0.092 (.04) | 0.139 (0)

The first column of the plots are those for which the first variable, Salary, is
untransformed. In these plots, there are long arrows pointing upward, indicating
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a positive skewness in the vertical direction. As we go down that column, the
arrows shift from pointing to the right to pointing to the left, showing that the
transformations on the first variable, Home Runs per At Bat, are changing the
horizontal skewness from positive to negative. The top row of plots shows the
complementary pattern, where the horizontal skewness stays positive, but the
arrows shift from pointing upwards to pointing downwards as the transformation
on the second variable becomes stronger. Similar considerations hold for the
other plots, where the log-log plot shows skewness towards the lower left.

It is clear that the variables should be transformed, but the log transforma-
tion is too strong. The best plot, both visually and according to the average arrow
lengths, is that with (A1, A\2) = (1/3,1/2). The estimated p-value for this choice
is quite reasonable, .43. The transformation is effective in moving substantially
towards normality.

4. Spider Web Plots

The qg-plots in the previous section were based on a reference distribution
(bivariate normal) of interest. An alternative approach to graphing a single
bivariate sample is to first choose a small, systematic set of bivariate g-quantiles,
and connect the g-quantiles with line segments. Our goal is to choose enough g-
quantiles to capture the essence of the data, but not so many that they are more
complicated than the data. The actual g-quantiles we choose may depend on the
data, because it is not very informative to take g-quantiles outside the range of
the particular set of data. If the data happens to be approximately spherically
symmetric, then it makes sense to take a reasonably symmetric set of g-quantiles.
Thus we concentrate on the following g-quantiles ¢q. Take a small number of
radii, 0 < pM < -++ < pK) < 1, and angles, ) = 2rj/L,j =0,...,L —1. The
corresponding set of g-quantiles consists of 17(0), the median, plus

) =105, where ¢ = p@(cos(09)),sin(01))),

fori=1,...,K and j = 0,...,L — 1. We connect the points along the spokes,
N — p) — ... - pED) for each j, as well as around, n(®® — pit) — ...
L= — (L) for each i. The result is the spider web plot.

Figure 5 exhibits three spider web plots for the Baseball data in Example
3.2. The plots have eight spokes and the radii .1, .2, ..., .8. The first plot is
for the raw data. (We apply the linear transformation towards sphericity as in
Section 3.) Skewness towards the upper right is evident. The second plot is
for the best transformation found in Example 3.2, that is, (A1, A2) = (1/3,1/2).
This spider web looks reasonably spherically symmetric. The third plot is the
log-log plot, (A1, A2) = (0,0). There we see skewness towards the lower left. Thus
these spider web plots smooth the scatter plots to show certain characteristics.
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They have the advantage of not needing a specific distribution for comparison,
although they are not as detailed as the QQ plots from the previous section.

(1,1) (1/3,1/2)

Z=

Figure 5. Baseball data — spider web plots for power transforms

5. Comparing Samples

We assume we have two samples, z1,...,2,, and y1,...,y,. Now F; and
F, are the empirical distribution functions for the two samples, respectively. To
compare the samples we again choose a set of ¢’s, then draw arrows from the ¢**
sample g-quantile among the z;’s to the ¢! sample g-quantile among the y;’s.
In the next example the ¢’s we use consist of the ranks of all the observations,
where for each observation the rank is calculated with respect to its own group.
Thus each point will either be the base or the tip of one of the arrows. That is,
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Figure 6. Iris data — two-sample plots

Example 5.1. Fisher’s iris data

Plot (a) in Figure 6 is the qq-plot obtained by drawing arrows from the g-
quantiles of the Setosa sample to the g-quantiles of the Versicolor sample. All
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the arrows are pointing towards the lower right, and they are generally of similar
lengths and nearly parallel. Thus the Versicolor sample is close to a straight
location shift of the Setosa sample, where Sepal Length is shifted up about one
centimeter and Sepal Width is shifted down about the same. (The average of
the arrows is (.92,-.65).) The location difference is so large in this plot, it may
hide other potential differences between the samples. Thus we recalculated the
qq-plot after centering each sample by subtracting the sample’s spatial median
from each observation. The result is Plot (b). The arrows are generally pointing
away from the center, primarily in the directions from upper right to lower right
to lower left. This pattern suggests that the Versicolor sample is more spread
out than the Setosa sample, and more skewed towards the right.

