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Abstract: Longitudinal data in biomedical studies often involve concomitant inter-

ventions in addition to the pre-specified repeatedly measured outcome and covariate

variables. Since a concomitant intervention is often initiated when a patient ex-

hibits an undesirable health trend, adequate statistical methods should properly

incorporate the starting time of a concomitant intervention in order to reduce the

potential bias of the estimated intervention effects. We propose in this paper a

class of semiparametric random-effects conditional density models for evaluating

the distributions and concomitant intervention effects with longitudinal observa-

tions. These models simultaneously incorporate concomitant intervention effects

and intra-subject longitudinal dependence structures, and quantify the change of

the distribution functions through the ratio of two conditional density functions.

The conditional density ratio is assumed to have a parametric form, while the base-

line density function is nonparametric. We develop a likelihood-based method for

estimating the parameters and a goodness-of-fit test for testing the validity of the

models. Finite sample properties of our estimation and testing procedures are il-

lustrated through a simulation study and an application to a longitudinal clinical

trial in depression and heart disease.

Key words and phrases: Concomitant intervention, conditional density ratio, con-

ditional likelihood, longitudinal data, random-effects conditional density model.

1. Introduction

In longitudinal clinical trials and epidemiological studies, patients or study

participants are repeatedly observed over time, and concomitant interventions are

often given to patients, due to ethical reasons, who exhibit undesirable trends

of health status during the study period. A main objective in such longitu-

dinal studies is to evaluate the temporal trends of some health outcomes and

the effects of certain covariates of interest, such as the study subjects’ baseline

characteristics and some pre-specified treatments, on the distributions of these
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health outcomes. Well-known regression methods for longitudinal analysis, in-

cluding various types of parametric and nonparametric models proposed in the

literature, for example,Verbeke and Molenberghs (2000), Diggle et al. (2002) and

Fitzmaurice et al. (2009), have focused on the estimation and inferences of the

effects of covariates that do not depend on the outcome variables. These regres-

sion methods, however, may lead to misspecified models and biased estimates of

the concomitant intervention effects because the initiation of concomitant inter-

ventions could depend on the study subject’s temporal trends of the response

variable.

The Enhancing Recovery in Coronary Heart Disease (ENRICHD) study is

a typical example of longitudinal clinical trials, which involves a concomitant

intervention in addition to the randomly assigned treatment regimens and other

covariates whose values do not depend on the outcome variables. The primary

objective of this randomized clinical trial is to evaluate the efficacy of a 6-month

cognitive behavior therapy (CBT) versus the usual cardiovascular care (UC) on

overall mortality, cardiovascular events, and depression severity in patients with

depression or low perceived social support after acute myocardial infarction; here

depression severity was measured by the Hamilton Rating Scale for Depression

(HRSD) and the Beck Depression Inventory (BDI) with higher HRSD and BDI

scores indicating worsened depression. In addition to the randomized CBT treat-

ment, patients who had high baseline depression scores or nondecreasing BDI

trends were eligible for pharmacotherapy with antidepressants as a concomitant

intervention, and antidepressants were also prescribed at the requests of the

patients or their primary-care physicians. Major findings of the trial and jus-

tifications of its design can be found in ENRICHD (2001, 2003). Taylor et al.

(2005) investigated the effects of pharmacotherapy on cardiovascular morbidity

and mortality among 1834 depressed ENRICHD patients, and found that phar-

macotherapy improved survival for this patient population.

To evaluate the effects of pharmacotherapy on depression severity measured

by the BDI scores, Wu, Tian and Bang (2008) showed that the mixed-effects mod-

els, without taking the antidepressant starting time into account, led to biased

estimates of pharmacotherapy effects, and they proposed a varying-coefficient

model using the data from patients who started pharmacotherapy during the

6-month treatment period to show the beneficial effects of pharmacotherapy for

lowering the patients’ BDI scores. The varying-coefficient model of Wu, Tian

and Bang (2008) does not use the data from patients who have already received

pharmacotherapy at baseline or have not received pharmacotherapy during the
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study. As an extension based on the framework of shared-parameter models

(e.g., Follmann and Wu (1995)), Wu, Tian and Jiang (2011) proposed a change-

point shared-parameter model for evaluating the concomitant intervention ef-

fects which was capable of incorporating the information from all the patients

in the study. Their method is limited to modeling the conditional means of

the outcome variables before and after the concomitant intervention through

some known parametric distribution functions and estimating the parameters

through a computationally intensive maximum likelihood procedure. Xing and

Ying (2012) studied a semiparametric change-point regression model based on

a counting process formulation; their regression model assumes environmental

change-points with unknown number and locations, and differs from the setup of

subject-specific concomitant interventions.

