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Abstract: We consider a change-point test based on the Hill estimator to test for

structural changes in the tail index of long memory stochastic volatility time se-

ries. In order to determine the asymptotic distribution of the corresponding test

statistic, we prove a uniform reduction principle for the tail empirical process in a

two-parameter Skorohod space. It is shown that such a process displays a dichoto-

mous behavior according to an interplay between the Hurst parameter, that is, a

parameter characterizing the dependence in the data, and the tail index. Our the-

oretical results are accompanied by simulation studies and an analysis of financial

time series with regard to structural changes in the tail index.

Key words and phrases: Chaining, change-point tests, heavy tails, long-range de-

pendence, stochastic volatility, tail empirical process.

1. Introduction

The tail behavior of the marginal distribution of time series is of major rele-

vance for statistics in applied sciences such as econometrics and hydrology, where

heavy-tailed data occur frequently. More precisely, time series from finance, such

as the log-returns of exchange rates and stock market indices, display heavy tails;

see Mandelbrot (1963). Furthermore, drastic events such as the financial crisis in

2008 substantiate the importance of studying time series models that underlie fi-

nancial data. Against this background, identifying changes in the tail behavior of

data-generating stochastic processes that result in an increase or decrease in the

probability of extreme events is of utmost interest. In particular, analyzing of the

tail behavior of financial data may pave the way for a corresponding adjustment

of risk management for capital investments, thus preventing huge capital losses.

Indeed, there is empirical evidence that the tail behavior of financial time series

may change over time. Quintos, Fan and Phillips (2001) identify changes in the
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tail of Asian stock market indices, Galbraith and Zernov (2004) find evidence of

changes in the tail behavior of returns on U.S. equities, and Werner and Upper

(2004) detect structural breaks in high-frequency data of Bund future returns.

1.1. Tail index estimation and change-point problem

Let Xj , for j ∈ N, be a stationary time series with a marginal tail distri-

bution function F̄ that is regularly varying with the index −α, α > 0; that

is, P (X > x) = x−αL(x), where L is slowly varying at infinity. We recall that

a measurable real-valued function is slowly varying at infinity if for all t > 0

limx→∞ L(tx)/L(x) = 1. Typical examples for L include constant functions or

(iterated) logarithms. Because the tail behavior of Xj ,j ∈ N, is determined

primarily by the value of the tail index α, identifying a change in the tail of data-

generating processes corresponds to testing for a change-point in this parameter.

In particular, this means that, given a set of observations X1, . . . , Xn, with

P (Xj > x) = x−αjL(x), for j = 1, . . . , n, we decide on the testing problem (H,A)

with

H : α1 = · · · = αn

and

A : α1 = · · · = αk 6= αk+1 = · · · = αn, for some k ∈ {1, . . . , n− 1} .

Test statistics that are designed to identify structural changes in the tail

index are derived naturally from an estimation of the tail index α. For some

general results on tail index estimation, see Drees (1998a) and Drees (1998b). In

this study, we focus on two estimators that are motivated by the fact that, for a

random variable X with tail index α,

lim
u→∞

E
[
log

(
X

u

)
| X > u

]
= lim

u→∞

E [log (X/u) 1 {X > u}]
P (X > u)

=
1

α
=: γ.

When we are given a set of observations X1, . . . , Xn, an approximation of the

unknown distribution of X by its empirical analogue gives the following estimator

for the tail index:

γ̂ :=
1∑n

j=1 1 {Xj > un}

n∑
j=1

log

(
Xj

un

)
1 {Xj > un} , (1.1)

where un, for n ∈ N, is a sequence with un →∞ and nF̄ (un)→∞. Replacing the

deterministic levels un in the formula for γ̂ by Xn:n−kn for some kn, 1 6 kn 6 n−1
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such that kn → ∞ and kn/n → 0, where Xn:n > Xn:n−1 > · · · > Xn:1 are the

order statistics of the sample X1, . . . , Xn, yields the Hill estimator

γ̂Hill =
1

kn

kn∑
i=1

log

(
Xn:n−i+1

Xn:n−kn

)
.

