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Abstract: Nested Latin hypercube designs (Qian (2009)) and sliced Latin hypercube
designs (Qian (2012)) are extensions of ordinary Latin hypercube designs with
special combinational structures. It is known that the mean estimator over the
unit cube computed from either of these designs has the same asymptotic variance
as its counterpart for an ordinary Latin hypercube design. We derive a central
limit theorem to show that the mean estimator of either of these two designs has a
limiting normal distribution. This result is useful for making confidence statements
for such designs in numerical integration, uncertainty quantification, and sensitivity
analysis.
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1. Introduction

Latin hypercube designs (McKay, Beckman, and Conover (1979)) have been
used in many applications. A Latin hypercube design of n runs in q factors is
an n× q matrix such that each of its column contains exactly one point in each
of the n equally spaced regions [0, 1/n), [1/n, 2/n), . . . , [1− 1/n, 1). The original
construction generates the columns in a Latin hypercube design independently,
and we refer to such designs as ordinary Latin hypercube designs (OLHD).

Recently, two classes of Latin hypercube designs with special combinational
structure have been proposed. Nested Latin hypercube designs (Qian (2009))
(NLHD) are Latin hypercube designs in which a subsample is also a Latin hyper-
cube design. NLHD are useful for sequential evaluation of computer experiments
and multi-fidelity computer experiments. Sliced Latin hypercube designs (Qian
(2012)) (SLHD) are Latin hypercube designs which can be divided into several
slices with each slice being a Latin hypercube design. SLHD are useful for batch
evaluation of computer experiments and computer experiments with quantita-
tive and qualitative factors. A nested Latin hypercube of 24 runs and a sliced
Latin hypercube of 24 runs are given in Table 1. The NLHD and SLHD by
coupling uniform random numbers are given in Figures 1 and 2, respectively.
These NLHD and SLHD hold a special nested or sliced structure while achieving
maximal uniformity in any one-dimensional projections as an OLHD.

http://dx.doi.org/10.5705/ss.202015.0240
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Table 1. A nested Latin hypercube of 24 runs in two factors (left) and a
sliced Latin hypercube of 24 runs in two factors (right). After mapping level
x to ⌈x/4⌉, the six rows above the dashed line for the nested Latin hypercube
become a Latin hypercube; and each of the four slices, separated by dashed
lines for the sliced Latin hypercube, become a Latin hypercube with six runs.

5 1
22 23
10 7
16 15
4 10
20 19
17 12
9 18
24 3
11 22
14 6
21 14
7 20
12 5
13 16
2 24
8 9
1 4
18 13
19 8
23 21
15 11
3 2
6 17





5 3
13 21
9 19
3 11
21 16
17 8
1 9
20 24
8 7
16 17
10 4
22 13
18 6
4 18
6 14
11 2
15 23
23 10
12 22
2 5
24 20
7 15
14 1
19 12



For a continuous function f , consider the numerical integration problem,

µ = E{f(x)} =

∫
[0,1)q

f(x)dx

with q > 1. After evaluating f at a design of n runs, X1, . . . , Xn, µ is estimated

by

µ̂ = n−1
n∑

i=1

f(Xi). (1.1)

Stein (1987) obtained a variance formula of µ̂ from an OLHD that is no greater

than the variance of an identically and independently generated sample of the

same size. Similar formulas have been obtained for NLHD (Qian (2009)) and

SLHD (Qian (2012)). The NLHD and SLHD have the same asymptotic variance
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Figure 1. An NLHD based on the nested Latin hypercube in Table 1. The
six points denoted by “+” consist of the nested smaller Latin hypercube
design. For each dimension, each of the 24 equally spaced intervals of [0, 1)
contains exactly one point and each of the six equally spaced intervals of
[0, 1) contains exactly one point from the nested smaller design.

as an OLHD of the same size. Methods for estimating the variance for OLHD

are discussed in Stein (1987) and Owen (1992).

Once the asymptotic variance is obtained, one can ask about the limiting

distribution of µ̂. Owen (1992) obtained a central limit theorem for OLHDs.