We develop a class of semiparametric random-effects conditional density

(RECD) models for evaluating the conditional distributions of the outcome vari-

able and the concomitant intervention effects in a longitudinal study. By quan-

tifying the distribution functions of the outcome variable before and after the

concomitant intervention through some random-effects, our models assume that

the ratio of the conditional density functions of the subject’s time-dependent out-

come variable has a known form specified by some unknown parameters, while the

underlying baseline density remains nonparametric. This modeling framework

has the attractive feature that it simultaneously incorporates the intra-subject

longitudinal dependence structure and the concomitant intervention effects. Our

RECD models do not require the conditional distributions to be completely speci-

fied by a parametric family, they can be applied to studies with patients who may

or may not receive concomitant interventions during the study. We develop a

conditional likelihood-based estimation method for parameter estimation and in-

ferences, and an information matrix-based goodness-of-fit test statistic for testing

the validity of the models. Our application to the ENRICHD pharmacotherapy

data and simulation results suggest that the proposed method leads to adequate

parameter estimates with longitudinal data when a concomitant intervention is

present.

2. Random-Effects Conditional Distribution Models

We introduce a general framework for longitudinal data with a concomitant

intervention and a random-effects modeling approach which can simultaneously

account for concomitant intervention effects and longitudinal dependence among
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the observations within the same subject. Further discussions are given in Section

S1 of Supplementary Materials.

2.1. Parametric random-effects conditional distribution models

Let N be the number of randomly selected subjects. The ith subject has

(ni + 1) visits and the observation (Tij , Yij , Xi) at the jth visit, 0 ≤ j ≤ ni,

where Tij is the study time defined as the time elapsed from the beginning of the

study to the jth visit, Xi is a time-invariant covariate vector, and Yij is the real-

valued or discrete outcome variable. For simplicity, we assume that the study

involves only one concomitant intervention, and we denote by Si ∈ [0,+∞) the

ith subject’s intervention starting time or change-point time and δij = I(Tij ≥ Si)
the intervention indicator at the jth visit. In most clinical trials, the initial visit

time is set to zero, Ti0 = 0. In general, the choice of time depends on the study

objectives, and the starting time may not be zero. We take T̃ij = Tij − Ti0 to be

the time elapsed from the baseline to the jth visit, and Rij = Tij − Si to be the

time elapsed from the intervention starting time to the jth visit. A positive (or

negative) value of Rij suggests that the jth visit of the ith subject is after (or

before) the intervention starting time Si.

We assume throughout that no subject has taken the intervention before or

at the start of the study, so that Si > Ti0. To evaluate the designated treatment

effects of a clinical trial, it is common to exclude subjects who have already

taken an alternative intervention at baseline. Since not every subject changes

from without intervention to intervention during the study, the ith subject’s

change-point time is observed if Ti0 < Si ≤ Tini
. If Si > Tini

, the subject’s

change-point time is “right censored”. The indicator variable for censoring κi is

κi = 0 if Ti0 < Si ≤ Tini
and 1 if Si > Tini

. The observed change-point times

are {S̄(c)
i = (S

(c)
i , κi) : i = 1, · · · , N}, where S

(c)
i = Si if κi = 0 and S

(c)
i = Tini

if

κi = 1. The observed data are {(Tij , Xi, Yij , S̄
(c)
i ), 0 ≤ j ≤ ni, 1 ≤ i ≤ N}. The

set of visit times is Ti = (Ti0, Ti1, · · · , Tini
)T, and the corresponding outcome

values are Yi = (Yi0, · · · , Yini
)T.

Since the distribution of Si may depend on {Xi, Ti} as well as some un-

observed variables, we assume that there is a latent random vector ∆i, which

depends on {Xi, Ti} through the conditional density f∆i
(·|{Xi, Ti}), so that the

conditional density of Si given {∆i, Xi, Ti} is fSi
(·|{∆i, Xi, Ti}). The condi-

tional distribution of the outcome variable Yi depends on the random variables

{∆i, Xi, Ti, Si} and can be constructed as follows. Let fij(y|∆i, Xi, Ti, Si) be the

conditional density of Yij given {∆i, Xi, Ti, Si}, which specifies a random-effects
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model for Yij . For the sake of generality, fij(·|·) may generally refer to the den-

sity function with respect to Lebesgue measure when Yij is a continuous random

variable on the real line, or a probability function when Yij is a discrete or cate-

gorical random variable. Similar to the settings in the mixed-effects models (e.g.,

Verbeke and Molenberghs (2000)), we assume that, within each i = 1, . . . , N , the

outcome observations {Yi0, Yi1, · · · , Yini
} are independent given {∆i, Xi, Ti, Si}.