As the most popular estimator for the tail index, established in Hill (1975), the

Hill estimator has been studied widely in the literature. Its limiting distribution

has been obtained under various model assumptions, including linear processes

(Resnick and Stărică (1997)), β-mixing processes (Drees (2000)), and long mem-

ory stochastic volatility (LMSV) models (Kulik and Soulier (2011)). The first

study to establish a theory for change-point tests based on the Hill estimator

seems to be that of Quintos, Fan and Phillips (2001). Whereas Quintos, Fan and

Phillips (2001) consider independent and identically distributed (i.i.d.) observa-

tions, ARCH- and GARCH-type processes, Kim and Lee (2011) and Kim and

Lee (2012) extend their results to β-mixing processes and residual-based change-

point tests for AR(p) processes with heavy-tailed innovations. In contrast, we

study change-point tests for the tail index of LMSV time series based on the two

estimators γ̂ and γ̂Hill. In fact, our results are the first to consider the change-

point problem for stochastic volatility models and time series with long-range

dependence.

To motivate the design of the test statistics for deciding on the change-point

problem (H,A), we temporarily assume that the change-point location is known;

that is, for a given k ∈ {1, . . . , n− 1}, we consider the testing problem (H,Ak),

with

Ak : α1 = · · · = αk 6= αk+1 = · · · = αn.

For this testing problem, change-point tests have been considered in Phillips and

Loretan (1990) and Koedijk, Schafgans and De Vries (1990). In order to decide on

(H,Ak), we compare an estimator γ̂k of the tail index based on the observations

X1, . . . , Xk with an estimator γ̂n of the tail index based on the whole sample

X1, . . . , Xn. This idea leads to studying the following test statistic:

Γk,n =
k

n

∣∣∣∣ γ̂kγ̂n − 1

∣∣∣∣ .
Under the assumption that the change-point location is unknown under the

alternative, it seems natural to consider the statistic Γk,n for every potential

change-point location k, and to decide in favor of the alternative hypothesis A if
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the maximum of its values exceeds a predefined threshold. As a result, a change-

point test for the testing problem (H,A) that rests on the estimator γ̂ defined by

(1.1) bases test decisions on the values of the statistic

Γn := sup
t∈[t0,1]

t

∣∣∣∣ γ̂bntcγ̂n
− 1

∣∣∣∣ , (1.2)

with t0 ∈ (0, 1) and the sequential version of γ̂ defined by

γ̂bntc :=
1∑bntc

j=1 1{Xj > un}

bntc∑
j=1

log

(
Xj

un

)
1{Xj > un}. (1.3)

Likewise, a test statistic based on the Hill estimator is given by

Γ̃n := sup
t∈[t0,1]

t

∣∣∣∣ γ̂Hill(t)

γ̂Hill(1)
− 1

∣∣∣∣ ,
with the sequential version of γ̂Hill defined by

γ̂Hill(t) :=
1

bkntc

bkntc∑
i=1

log

(
Xbntc:bntc−i+1

Xbntc:bntc−kbntc

)
.

In this context, the most comprehensive theory for change-point tests is pre-

sented in Hoga (2017). The author considers a number of test statistics based on

different tail index estimators, and derives their asymptotic distributions under

the assumption of β-mixing data-generating processes.

In the following, we derive the asymptotic distribution of both estimators,

namely, γ̂bntc and γ̂Hill(t), and the corresponding tests statistics, namely, Γn and

Γ̃n, under the hypothesis of stationary time series data. For this purpose, we first

prove a limit theorem for the tail empirical process of LMSV time series in two

parameters. This limit theorem does not necessarily relate to the change-point

context. It can therefore be considered of independent interest and, thus, as

the main theoretical result of our work. Our theoretical results are accompanied

by simulation studies. As an empirical application of our tests, we consider

Standard & Poor’s 500 daily closing index covering the period from January

2008 to December 2008, the year of the financial crisis. We identify a change in

the data exactly one day after Lehman Brothers filed for bankruptcy protection,

an event which is thought to have played a major role in the unfolding of the

financial crisis.
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1.2. Tail empirical process

In order to derive the limit distribution of the tail estimators γ̂bntc and γ̂Hill(t),

parametrized in t, and the corresponding test statistics Γn and Γ̃n, it is crucial

to note that

γ̂bntc =
1∑bntc

j=1 1{Xj > un}

bntc∑
j=1

log

(
Xj

un

)
1{Xj > un}

=
1

T̃n(1, t)

∫ ∞
1

s−1T̃n(s, t)ds , (1.4)

where

T̃n(s, t) =
1

nF̄ (un)

bntc∑
j=1

1 {Xj > uns} .