Plots (c) and (d) are the corresponding two plots for comparing Versicolor
to Virginica. Plot (c) shows primarily a shift towards the upper right. (The
average arrow is (.66,.20).) However, the arrows emanating from the upper right
are generally longer than those emanating from the lower left. Thus even in this
plot there is evidence of scale differences. Plot (d) for the centered samples shows
more clearly that Virginica is more spread out, the difference most noticeable
towards the upper-right.

Example 5.2. Biomedical data

Smith, Gnanadesikan, and Hughes (1962) present a data set with thirteen
variables measured on urine samples of 45 men. The men are classified into
four groups, based on weight, with 12, 14, 9, and 10 men in the four groups,
going from lightest (Group 1) to heaviest (Group 4) (see also Seber (1984)).
Hettmansperger and Oja (1994) use the first two variables, pH level and modified
creatinine coefficient (CC), to test the differences among the four weight groups
using their median test. We will use the same two variables to create a four-way
qq-plot. Plot (a) in Figure 7 shows the data, where the numbers indicate which
weight group the point is from.
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Figure 7. Biomedical data
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For the qg-plot, we find the ¢1,...,qr g-quantiles within each group, then
draw arrows from the Group 1 g-quantiles to the Group 2 g-quantiles, then from
Group 2 to Group 3, and from Group 3 to Group 4. Thus each quantile can
be traced as we move through the groups. In order to prevent too many arrows
being plotted, we take five fixed ¢’s: ¢; = (0,0) (which corresponds to the spatial
median), ¢o = (.5,0), g3 = (0,.5), ¢4 = (—.5,0), and g5 = (0,—.5). These last
four are arbitrary but are chosen to range over the possible values of ¢ without
being too numerous. Plot (b) is the qg-plot. The solid line connects the four
spatial medians, 1 — 2 — 3 — 4. The dotted lines correspond to the other g-
quantiles. There is a clear pattern. Group 2 is down and to the left of Group 1;
Group 3 is slightly down and to the right of Group 2; then Group 4 is down and
to the left of Group 3. There is one glitch, however. Unlike the other g-quantiles,
the (0,.5)"" g-quantile from Group 3 to Group 4 goes almost straight up.

Looking at Plot (a), we see that three of the Group 4 observations have a
high value of CC, 4.12, while the other seven values for this group are either 2.14
or 2.03. Setting aside those three with high values, we obtain the qg-plot in Plot
(c). This plot is like Plot (b), but now all five g-quantiles follow a similar route
from Group 1 to Group 4.

6. Conclusion

The g-quantiles are location and rotation equivariant, and scale equivariant
if the same factor is applied to all variables. That is, for any a # 0, orthogonal
matrix I', and vector b, if we transform all the data points by x — axI'+b, then all
g-quantiles are similarly transformed, 1y, — an,I'+b. The main drawback is that
the g-quantiles are not affine equivariant, that is, we cannot replace I' with an
arbitrary nonsingular matrix. For the normal plots in Section 3, the scaling was
dictated by the reference distribution, hence there was no ambiguity in the goal
for transforming the original data, although there are many reasonable methods
for estimating the transformation. The spider web plots of Section 4 and the
between-sample qg-plots of Section 5 are dependent on the relative scaling of
the variables, much as relative scaling matters in principle components. In the
examples we gave the variables were transformed to have similar scales, or already
had similar scales, so that scaling was not a problem, but in general one may
wish to adjust the scales of the variables before proceeding to the g-quantiles.