Let β be the unknown parameter vector of interest that is used to characterize

the time trends of Yi and the concomitant intervention effects, and let φ, ψ, and

ϕ be the unknown nuisance parameters, so that the conditional density functions

are specified by fSi
(·|·;β, ψ), f∆i

(·|·;ϕ) and

fYi
(Yi|∆i, Oi, Si;β, φ) =

ni∏
j=0

fij(Yij |∆i, Oi, Si;β, φ),

where Oi = {Xi, Ti}. The joint likelihood of {Yi, Si,∆i} given Oi is

fYi
(Yi|∆i, Oi, Si;β, φ)fSi

(Si|∆i, Oi;β, ψ)f∆i
(∆i|Oi;ϕ). (2.1)

Since (2.1) belongs to a parametric family and the change-point time Si
may not be observed, the log-likelihood function `F (θ) for the possibly censored

observations {Yi, S̄(c)
i } conditioning on Oi, i = 1, · · · , N , can be constructed

based on (2.1) with unknown parameters θ = (βT, φT, ψT, ϕT)T. We can, in

principle, estimate θ by maximizing the log-likelihood function `F (θ). However,

in applications, it may be difficult to correctly specify (2.1), so that more flexible

statistical models and computationally feasible procedures are needed in practice.

2.2. Semiparametric random-effects conditional density models

Using the data structure of Section 2.1 and the assumption that, within

the ith subject, Yi0, Yi1, · · · , Yini
are independent given {∆i, Xi, Ti, Si}, our

semiparametric random-effects conditional density (RECD) models for fYi
(·|·)

do not require a fully parametric family and incorporate a simple structure to

characterize the concomitant intervention effects. The conditional likelihood of

{Yi, Si} given Oi can then be constructed as in Section 2.1 by substituting fYi
(·|·)

of (2.1) with the conditional density given in the corresponding RECD model.

We consider here the case of continuous Yij ’s. The discrete case can be

found in Section S1 of Supplementary Materials. Let hi(y|∆i, Xi, Ti0, Si) be an

unknown density function depending on {∆i, Xi, Ti0, Si}. Our RECD model has

the form
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fi0(y|∆i, Oi, Si) = hi(y|∆i, Xi, Ti0, Si),

fij(y|∆i, Oi, Si) = gi(y|Zij),
gi(y|Zij) = exp{αij + γ(y)ZT

ijβ}hi(y|∆i, Xi, Ti0, Si),

(2.2)

where β = (β1, · · · , βp)T is the unknown parameter vector of interest, γ(y) is

a known function of y, Zij = (Zij1, · · · , Zijp)T = ζ(κi, Xi, T̃ij , δij , δijRij) is a

pre-specified p-dimensional function of {κi, Xi, T̃ij , δij , δijRij}, and the αij ’s are

normalizing constants such that
∫
fij(y|∆i, Xi, Ti, Si)dy = 1. With T̃ij = Tij and

Rij = Tij −Si, the effects of trial time and antidepressant use are determined by

ZT
ijβ, which can be specified by

ZT
ijβ = κiβ01 + Tijβ1 + (1− κi)(β00 + δijβ2 + δijRijβ3), (2.3)

where β = (β00, β01, β1, β2, β3)T, κi = 0 if 0 ≤ Si ≤ Tini
and κi = 1 if Si > Tini

.

The function (2.3) assumes that patients with different values of κi have possibly

different intercepts β01 and β00, and the antidepressant effects are described by

the coefficients β2 and β3. When β00 = β01 = β0 for some constant β0, it follows

from (2.3) that ZT
ijβ = β0+Tijβ1+(1−κi)(δijβ2+δijRijβ3). Different forms of γ(·)

correspond to various conventionally used densities in the literature. Commonly

used forms of γ(·) include γ(y) = y and γ(y) = log(y) (Anderson (1979); Kay

and Little (1987); Qin et al. (2002)).

The log-density ratio of (2.2) for any Zij , y1, and y2 is

log
gi(y2|Zij)
gi(y1|Zij)

= log
hi(y2|∆i, Xi, Ti0, Si)

hi(y1|∆i, Xi, Ti0, Si)
+ ZT

ijβ{γ(y2)− γ(y1)}, (2.4)

provided that hi(y1|∆i, Xi, Ti0, Si) and hi(y2|∆i, Xi, Ti0, Si) are both positive. It

follows from (2.4) that the likelihood ratio between the points y1 and y2 is mod-

ulated by the covariate Zij through its linear combination ZT
ijβ. In particular, if

γ(y) = y, Zij is one-dimensional and the response Yij is binary, then

β = log
gi(1|Zij + 1)/gi(0|Zij + 1)

gi(1|Zij)/gi(0|Zij)
,

which is exactly the log odds ratio. This suggests that the β of (2.4) can be

viewed as a generalized log-odds ratio for a given γ(y) and an arbitrary response

Yij . For vector-valued Zij , it follows from (2.4) that the lth component of β

is the change of the log-density ratio associated with a unit increase of the lth

component of Zij , when all other components of Zij are fixed.