As a result, asymptotics of the considered statistics can be derived from a limit

theorem for the two-parameter tail empirical process

en(s, t) :=
{
T̃n(s, t)− T (s, t)

}
, s ∈ [1,∞], t ∈ [0, 1], (1.5)

where T (s, t) does not correspond to the mean of T̃n(s, t), but rather to the limit

of that mean, that is, to

T (s, t) := ts−α. (1.6)

The tail empirical process in one parameter, namely, en(s, 1), for s ∈ [1,∞],

has been studied in Mason (1988), Einmahl (1990), and Einmahl (1992) for inde-

pendent, i.i.d. observations, in Rootzén (2009) for absolutely regular processes,

and in Kulik and Soulier (2011) for LMSV time series. For the latter, the con-

vergence of the two-parameter tail empirical process is discussed in Section 2.2.

1.3. LMSV model

A phenomenon often encountered in the context of financial time series is

that the observations seem to be uncorrelated, whereas their absolute values or

higher moments tend to be highly correlated. Another characteristic of financial

time series is the occurrence of heavy tails. In particular, the distribution of the

considered data often exhibits tails that are heavier than those of a normal dis-

tribution. These features of financial data can be covered by stochastic volatility

models.
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Stochastic volatility model

The LMSV model on which the theoretical results established in this article

are based can be considered as a generalization of the stochastic volatility mod-

els considered in, for example, Taylor (1986). This model was first introduced

by Breidt, Crato and de Lima (1998) and, independently, by Harvey (2002).

Overviews of stochastic volatility models with long-range dependence and their

basic properties are given in Deo et al. (2006) and Hurvich and Soulier (2009).

Stochastic volatility time series Xj , for j ∈ N, are typically defined via

Xj = Zjεj with Zj = exp

(
1

2
Yj

)
, (1.7)

where εj , for j ∈ N, is a sequence of i.i.d. random variables with mean zero, and

Yj , for j ∈ N, is a Gaussian process, independent of εj , for j ∈ N.

Whereas these models are often restricted to modeling a relatively fast decay

of dependence in Yj , for j ∈ N, the so-called LMSV model allows for long-range

dependence. In what follows, we specify a corresponding dependence structure

for Yj , for j ∈ N.

Transformed Gaussian processes

The rate of decay of the autocovariance function is crucial to the definition

of the long-range dependence in time series.

Definition 1. A (second-order) stationary, real-valued time series Yj , for j ∈ Z,

is called long-range dependent if its autocovariance function γ satisfies

γY (k) := Cov (Y1, Yk+1) ∼ k−DLγ(k), as k →∞,

with D ∈ (0, 1) for a slowly varying function Lγ . We refer to D as the long-range

dependence (LRD) parameter; see Pipiras and Taqqu (2017, p.17).

The transformed random variables Zj = G (Yj), for j ∈ N, can be considered

as elements of the Hilbert space L2 := L2 (R, ϕ(x)dx), that is, the space of

all measurable, real-valued functions that are square-integrable with respect to

the measure ϕ(x)dx associated with the standard normal density function ϕ,

equipped with the inner product

〈G1, G2〉L2 :=

∫ ∞
−∞

G1(x)G2(x)ϕ(x)dx = E [G1(Y )G2(Y )] ,

where G1, G2 ∈ L2(R, ϕ(x)dx) and Y denotes a standard normally distributed

random variable. In order to characterize the dependence structure of trans-
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formed Gaussian processes, we consider their expansion in Hermite polynomials.

Definition 2. For n > 0, the Hermite polynomial of order n is defined by

Hn(x) = (−1)nex
2/2 d

n

dxn
e−x

2/2, x ∈ R.

The sequence of Hermite polynomials constitutes an orthogonal basis of L2.

As a result, every G ∈ L2(R, ϕ(x)dx) has an expansion in Hermite polynomials;

that is, for G ∈ L2(R, ϕ(x)dx) and Y following a standard normal distribution,

we have

G(Y )
L2

=

∞∑
r=0

Jr(G)

r!
Hr(Y ), (1.8)

where ‖ · ‖L2 denotes the norm induced by the inner product 〈·, ·〉L2 .

Under the assumption that as k tends to∞, γY (k) converges to zero at a cer-

tain rate, the asymptotically dominating term in the series (1.8) is the summand

corresponding to the smallest integer r for which the Hermite coefficient Jr(G) is

nonzero. This index, which depends decisively on G, is called the Hermite rank.

Definition 3. Let G ∈ L2(R, ϕ(x)dx), E [G(Y )] = 0 for standard normally dis-

tributed Y , and Jr(G), for r > 1, be the Hermite coefficients in the Hermite

expansion of G. The smallest index k > 1 for which Jk(G) 6= 0 is called the

Hermite rank of G; that is,

r := min {k > 1 : Jk(G) 6= 0} .