We hope that the examples show the potential of these bivariate qg-plots.
The directions, placements, and lengths of the arrows are effective in revealing
location shifts, scaling differences, skewness, and outliers. The plots can also
lead to inference procedures, such as tests for bivariate normality based on arrow
lengths as in Section 3, as well as estimates of location shift as in Example 5.1.
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Appendix
A.1. Transforming the variables

Start with the data y1,...,yn, where y; = (yi1,:2)’. We first regress the
second variable from the first using the Sen-Theil estimator of the regression
slope. This slope b is the median of the pairwise slopes between the points in the
sample:

Yi2 — Y52
Yi1 — Y1
where pairs for which y;; = y;1 are ignored. Let w; = (y;1,¥i2 — by;1)" for each
i. Next we scale each variable in w so that it matches the univariate standard
normal’s in terms of the difference between two selected univariate quantiles ¢;
and t5. The quantiles we select are the 44" and 74", where v; = [(1 — )/2] and
v2 = [(1+ «)/2] for some a between 0 and 1. With these choices, the proportion
of univariate observations between ¢; and t9 is about « for each variable, and if
the two variables are independent, the proportion of bivariate observations for
which both variables are between ¢; and t5 is about o>. We will take o = 1 / V2,
so that about half the observations have both variables between t; and t5. For the
normal, t9 = —t; = 1.052. Let t1; and to; be the fy{h and ’yéh sample quantiles,
respectively, of the observations y1;,...,yn; on the 4t variable. Then scale the
w;’s so that these quantiles are as for the normal, i.e., let v; = 2 x 1.052 x
(wi1/(ta1 — t11),wia/(taa — t12))’. Finally, center the v;’s by subtracting their
bivariate median, ng. The results are the z;’s. To summarize, x; = Ay; — no,

where
B 2 X 1.052/(t21 — tll) 0 10
A= ( 0 2 x 1.052/(tag — t12)> <—b 1) ' (A.2)

A.2. Finding the ranks and quantiles of the spherical normal

Suppose F'=N (0, I,) where p>2. For n € RP, in (1), r(n)=SIGN (n) f(||nl]),
where

b= median{ [1<i<j< n}, (A.1)

52

e+ L
o el t ) L4 —>, (A3)

p
0)=— —=2 20 | =+
f() \/56 I‘(§+1)11<
and 1 I (a; b; 2) is the confluent hypergeometric function, 1 F (a; b; 2)=3"3 gcx 2 / k!
with ¢, =T'(a+ k)I'(b)/(T'(a)I'(b+ k)). (See Abramowitz and Stegun (1972) for

1
2 272 "2
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further information about the confluent hypergeometric function. M&ttonen, Oja,
and Tienari (1997) find the function r for the multivariate Student’s ¢ family as
well as the normal. They refer also to Mottonen and Oja (1994).)

Proof. Let X ~ N(0,1,), so that 7(n) = E((n — X)/|n—X]|). If n =0,
then the symmetry in the normal shows that 7(0) = 0. Suppose n # 0, and
let G be a p x p orthogonal matrix whose first column is SIGN(n), so that
G'n = |In|| (1,0,...,0) = n*. Because GX is also N(0,1,), r(n) = Gr(G'n) =
Gr(n*) = Gv(1,0,...,0) = vSIGN(n), where

— [Inll — X3
T <((H77H —X1)2—|—X22+-.._|_Xg)1/2)' (A.4)

Note that T' = (||n|| — X1)/(X3 +--- +X3)/(p— 1))1/2 is a noncentral Student’s
t variable with noncentrality parameter ||n|| and degrees of freedom p — 1. Thus
v = E(T/(T? + p — 1)%/?). Straightforward but involved calculations will show
that v = f(||n]|), which proves the result.

The g-quantile 7, of the spherical normal for a specified ¢ € QP is then
given by n, = SIGN(q)f~(||q||). The function f in (A.3) can be inverted using
Newton’s method.
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