3. Estimation and Inference Methods

We develop a conditional-likelihood method for the estimation of the pa-
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rameters β and the construction of a goodness-of-fit statistic based on the cor-

responding information matrix to test the validity of the RECD model (2.2).

Unlike the fully parametric likelihood approach, our estimation method treats

the other parameters and the baseline density hi(·|·) as nuisance parameters.

Existing methods and approaches for the estimation of hi(·|·) are discussed in

Sections S2 and S3 of Supplementary Materials.

3.1. Conditional likelihood estimation method

Following Kalbfleisch (1978), Liang and Qin (2000) and Chan (2013), we

consider the log-conditional likelihood function

`C(β) =
1

N

N∑
i=1

ni∑
k=0

ni∑
j=k+1

`ijk(β), (3.1)

where `ijk(β) = − log(1 + exp[{γ(Yik) − γ(Yij)}ZT
ijkβ]), Zijk = Zij − Zik, and

Zi0 = 0p×1. Here, (3.1) is an extension of the pairwise log-conditional likelihood

(Liang and Qin (2000); Chan (2013)) to the RECD model (2.2). Let β̂ be the

maximum conditional likelihood estimator of β,

β̂ = arg max
β

`C(β). (3.2)

Justification for (3.1) is given in Lemma 1 of Supplementary Materials.

Taking the partial derivatives of `C(β) with respect to the components of β,

we have the estimating equations

1

N

N∑
i=1

ni∑
k=0

ni∑
j=k+1

Uijk(β) = 0, (3.3)

where Uijk(β) = ∂`ijk(β)/∂β. The global maximizer β̂ of (3.2), if it exists, is a

solution of (3.3). Let β∗ = (β∗1 , · · · , β∗p)T be the true value of β. It then follows

from Lemma 1 in Section S7 of Supplementary Materials that

E

 1

N

N∑
i=1

ni∑
k=0

ni∑
j=k+1

Uijk(β
∗)

 = 0.

Using the asymptotic derivations as in Crowder (1986) and Liang and Zeger

(1986), we have the following.

Theorem 1. If the model (2.2) and the conditions C1-C5 in Section S7 of Sup-

plementary Materials are satisfied, then β̂ is a consistent estimator of β and√
N(β̂ − β∗) d→ N(0,Σ) as N →∞, where Σ = D−1V D−T,
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D = lim
N→∞

−N−1
N∑
i=1

ni∑
k=0

ni∑
j=k+1

∂Uijk(β
∗)

∂βT
,

V = lim
N→∞

N−1
N∑
i=1


ni∑
k=0

ni∑
j=k+1

Uijk(β
∗)


⊗2

,

with e⊗2 representing the matrix eeT.

The proof of Theorem 1 is given in Section S7 of Supplementary Materi-

als. The results of Theorem 1 can be used to make asymptotically approximate

inferences for β when (2.2) holds.

3.2. Goodness-of-fit tests based on information matrix

Using the well-known information matrix equality, White (1982) proposed an

information matrix test (IMT) for detecting parametric model mis-specifications

under the ordinary likelihood situation. In the current context, given that (2.2)

may not hold for some longitudinal datasets, we propose an IMT for testing its

validity and derive the asymptotic distributions of the IMT test statistic under

the null hypothesis. We define, from (3.1),

HN (β) = − 1

N

N∑
i=1

ni∑
k=0

ni∑
j=k+1

∂`2ijk(β)

∂β∂βT
,

KN (β) =
1

N

N∑
i=1

ni∑
k=0

ni∑
j=k+1

{
∂`ijk(β)

∂β

}⊗2

,

whose expressions are given in Section S4 of Supplementary Materials. If (2.2)

holds then, by Lemma 2 in Section S7 of Supplementary Materials, E{HN (β∗)} =

E{KN (β∗)}. We can use the fact that E{HN (β∗) − KN (β∗)} = 0 under (2.2)

to construct an information matrix based goodness-of-fit statistic for testing its

validity.