Given the previous definitions, we specify the model assumptions on which

the results in the following sections are based.

Definition 4. Let the data-generating process Xj , for j ∈ N, satisfy

Xj = Zjεj , j ∈ N,

where εj , for j ∈ N, is a sequence of i.i.d. random variables with mean zero,

and Zj , for j ∈ N, is a long-range dependent transformed Gaussian process with

Zj = σ(Yj), for j ∈ N, for some stationary, long-range dependent Gaussian

process Yj , for j ∈ N, with LRD parameter D and a positive function σ. More

precisely, assume that Yj , for j ∈ N, admits a linear representation with respect

to an independent, standard normally distributed sequence ηk, for k ∈ Z; that is,
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Yj =

∞∑
k=1

ckηj−k, j ∈ N,

with
∑∞

k=1 c
2
k = 1. Furthermore, suppose that (εj , ηj), for j ∈ Z, is a sequence

of i.i.d. random vectors. A sequence of random variables Xj , for j ∈ N, that

satisfies the previous assumption is called an LMSV time series.

Remark 1. The model assumptions generalize the preceding concepts of stochas-

tic volatility models with long-range dependence by allowing for general trans-

formed Gaussian sequences Zj , for j ∈ N, and dependence between the sequences

{Yj , j ∈ N}, and {εj , j ∈ N}. Instead of claiming mutual independence of Yj , for

j ∈ N, and εj , for j ∈ N, the sequence of random vectors (ηj , εj) is assumed to

be independent. In particular, this implies that for a fixed index j, the random

variables Yj and εj are independent, whereas Yj may depend on εi, for i < j. In

many cases, an LMSV model incorporating this dependence structure is referred

to as LMSV with leverage, because it allows for so-called leverage effects in finan-

cial time series. Not taking account of leverage, Definition 4 corresponds to the

LMSV model considered in Kulik and Soulier (2011), whereas a similar model

with leverage is considered in Bilayi-Biakana, Ivanoff and Kulik (2019).

It can be shown that random variables Xj , for j ∈ N, satisfying Definition 4

are uncorrelated, whereas their squares inherit the dependence structure from the

transformed Gaussian sequence Z2
j , for j ∈ N. Moreover, Xj , for j ∈ N, inherits

the tail behavior from the sequence εj , for j ∈ N, if the marginal distribution

of the random variables εj , for j ∈ N, has a regularly varying right tail, that is,

F̄ε(x) := P (ε1 > x) = x−αL(x) for some α > 0 and a slowly varying function L,

and if E
[
σα+δ(Y1)

]
<∞ for some δ > 0. More precisely, under these assumptions,

the following asymptotic equivalence holds:

P (X1 > x) ∼ E [σα(Y1)]P (ε1 > x) , as x→∞.

This result is known as Breiman’s lemma; see Breiman (1965). It follows that

Definition 4 is suited for modeling the previously described characteristic features

of financial time series. In the following sections, we assume that the data-

generating process Xj , for j ∈ N, corresponds to an LMSV time series specified

by Definition 4.

The remainder of the paper is structured as follows. In Section 2 we state the

technical assumptions needed for our theoretical results. These are followed by

the main theorem on the convergence of the two-parameter tail empirical process

(Theorem 1). The convergence of the estimators of the tail index (Corollary
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1) and the test statistics (Corollary 2) are immediate consequences. Simulation

studies are presented in Section 3, and a real-data analysis is presented in Section

4. All proofs are included in the Supplementary Material. In order to establish

the convergence of the two-parameter tail empirical process, we decompose it

into a martingale and a long-range dependent part. The latter is dealt with in

the Supplementary Material. For the former, we establish the finite-dimensional

convergence using classical tools from martingale theory, and handle the tightness

of the two-parameter martingale part using chaining. This is a theoretical novelty

in the present context, because the methods used in related papers are not suitable

(the method used in Kulik and Soulier (2011) cannot be applied to models with

leverage, and the approach in Bilayi-Biakana, Ivanoff and Kulik (2019) is not

suited to two-parameter processes).

2. Main Results

2.1. Assumptions

In this section, we establish the assumptions that guarantee the convergence

of the two-parameter tail empirical process for LMSV time series. First, we

specify the LMSV model yielding the main assumptions for the theory.