In this work, we show that µ̂ in (1.1), computed from an NLHD or an SLHD,

has the same limiting normal distribution as that for an OLHD. Our approach

is conceptually simple using the method of moments. The challenges here are

the special structures of NLHDs and SLHDs. This type of technique was used

in Owen (1992) and He and Qian (2014) for OLHD and orthogonal array based

designs. But the steps are quite different. The derived results are useful for

making confidence statements in numerical integration, stochastic optimization,

and uncertainty quantification.

One may also be interested in the mean estimate using the small design of an

NLHD or one slice of an SLHD. As shown in Qian (2009, 2012), either of these
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Figure 2. An SLHD based on the sliced Latin hypercube in Table 1. Points
denoted by the same symbol consist of one slice of Latin hypercube design.
For each dimension, each of the 24 equally spaced intervals of [0, 1) contains
exactly one point and each of the six equally spaced intervals of [0, 1) contains
exactly one point from each slice.

two designs is an OLHD and follows the same variance formula and asymptotic

normal distribution as derived in Stein (1987) and Owen (1992).

Section 2 presents some sampling properties of OLHD, NLHD and SLHD.

To derive a unified central limit theorem for all three designs, we express the

conditional distribution of OLHD, NLHD, and SLHD in the same form using big

O notation. Section 3 provides our main result. Section 4 concludes with some

brief discussion.

2. Dependence Structures of Latin Hypercube Designs

A uniform permutation on a set of a numbers is randomly generated with all

a! permutations equally probable. Let I() be the indicator function. For a real

number x, let ⌊x⌋ be the largest integer no greater than x, ⌈x⌉ be the smallest
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integer no smaller than x, and the subdivision of x with length 1/z be

δz(x) =
[⌊zx⌋

z
,
(⌊zx⌋+ 1)

z
).

An OLHD (McKay, Beckman, and Conover (1979)) of n points in q factors

is constructed as

Xk
i =

πk(i)

n
− ηki

n
, (2.1)

for i = 1, . . . , n and k = 1, . . . , q, where Xk
i is the kth dimension of Xi, the

πk are uniform permutations on {1, . . . , n}, the ηki are generated from uniform

distributions on (0, 1], and the πk and the ηki are generated independently.

Proposition 1 follows from the construction. Unless noted otherwise, proofs

are given in the supplementary materials.

Proposition 1. Let X1, . . . , Xn be constructed from an OLHD by (2.1) and take

s ≤ n. The conditional density of Xs given X1, . . . , Xs−1 is

gOLHD(d1, . . . , dq)

=

0, dk ∈ δn(X
k
i ) for an 1 ≤ i ≤ s− 1, 1 ≤ k ≤ q,{

n
n−s+1

}q
, otherwise.

(2.2)

An NLHD of n runs in q factors that contains a smaller Latin hypercube

design with m runs and n = ml is constructed as

Xk
i =

ζk(π(i))

n
− ηki

n
, (2.3)

for i = 1, . . . , n and k = 1, . . . , q, where Xk
i is the kth dimension of Xi. Here,

ζk(i) =

{
γk(i)l − τki , i = 1, . . . ,m,

ψ(ρk(i−m)), i = m+ 1, . . . , n,

with π a uniform permutation on {1, . . . , n}, the γk uniform permutations on

{1, . . . ,m}, the τki generated from {0, . . . , l−1} with equal probabilities, the ψ(z)

denote the zth element of {1, . . . , n}\{γk(j)l−τkj : j = 1, . . . ,m}, the ρk uniform

permutations on {1, . . . , n−m}, the ηki generated from uniform distributions on

(0, 1], and π, the γk, the τ
k
i , the ρk and the ηki are generated independently.

For i = 1, . . . , n, let Zi = 1 if π(i) ∈ {1, . . . ,m} and Zi = 2 otherwise.

Then the m rows with Zi = 1 form the smaller Latin hypercube design. The

conditional density from an NLHD is more complicated than that for OLHD.