For 1 ≤ b ≤ a ≤ p and 1 ≤ l = a+ (b− 1)p− (b− 1)b/2 ≤ p(p+ 1)/2, let

w
(ijk)
l (β) =

{
∂`ijk(β)

∂βa

}{
∂`ijk(β)

∂βb

}
+
∂`2ijk(β)

∂βa∂βb

=
exp[2{γ(Yik)− γ(Yij)}ZT

ijkβ]{γ(Yij)− γ(Yik)}2ZijkaZijkb
{1 + exp[{γ(Yik)− γ(Yij)}ZT

ijkβ]}2

−
exp[{γ(Yik)− γ(Yij)}ZT

ijkβ]{γ(Yij)− γ(Yik)}2ZijkaZijkb
{1 + exp[{γ(Yik)− γ(Yij)}ZT

ijkβ]}2
.
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Since the p × p symmetric matrix KN (β∗) − HN (β∗) can be estimated by the√
N -consistent estimator KN (β̂)−HN (β̂), the test statistic can be formed using

the “indicators” 1/N
∑N

i=1

∑ni

k=0

∑ni

j=k+1w
(ijk)
l (β̂), l = 1, · · · , p(p+ 1)/2, which

are the lower triangular elements of KN (β̂)−HN (β̂). Since, White (1982), it is

often inappropriate to base the test on all p(p+1)/2 indicators, we construct the

test statistics using a subset of them, the “diagonal indicators”, which are the

diagonal elements of the matrix KN (β̂)−HN (β̂).

Define, for 1 ≤ d ≤ p(p+ 1)/2, w(ijk)(β) = (w
(ijk)
1 (β), · · · , w(ijk)

d (β))T,

WN (β) =
1

N

N∑
i=1

ni∑
k=0

ni∑
j=k+1

w(ijk)(β) and W̃N = WN (β̂),

where l = 1, · · · , d have been reassigned appropriately.

Theorem 2. Let G = limN→∞N
−1
∑N

i=1

∑ni

k=0

∑ni

j=k+1 ∂w
(ijk)(β∗)/∂βT. If (2.2)

and the conditions C1-C8 in Section S7 of Supplementary Materials are satisfied,

then
√
NW̃N

d→ N(0,Ψ) as N →∞, where

Ψ = lim
N→∞

1

N

N∑
i=1

 ni∑
k=0

ni∑
j=k+1

{
w(ijk)(β∗) +GD−1Uijk(β

∗)
}⊗2

.

The proof of Theorem 2 is given in Section S7 of Supplementary Materials.

Since Ψ is unknown, it has to be estimated in practice. To do so, we first estimate

G by

Ĝ = N−1
N∑
i=1

ni∑
k=0

ni∑
j=k+1

∂w(ijk)(β̂)

∂βT

= N−1
N∑
i=1

ni∑
k=0

ni∑
j=k+1

(
∂w

(ijk)
1 (β̂)

∂β
, · · · ,

∂w
(ijk)
d (β̂)

∂β

)T

,

where ∂w
(ijk)
l (β̂)/∂β = A

(ijk)
ab Zijk and

A
(ijk)
ab =

3 exp[2{γ(Yik)− γ(Yij)}ZT
ijkβ̂]− exp[{γ(Yik)− γ(Yij)}ZT

ijkβ̂]

{1 + exp[{γ(Yik)− γ(Yij)}ZT
ijkβ̂]}3

×{γ(Yik)− γ(Yij)}3ZijkaZijkb.

Then, a consistent estimator of Ψ under the model (2.2) is

Ψ̃ =
1

N

N∑
i=1

 ni∑
k=0

ni∑
j=k+1

{
w(ijk)(β̂) + ĜD̂−1Uijk(β̂)

}⊗2

.
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Let W̃Nl = 1/N
∑N

i=1

∑ni

k=0

∑ni

j=k+1w
(ijk)
l (β̂), l = 1, · · · , d. By Theorem 2,

we can test the validity of (2.2) using the goodness-of-fit statistic

Qmax = max
l∈{1··· ,d}

|W̃Nl|, (3.4)

where large values of Qmax indicate evidence of its invalidity. The critical values

of the test statistic Qmax are computed using

W̃N = (W̃N1, · · · , W̃Nd)
T d→ N(0,Ψ) as N →∞,

PH0
(Qmax > t) = 1− PH0

(|W̃N1| ≤ t, · · · , |W̃Nd| ≤ t)

and multivariate integration.

4. Simulation Study

We considered three simulation settings to investigate the finite sample prop-

erties of the estimation and inference procedures for the RECD model (2.2).