Assumption 1 (Main Assumptions). Let Xj = Zjεj, for j ∈ N, satisfy Def-

inition 4, with Zj = σ(Yj), for j ∈ N, for some stationary, long-range depen-

dent Gaussian process Yj, for j ∈ N, with autocovariance function γY (k) :=

Cov (Y1, Yk+1) ∼ k−DLγ(k), as k →∞, for D ∈ (0, 1), and some i.i.d. sequence

εj, for j ∈ N, with regularly varying right tail, that is, F̄ε(x) := P (ε1 > x) =

x−αL(x), for some α > 0 and a slowly varying function L. Moreover, let r

denote the Hermite rank of Ψ(y) := σα(y) and assume that r < 1/D.

Note that for a very strong dependence (D close to zero), a large range of

the Hermite ranks is allowed. For D close to one, only rank one is allowed.

In the following, we list some technical conditions that characterize the be-

havior of the slowly varying function L and the moments of σ (Y1). For this,

we introduce another condition on the distribution function Fε. This definition

stems from Drees (1998c).

Definition 5 (Second-order regular variation). Let F̄ε(x) = x−αL(x) for some

α > 0 and some slowly varying function L represented by

L(x) = c exp

(∫ x

1

η(u)

u
du

)
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for some constant c and a measurable function η. Furthermore, we assume that

there exists a bounded, decreasing function η∗ on [0,∞), regularly varying at

infinity with parameter ρ > 0, that is, η∗(x) = x−ρLη∗(x), such that

|η(s)| 6 Cη∗(s)

for some constant C and for all s > 0. We say that F̄ε is second-order regularly

varying with tail index α and rate function η∗, and we write F̄ε ∈ 2RV(α, η∗).

Second-order regular variation allows us to control the difference between F̄ε
and the function u 7→ u−α; see Lemmas 1 and 2 in the Supplementary Material.

Moreover, the specific form of L guarantees the continuity of F̄ε.

Assumption 2 (Technical Assumptions). Suppose the main assumptions hold.

Additionally, we assume that

(TA.1) F̄ε ∈ 2RV (α, η∗) and η is regularly varying with index ρ;

(TA.2) un →∞, nF̄ (un)→∞, η∗(un) = o(dn,r/n+ 1/
√
nF̄ (un)), where dn,r is

defined by

d2
n,r = Var

 n∑
j=1

Hr(Yj)

 ∼ crn2−rDLrγ(n), cr =
2r!

(1−Dr)(2−Dr)
;

(2.1)

(TA.3) E
[
σα+max{ρ,α}+ϑ (Y1)

]
<∞ for some ϑ > 0;

(TA.4) E
[
(σ (Y1))−1

]
<∞.

Remark 2. Assumption (TA.2) handles the bias created by centering the tail

empirical process, not by its mean, but rather by the limit of that mean.

Example 1. The most commonly used second-order assumption is that

L(x) = c exp

(∫ x

1

η(u)

u
du

)
,

with η(s)=s−αβ for some β>0. It then holds that F̄ε(s)=C
(
s−α+O(s−(α(β+1)))

)
,

s→∞, for some constant c > 0. Furthermore, we have

sup
s>1

∣∣∣∣ F̄ε(uns)F̄ε(un)
− s−α

∣∣∣∣ = O(u−αβn ).

In this case, (TA.2) can be replaced by the assumption u−αβn = o(dn,r/n +

1/
√
nF̄ (un)).
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2.2. Convergence of the tail empirical process

Recall that the tail empirical process in two parameters is defined by

en(s, t) :=
1

nF̄ (un)

bntc∑
j=1

1 {Xj > uns} − ts−α, s ∈ [1,∞], t ∈ [0, 1].

The following theorem establishes a characterization of its limit. In order

to state this, we recall that a Hermite–Rosenblatt process of order r with a self-

similarity parameter H is a stochastic process Zr,H(t) defined for all t > 0 by a

multiple Wiener–Ito integral with respect to a standard Brownian motion:

Zr,H(t) = ω(r,H)

∫ ∞
−∞

∫ x1

−∞
· · ·
∫ xr−1

−∞

∫ t

0

r∏
j=1

(s− xi)H−3/2
+ ds

dB(xm) · · · dB(x1),

where x+ := max(0, x) and ω(r,H) > 0 satisfies

ω2(r,H) =
r!(2r(H − 1) + 1)(r(H − 1) + 1)(∫∞

0 [x(x+ 1)]H−3/2dx
)r ;

see Beran et al. (2013, Sec. 3.7). In our case, H = 1 − (rD)/2, and hence the

restriction r < 1/D gives H > 1/2. We recall that the standard Brownian motion

has the self-similarity parameter H = 1/2. Thus, H > 1/2 indeed indicates the

presence of long memory.