1122 XU HE AND PETER Z. G. QIAN

Proposition 2. Let X1, . . . , Xn be constructed from an NLHD by (2.3) and take
s ≤ n. Then the conditional density of Xs given X1, . . . , Xs−1, Z1, . . . , Zs is

gNLHD(d1, . . . , dq)

=



0, dk ∈ δn(X
k
i ) for an 1 ≤ i ≤ s− 1, 1 ≤ k ≤ q,

0, Zs = 1, dk ∈ δm(Xk
i ) for an 1 ≤ i ≤ s− 1, 1 ≤ k ≤ q

such that Zi = 1,∏q
k=1 gk(dk), other cases with Zs = 1,∏q
k=1 hk(dk), other cases with Zs = 2,

(2.4)

where

gk(dk) =
ml/(m− |{i : 1 ≤ i ≤ s− 1, Zi = 1}|)
(l − |{i : 1 ≤ i ≤ s− 1, dk ∈ δm(Xk

i )}|)
,

hk(dk) =
n(l − 1− |{i : 1 ≤ i ≤ s− 1, dk ∈ δm(Xk

i ), Zi = 2}|)
(n−m−|{i : 1≤ i≤s−1, Zi=2}|)(l−|{i : 1≤ i≤s−1, dk∈δm(Xk

i )}|)
.

An SLHD (Qian (2012)) of n runs in q factors that can be divided into l
slices of m points is constructed as

Xk
i =

ζk(π(i))

n
− ηki

n
, (2.5)

for i = 1, . . . , n and k = 1, . . . , q, where Xk
i is the kth dimension of Xi,

ζk(bm+ a) = γkb (a)l − τk
γk
b (a)

(b),

for a = 1, . . . ,m and b = 0, . . . , l − 1, π is a uniform permutation on {1, . . . , n},
the γkb are uniform permutations on {1, . . . ,m}, the τka are uniform permutations
on {0, . . . , l − 1}, the ηki are generated from uniform distributions on (0, 1], and
π, the γkb , the τ

k
a and the ηki are generated independently.

For i = 1, . . . , n, let Zi = b if bm + 1 ≤ π(i) ≤ (b + 1)m. Then the m
rows with the same value of Z consist of one slice of the sliced Latin hypercube
design. Parallel to Proposition 2, Proposition 3 gives the conditional density
from an SLHD.

Proposition 3. Let X1, . . . , Xn be constructed from an SLHD by (2.5) and take
s ≤ n. Then the conditional density of Xs given X1, . . . , Xs−1, Z1, . . . , Zs is

gSLHD(d1, . . . , dq)

=


0, dk ∈ δn(X

k
i ) for an 1 ≤ i ≤ s− 1, 1 ≤ k ≤ q,

0, dk ∈ δm(Xk
i ) for an 1 ≤ i ≤ s− 1, 1 ≤ k ≤ q

such that Zs = Zi,∏q
k=1 gk(dk), otherwise,

(2.6)
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where

gk(dk) =
ml/(m− |{i : 1 ≤ i ≤ s− 1, Zi = Zs}|)
(l − |{i : 1 ≤ i ≤ s− 1, dk ∈ δm(Xk

i )}|)
.

An OLHD can be seen as a special case of NLHD or SLHD with l = 1 and

n = m. Propositions 1, 2 and 3 suggest that, although the three types of designs

have different conditional densities, they share several properties. The densities

are close to one in the majority of areas; the exception is when dk ∈ δm(Xk
i ) or

dk ∈ δn(X
k
i ) for some i and k. The total volume of such subdivision areas has

order O(n−1) as n goes to infinity. If we divide [0, 1)q into nq equally spaced

squares, then the densities are uniform in each of the squares. We summarize

these properties in the following.