Each simulated sample contained either N = 200 or N = 500 subjects. Fol-

lowing the simulation design considered by Wu, Tian and Jiang (2011), we as-

signed, for each of the N subjects, 30 “scheduled visits” at time points {0, 0.2 +

e1, · · · , 5.8 + e29} where el, l = 1, . . . , 29, were independently generated from

the uniform U(−0.1, 0.1) distribution. We allowed each “scheduled visit” in

{0, 0.2 + e1, · · · , 5.8 + e29} to have 40% probability of being missing. The result-

ing time points lead to an unbalanced longitudinal sample that, to some degree,

resembles the time design points of the NGHS data. The observed visiting times

are {Tij : i = 1, . . . , N ; j = 0, . . . , ni} with possibly unequal ni for different

subjects. In all simulation settings, we performed the IMTs on the diagonal in-

dicators. We present the results for the conditional normal density model, where

the variances of outcome variables are unknown constants. Additional results for

the remaining two simulation settings are given in Section S5 of Supplementary

Materials.

For the ith subject, we generated the unobserved random variable ∆i and

Si from (a) ∆i ∼ N(0, 1), Si ∼ N(2 + 0.1∆, 0.25) and (b) ∆i ∼ Exp(1), Si ∼
Exp(1 + 3∆2

i ), where Exp(λ) denotes the exponential distribution with mean λ.

The outcome variables of the first model were generated form

Yij |{∆i, Ti, Si} ∼ N(∆i, σ
2
Y Z

T
ijβ, σ

2
Y ), for j = 0, · · · , ni, (4.1)

where Zi0 = 04×1, Zij = (1, T̃ij , δij , δijRij)
T, T̃ij = Tij−Ti0, Rij = Tij−Si, σY =

1, and β = (β0, β1, β2, β3)T = (0, 0.2, 0.2,−0.3)T. The effects of the concomitant

intervention were determined by β2 and β3, where β2 = 0.2 was the initial increase
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Table 1. Estimation and testing results of the 1,000 simulated samples from (4.1),
Yij |{∆i, Ti, Si} ∼ N(∆i, σ

2
Y Z

T
ijβ, σ

2
Y ). Columns 1 and 2: Sample size and true parameter

values. Columns 3 to 6: Biases and root mean square errors (RMSEs) of the maximum

conditional likelihood estimator β̂ and the maximum likelihood estimator β̃. Column
7: Empirical coverage probabilities (ECPs) of the 95% confidence intervals (CIs) forβ̂.
Column 8: Empirical levels (ELs) of the information matrix test (IMT).

N
Bias RMSE

ECP EL of IMT
β̂ β̃ β̂ β̃

(a) ∆i ∼ N(0, 1), Si ∼ N(2 + 0.1∆i, 0.25)
200 β0 = 0 0.0037 0.0033 0.0911 0.0873 0.958 0.053

β1 = 0.2 0.0002 −0.0005 0.0457 0.0443 0.956
β2 = 0.2 0.0022 0.0028 0.0687 0.0673 0.945

β3 = −0.3 −0.0005 0.0002 0.0490 0.0477 0.954
500 β0 = 0 −0.0022 −0.0030 0.0568 0.0552 0.955 0.049

β1 = 0.2 0.0019 0.0020 0.0304 0.0295 0.947
β2 = 0.2 −0.0027 −0.0026 0.0447 0.0435 0.954

β3 = −0.3 −0.0020 −0.0020 0.0320 0.0312 0.948
(b) ∆i ∼ Exp(1), Si ∼ Exp(1 + 3∆2

i )
200 β0 = 0 0.0010 0.0095 0.0855 0.0829 0.950 0.056

β1 = 0.2 0.0009 0.0325 0.0200 0.0373 0.946
β2 = 0.2 −0.0016 −0.1086 0.0637 0.1252 0.951

β3 = −0.3 −0.0015 −0.0365 0.0259 0.0441 0.936
500 β0 = 0 0.0016 0.0120 0.0534 0.0522 0.943 0.053

β1 = 0.2 −0.0006 0.0326 0.0124 0.0347 0.950
β2 = 0.2 −0.0008 −0.1115 0.0409 0.1187 0.956

β3 = −0.3 0.0007 −0.0361 0.0157 0.0391 0.953

of the mean outcome values at the start of the intervention and β3 = −0.3 was

the rate of decrease in the mean outcome values as the intervention duration time

increases.

We considered two estimators of β, the maximum conditional likelihood es-

timator β̂ and the maximum likelihood estimator β̃. Here, β̃ was computed by

maximizing the likelihood function of the fully parametric model of (4.1), with

∆i ∼ N(µ, σ2
∆) and Si ∼ N(α0 + α1∆i, σ

2
S). Here µ, σ2

∆, α0, α1 and σ2
S are

nuisance parameters in this fully parametric model. In case (a), ∆i ∼ N(0, 1)

and Si ∼ N(2 + 0.1∆, 0.25), so that the parametric model was correctly spec-

ified. In case (b), the data were generated from (4.1) with ∆i ∼ Exp(1) and

Si ∼ Exp(1 + 3∆2), so that the parametric model was misspecified.