Theorem 1. Let Xj, for j ∈ N, be a stationary time series with a marginal tail

distribution function F̄ . Moreover, assume that Assumptions 1 and 2 hold.

1. If n/dn,r = o(
√
nF̄ (un)), then as n→∞,

n

dn,r
en(s, t)⇒ s−α

E [σα(Y1)]

Jr(Ψ)

r!
Zr,H(t), (2.2)

where Ψ(y) = σα(y), r is the Hermite rank of Ψ, Zr,H is an r th-order

Hermite process, H = 1− (rD)/2, and d2
n,r is defined in (2.1).

2. If
√
nF̄ (un) = o(n/dn,r), then as n→∞,√

nF̄ (un)en(s, t)⇒W (s−α, t), (2.3)

where W denotes a standard Brownian sheet.

The convergence holds in a two-parameter Skorohod space, that is, ⇒ denotes

weak convergence in D ([1,∞]× [0, 1]).
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The dichotomy of the limiting process is explained by the decomposition

of the tail empirical process into the sum of a martingale and a partial sum of

long-range dependent random variables, which can be viewed as a special case of

Doob’s decomposition; see the Supplementary Material. If n/dn,r = o(
√
nF̄ (un)),

the martingale part in the decomposition becomes negligible, such that the lim-

iting process arises from the convergence of the long-range dependent part. If√
nF̄ (un) = o(n/dn,r), the long-range dependent part in the decomposition be-

comes negligible, such that the limiting process arises from the convergence of

the martingale part. The same decomposition is employed in Kulik and Soulier

(2011), Betken and Kulik (2019), and Bilayi-Biakana, Ivanoff and Kulik (2019).

The assumption
√
nF̄ (un) = o(n/dn,r) yields the “standard” convergence

(2.3), which in turn implies the “standard” convergence for the change-point

statistics studied below. This is important for data applications. Indeed, the

quantiles of (the functionals of) the limiting process in (2.3) are rather easy to

simulate under the null hypothesis of no change. Furthermore, under this limiting

regime, the validity of the i.i.d. bootstrap can be conjectured. On the other hand,

the limiting process in (2.2) is much harder to simulate. Indeed, first, one has

to know the Hermite rank and the αth moment of the unobservable process Yj .

However, even if we know this, a simulation of the Hermite–Rosenblatt process

is not an easy task. As such, it is important from a statistical point of view to

be able, if possible, to work under a regime that guarantees the validity of (2.3).

This is how we approach the simulation studies.

Ignoring the slowly varying components,
√
nF̄ (un) = o (n/dn,r) means that

n3/2−rD = o(u
α/2
n ). For a given long-memory parameter D and the Hermite rank

r, this induces restrictions on the thresholds un for the “standard” convergence

(2.3) to hold. The stronger the memory (i.e., the smaller D is), the larger is the

needed threshold. Intuitively, under strong dependence, we can use only extreme

observations to remove the effect of long memory.

Furthermore, if the rates n/dn,r and
√
nF̄ (un) are asymptotically equivalent

(up to a constant), it can be conjectured that a limiting process is a linear com-

bination of (uncorrelated, but not independent) limiting processes that appear

on the right-hand side of both (2.2) and (2.3).

2.3. Convergence of the tail estimators

Recall that the considered tail index estimators of γ = 1/α are defined by

γ̂bntc :=
1∑bntc

j=1 1{Xj > un}

bntc∑
j=1

log

(
Xj

un

)
1{Xj > un}
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and

γ̂Hill(t) :=
1

bkntc

bkntc∑
i=1

log

(
Xbntc:bntc−i+1

Xbntc:bntc−kbntc

)
,

where kn and un are related by kn = bnF̄ (un)c, such that kn →∞ and kn/n→ 0.

Based on Theorem 1, the limiting distributions of γ̂bntc and γ̂Hill(t) can be

established in D[t0, 1], for any t0 ∈ (0, 1).

Corollary 1. Let Xj, for j ∈ N, be a stationary time series with a marginal tail

distribution function F̄ . Moreover, assume that Assumptions 1 and 2 hold.

1. If n/dn,r = o
(√

nF̄ (un)
)

, then as n→∞,

n

dn,r
t
(
γ̂bntc − γ

)
⇒ 0 and

n

dn,r
t (γ̂Hill(t)− γ)⇒ 0

in D[t0, 1], for all t0 ∈ (0, 1).

2. If
√
nF̄ (un) = o (n/dn,r), then as n→∞,√
nF̄ (un)t

(
γ̂bntc − γ

)
⇒
∫ ∞

1
s−1W

(
s−α, t

)
ds− α−1W (1, t) (2.4)√

knt (γ̂Hill(t)− γ)⇒
∫ ∞

1
s−1W

(
s−α, t

)
ds− α−1W (1, t) (2.5)

in D[t0, 1], for all t0 ∈ (0, 1).

Remark 3.

1. The zero limit in the first part of Corollary 1 stems from the degenerate

nature of the limiting process in (2.2). Indeed, the limiting process is random

in t and deterministic in s.

2. Following Kulik and Soulier (2011), we conjecture that the proper scaling

in the first case is an =
√
nF̄ (un), yielding the same limit as in the second

case. However, because this is beyond the scope of this study, we do not

consider the corresponding argument in detail.

3. The limit in (2.4) and (2.5) corresponds to γB(t), for t ∈ [0, 1], where B is

a standard Brownian motion.
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2.4. Asymptotic distribution of the test statistics

Recall that the considered test statistics for the change-point problem (H,A)

are defined by

Γn := sup
t∈[t0,1]

t

∣∣∣∣ γ̂bntcγ̂n
− 1

∣∣∣∣ and Γ̃n := sup
t∈[t0,1]

t

∣∣∣∣ γ̂Hill(t)

γ̂Hill(1)
− 1

∣∣∣∣ .
Using the convergence obtained in Corollary 1, we derive the asymptotic distri-

bution of the test statistics.

Corollary 2. Let Xj, for j ∈ N, be a stationary time series with a marginal tail

distribution function F̄ . Moreover, assume that Assumptions 1 and 2 hold. If√
nF̄ (un) = o (n/dn,r), then, for all t0 ∈ (0, 1), as n→∞,√

nF̄ (un) sup
t∈[t0,1]

t

∣∣∣∣ γ̂bntcγ̂n
− 1

∣∣∣∣⇒ sup
t∈[t0,1]

|B(t)− tB(1)| ,

√
kn sup

t∈[t0,1]
t

∣∣∣∣ γ̂Hill(t)

γ̂Hill(1)
− 1

∣∣∣∣⇒ sup
t∈[t0,1]

|B(t)− tB(1)| ,

where B(t), for t ∈ [0, 1], denotes a standard Brownian motion.

3. Simulations

The following specifications apply to all of our simulations:

Xj = σ(Yj)εj , j > 1 , (3.1)

where

• εj , for j > 1, is an i.i.d. sequence of Pareto-distributed random variables

generated by the function rgpd (fExtremes package in R);

• Yj , for j > 1, is a fractional Gaussian noise sequence generated by the

function simFGN0 (longmemo package in R) with Hurst parameter H;

• σ(y) = exp(y).

Under the alternative, we insert a change of height h at location k = bnτc
by simulating independent and identically Pareto-distributed observations εj , for

j > 1, with εj , for j = 1, . . . , k, having the tail index α1 = · · · = αk = α, and εj ,

for j = k + 1, . . . , n, having the tail index αk+1 = · · · = αn = α + h. According

to Breiman’s lemma, this induces a change in the tail index of the observations

X1, . . . , Xn.
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We base the test decisions on the statistic Γ̃n := max16k6n−1 Γk,n, where

Γ̃k,n =
k

n

∣∣∣∣ γ̂Hill (k/n)

γ̂Hill(1)
− 1

∣∣∣∣ with γ̂Hill (t) =
1

bkntc

bkntc∑
i=1

log

(
Xbntc:bntc−i+1

Xbntc:bntc−bkntc

)
,

(3.2)

and we choose a significance level of 5%.

For the computation of the test statistic, the choice of kn is a delicate matter.

Hall (1982) shows that the optimal choice of kn depends on the tail behavior of the

data-generating process. Owing to this circularity, DuMouchel (1983) suggests

choosing kn proportional to the sample size. As noted in Quintos, Fan and

Phillips (2001), a corresponding choice of kn has been shown to perform well in

simulations and is widely used by practitioners. Hence, we choose kn as p percent

of the sample size n, where p = 10% or p = 20%. This is a standard choice in

the context of high quantile estimation.

The power of the testing procedures is analyzed by considering different

choices for the height of the level shift, denoted by h, and the location of the

change point, denoted by τ . In the tables, the columns that are superscribed by

h = 0 correspond to the frequency of a type-1 error, that is, the rejection rate

under the hypothesis.