The simulation was repeated 1,000 times. Table 1 summarizes the biases and

root mean square errors (RMSE) of the estimators, the empirical coverage proba-

bilities (ECP) of the 95% confidence intervals (CI) for the maximum conditional
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likelihood estimator β̂, and the empirical levels (EL) of the IMT for the model

(4.1). When the fully parametric model was correctly specified, the RMSEs of

β̃ are slightly smaller than that of β̂. When the fully parametric model was

misspecified, β̂ has significantly smaller RMSEs than that of β̃. Since it is often

difficult in applications to correctly specify the distributions of Si and ∆i, the

RMSE results from Table 1 suggest that β̂ is more desirable than β̃ in practice.

The ECPs of the normal approximate CIs for β̂ are close to the nominal level

of 95%. The ELs of the IMT, given by the P-values of IMT statistic Qmax, get

closer to the nominal significance level of 0.05 under H0 when N increases from

200 to 500. These results of the IMT empirical levels are then consistent with

the asymptotic results of Theorem 2.

5. Application to ENRICHD Pharmacotherapy Data

Our objective for the ENRICHD Pharmacotherapy data is to evaluate the

additional effects of using antidepressants on the trends of depression severity

measured by the BDI scores for the patients who received antidepressants during

the six-month psychosocial treatment period. Since patients in the UC arm did

not have repeatedly measured BDI scores during the 6-month treatment period,

we applied our model and method to the sub-sample of the ENRICHD patients in

the CBT treatment arm, which has been studied by Wu, Tian and Jiang (2011).

Within our sample, 95 started antidepressant during the treatment period and

486 did not use antidepressants before the end of the treatment period. Our

sample has 36 more patients than the sample of Wu, Tian and Jiang (2011),

which included only those who attended 5 or more CBT sessions.

Let Yij , Tij , Si, and Rij = Tij − Si be the ith patient’s BDI score, trial time

(days/100), starting time (days/100) of antidepressant use, and antidepressant

duration time (days/100), respectively, at the jth visit. For all 1 ≤ i ≤ N ,

Ti0 = 0, Tini
is the trial time at the last visit, and δij = I(Tij ≥ Si) is the

indicator of antidepressant use at Tij . Setting γ(y) of (2.2) to γ(y) = log(1 + y),

our semiparametric conditional density model for this ENRICHD sample is{
fi0(y|∆i, Ti, Si) = hi(y|∆i, Si),

fij(y|∆i, Ti, Si) = exp(αij + log(1 + y)ZT
ijβ)hi(y|∆i, Si),

(5.1)

where hi(y|∆i, Si) is an unknown density function depending on {∆i, Si}, and

the αij ’s are normalizing constants such that
∫
fij(y|∆i, Ti, Si)dy = 1. With

T̃ij = Tij and Rij = Tij − Si, the effects of trial time and antidepressant use are
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determined by ZT
ijβ, specified as

(a) ZT
ijβ = β0 + log(1 + Tij)β1 + δijβ2 + log(1 + δijRij)β3,

β = (β0, β1, β2, β3)T;

(b) ZT
ijβ = κiβ01 + log(1 + Tij)β1

+(1− κi){β00 + δijβ2 + log(1 + δijRij)β3},
β = (β00, β01, β1, β2, β3)T,

where κi = 0 if 0 ≤ Si ≤ Tini
and κi = 1 if Si > Tini

. Here (b) is a more

general model than (a), because it assumes that intercepts are possibly different

for patients with different values of κi. For both (a) and (b), the antidepressant

effects are described by β2 and β3.

When hi(·|·) is the density of a log-normal distribution, (5.1) is equivalent

to {
log(1 + Yi0)|{∆i, Ti, Si} ∼ N(∆1i,∆2i),

log(1 + Yij)|{∆i, Ti, Si} ∼ N(∆1i + ∆2iZ
T
ijβ,∆2i), j = 1, · · · , ni,

(5.2)

where ∆i = (∆1i,∆2i)
T and ZT

ijβ are specified either in (a) or (b). Under (5.2),

the covariate effects β can be interpreted as a scale-invariant regression coeffi-

cient vector for the conditional mean regression model. A positive (negative)

value of β2 represents the mean increase (decrease) of BDI scores at the time

of antidepressant use. A positive (negative) value of β3 represents the increase

(decrease) of BDI scores following a unit increase of the antidepressant duration

time. Negative values of β2 and β3 represent the benefit of antidepressant use

for lowering BDI scores. Since the distribution of ∆i is unknown, the conditional

likelihood method of Section 3.1 has to be used to estimate β under (5.2), which

leads to the same estimators as (5.1).