Both the Hurst parameter and the tail index, seem to have a significant effect

on the rejection rates of the change-point test. An increase in dependence, that

is, an increase of the Hurst parameter H, leads to an increase in the number of re-

jections. On the one hand, this leads to an increase in power. On the other hand,

it results in a larger deviation of the empirical size from the significance level.

However an increase in the tail thickness, that is, a decrease of the tail param-

eter α, results in improved performance, in that the empirical power increases,

whereas the empirical size draws closer to the level of significance. Indeed, if the

tail is thicker, more observations are informative about the tail, such that tail

changes become easier to detect. Moreover, the empirical power of the test is

higher for changes to heavier tails; that is, the test tends to better detect changes

with a negative change-point height h.

Considering small values of H and α, that is, for heavy-tailed time series

with unincisive long-range dependence, the simulation results concur with the

expected behavior of change-point tests. First, an increasing sample size corre-

sponds to an improvement of the finite-sample performance; that is, the empirical

size approaches the level of significance and the empirical power increases. Sec-

ond, the empirical power of the testing procedures increases when the height of
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Figure 1. Daily closing index of S&P’s 500 and its log-returns from January 2007 to
December 2010.

the level shift increases. Third, the empirical power is higher for breakpoints

located in the middle of the sample than it is for change-point locations that lie

close to the boundary of the testing region. A comparison of the rejection rates

in Tables 1 and 3 reveals that an increase in the tail thickness is better detected

in the presence of late changes, that is, when τ = 0.75, than it is in the presence

of early changes, that is, when τ = 0.25.

4. Data

Analyses of financial time series, such as stock market prices, usually focus

on log-returns rather than of the observed data. As an example, we consider

the log-returns of the daily closing indices of Standard & Poor’s 500 (S&P 500)

defined by

Lt := log

(
Pt
Pt−1

)
,

where Pt denotes the value of the index on day t in the period January 2007 to

December 2010; see Figure 1. The data set was obtained from Yahoo Finance,

and consists of n = 1,014 observations.

Comparing the plots of the sample autocorrelation function of the log-returns

and the sample autocorrelation function of their absolute values in Figure 2, we

observe a phenomenon often encountered in the context of financial data: the log-

returns of the index appear to be uncorrelated, whereas the absolute log-returns
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Figure 2. Sample autocorrelation of the log-returns and absolute log-returns of S&P’s
500 daily closing index from January 2007 to December 2010. The two dashed horizontal
lines mark the bounds for the pointwise 95% confidence interval of the autocorrelations
under the assumption of data generated by white noise.

tend to be highly correlated.

Furthermore, the plot in Figure 1 shows that the considered time series ex-

hibits volatility clustering, meaning that large price changes, that is, log-returns

with relatively large absolute values, tend to cluster. This indicates that obser-

vations are not independent across time, although the absence of linear autocor-

relation suggests that the dependence is nonlinear; see Cont (2005).

Another characteristic of financial time series is the occurrence of heavy tails.

In particular, probability distributions of log-returns often exhibit tails that are

heavier than those of a normal distribution. For the S&P 500 data, this property

is highlighted by the QQ plot in Figure 3.

The previously described features of financial data are all covered by the

LMSV model considered in our study.

In view of the fact that the LMSV model captures the properties of the log-

returns of S&P’s 500 daily closing index, we analyze the data with respect to a

change in the tail index.

We base the test decision on the statistic defined in (3.2). We choose kn =

bnpc; that is, p defines the proportion of the data on which the estimation of the

tail index is based. Choosing p = 0.1, the value of the test statistic corresponds to

Γ̃n = 1.48207. The 95%-quantile of the limit distribution supt∈[0,1] |B(t)− tB(1)|
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Figure 3. QQ plot for the log-returns of S&P’s 500 daily closing index from January
2007 to December 2010.
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Figure 4. Log-returns of the daily closing index of S&P’s 500 from January 2007 to
December 2010. The red, dashed line indicates the estimated change-point location.

is equal to 1.3463348. Therefore, choosing the critical value for the hypothesis

test correspondingly, the value of Γ̃n indicates a change-point in the tail index at

a 5% level of significance.

A natural estimate for the change-point location is given by the point in

time k, where Γk,n attains its maximum. For the considered data, this point

corresponds to September 16, 2008; that is, one day after September 15, 2008,

when Lehman Brothers filed for bankruptcy protection; see Figure 4.

Supplementary Material

The online Supplementary Material contains all the proofs for this study.
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