Table 2 shows the maximum conditional likelihood estimators of β under

(5.1) with the covariate effects (a) and (b), the corresponding 95% CI’s for βj ,

j = 0, 1, 2, 3, and the p-values of the Wald-type test for testing βj = 0, j =

0, 1, 2, 3. To evaluate the validity of the model (5.1), we performed the IMT on

the diagonal indicators. The p-values of the IMT were 0.1545 and 0.1578 for

covariate settings (a) and (b), respectively, which suggest that (5.1) provides an

acceptable fit to the data. Since (5.1) under (b) is a more general model than (5.1)

under (a), the 95% CI’s and p-values of β00 and β01 suggest that (5.1) under (b)

is a more appropriate model than (5.1) under (a). Because δij = 0 when κi = 1,

the estimates for β3 under (a) and (b) of (5.1) use almost the same information,

hence, are almost the same. Because of the addition of the intercept term β01
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Table 2. The maximum conditional likelihood (CL) estimators of the parameters under
(5.1) with covariate effects (a) and (b), their corresponding 95% confidence intervals (CI)
for βj , the p-values of the Wald-type test for testing βj = 0, and the p-values of the IMT
test statistics for the validity of (5.1) based on the ENRICHD Pharmacotherapy Data.

Covariate Maximum CL
P-value of P-value

Effects
Parameter

Estimator
95% CI Wald-type of IMT for

test Model (5.1)
(a) β0 −2.3583 (−2.8801, −1.8366) < 0.0001 0.1545

β1 −5.1193 (−5.9348, −4.3038) < 0.0001
β2 0.2188 (−1.4293, 1.8668) 0.7947
β3 −0.6251 (−3.2808, 2.0306) 0.6446

(b) β00 −0.5043 (−1.5106, 0.5020) 0.3260 0.1578
β01 −3.0954 (−3.7325, −2.4583) < 0.0001
β1 −5.0800 (−5.8942, −4.2657) < 0.0001
β2 −0.0101 (−1.7331, 1.7128) 0.9908
β3 −0.6779 (−3.3316, 1.9758) 0.6166

for κi = 1 in (5.1) under (b), the estimates of β2 differ between (a) and (b).

The negative estimates of β2 and β3 from (5.1) under (b) suggest that the use of

antidepressant may have some beneficial effect of lowering BDI scores over time

for this patient population, where the large p-values for β2 and β3 suggest that

the evidence of beneficial effect for antidepressant use is at most weak under the

current semiparametric model and moderate sample size. Wu, Tian and Jiang

(2011) detected some significant statistical evidence for the beneficial effect of

antidepressant use, their conclusions obtained based on the stronger assumption

of parametric models.

Under (5.2) with the covariate effects (b), the predictor ∆̂i = (∆̂1i, ∆̂2i)
T of

∆i can be obtained as the solution to the equations (ni + 1)∆1i =
∑ni

j=0 log(1 +

Yij)−∆2i
∑ni

j=0 Z
T
ij β̂ and ∆2i = (ni + 1)−1

∑ni

j=0{log(1 +Yij)−∆1i−∆2iZ
T
ij β̂}2.

The overall trend can be estimated by Ŷi0 = ∆̂1i and Ŷij = ∆̂1i + ∆̂2iZ
T
ij β̂,

i = 1, · · · , N , j = 1, · · · , ni. In Figure 1, the estimated overall trends of BDI

scores for six patients with concomitant intervention are plotted based on points

(log(1 + Tij), log(1 + Ŷij)), j = 0, · · · , ni. The overall decreasing trend of BDI

scores represents the benefit of antidepressant use for these patients.

6. Conclusions and Discussions

We developed in this paper a class of RECD models for evaluating the distri-

butions and concomitant intervention effects with longitudinal data. Under these

models, the conditional density ratio is assumed to have a parametric form, while
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Figure 1. The estimated overall trend of BDI scores for six patients with concomitant
intervention based on the ENRICHD Pharmacotherapy Data.

the baseline density function is nonparametric. We further proposed a likelihood-

based method for estimating the parameters and a goodness-of-fit test for testing

the validity of the models, and derived the consistency and asymptotic normality

of the conditional likelihood estimators. We illustrated the practical values of the

RECD models through a simulation study and an application to a longitudinal

clinical trial for depression.

Supplementary Materials

The supplementary materials contain further discussions of the models, deriva-

tions of the likelihood functions under the RECD models, additional simulation

results, and proofs of Theorems 1 and 2.
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