Proposition 4. Take s ≤ m. Let Mk
s be an s× s zero-one matrix whose (i, j)th

element is one if and only if ⌊mXk
i ⌋ = ⌊mXk

j ⌋ and Ms = (M1
s , . . . ,M

q
s ). Let

X1, . . . , Xn be generated from an OLHD in (2.1), an NLHD in (2.3), or an SLHD

in (2.5). Let Dk
i = δm(Xk

i ) for i = 1, . . . , s− 1 and k = 1, . . . , q, Dk
i = δn(X

k
−i)

for i = −(s − 1), . . . ,−1 and k = 1, . . . , q, and Dk
0 = [0, 1) \ ∪s−1

j=1δm(Xk
j ) for

k = 1, . . . , q. Then the conditional density of Xs given X1, . . . , Xs−1, Z1, . . . , Zs

is

g(d1, . . . , dq) =

s−1∑
i1,...,iq=−(s−1)

bs(i1, . . . , iq)I(d1 ∈ D1
i1 , . . . , dq ∈ Dq

iq
), (2.7)

where, for the sampling method OLHD, NLHD or SLHD, bs(i1, . . . , iq) is a de-

terministic function on n,m, i1, . . . , iq, Z1, . . . , Zs,Ms−1, bounded as n goes to

infinity, and bs(0, . . . , 0) = 1 +O(n−1).

These conditional densities are expressed as sums of identity functions with

weights. Note that (2.7) can be simplified for OLHD in that bs(i1, . . . , iq) is

irrelevant to Z1, . . . , Zs,Ms−1, and bs(i1, . . . , iq) = 0 if there is a k such that

ik < 0. Using the overlapping domains of identity functions makes it possi-

ble to write the densities as a sum; using big O notation can unite the den-

sities into one formula. In each dimension, the identity function is depen-

dent on at most one of X1, . . . , Xs−1. The weights, although dependent on

n,m,X1, . . . , Xs−1, Z1, . . . , Zs,Mt−1, are bounded as n goes to infinity. These

new expression of the conditional densities simplifies the complicated dependence

structure of three types of Latin hypercube designs and is convenient for deriving

a central limit theorem. The expression is also useful for deriving a CLT of other

types of designs when (2.7) holds.
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3. A Central Limit Theorem

We first introduce the functional analysis of variance decomposition (Owen

(1994)) and variance formulas of Latin hypercube designs. Let F be the uniform

measure on [0, 1)q with dF =
∏q

k=1 dF{k}, where F{k} is the uniform measure

on [0, 1). Assume f is a continuous function on [0, 1]q and with finite variance∫
f(x)2dF . Express f as

f(x) = µ+
∑

ϕ⊂u⊆{1,...,q}

fu(x),

where µ =
∫
f(x)dF and fu is defined recursively via

fu(x) =

∫
{f(x)−

∑
v⊂u

fv(x)}dF{1,...,q}\u.

If u ∩ v ̸= ϕ, ∫
v
fudx = 0. (3.1)

Let αk(x) = f{k}(x). The remaining part, r(x), of f is

f(x) = µ+

q∑
k=1

αk(x) + r(x). (3.2)

From Stein (1987), as n goes to infinity, the variance of µ̂ in (1.1) of an OLHD is

var(µ̂) = n−1

∫
r(X)2dF (X) + o(n−1).

The same formulas obtain for NLHDs (Qian (2009)) and SLHDs (Qian (2012)).

Here is a result on the method of moments (Durrett (2010)).

Lemma 1. Let A1, A2, . . . be random variables with distribution functions F1, F2, . . .

so that for any p = 1, 2, . . . and n = 1, 2, . . .,

m(p)
n =

∫ +∞

−∞
xpdFn

is finite. Let F be a distribution function with finite moments for which

lim sup
p→∞

{
(m(2p))1/2p

2p

}
<∞.

If for any p = 1, 2, . . ., limn→∞m
(p)
n = m(p), then An converges in distribution

to F .



A CLT FOR NESTED OR SLICED LH DESIGNS 1125

We state two useful lemmas that parallel results for ordinary Latin hypercube

designs in Owen (1992). Let |D| be the volume of region D. Let EIID be the

expectation of a function with an identically and independently sample.

Lemma 2. For any continuous function f on [0, 1]q and fixed l, as n→ ∞,

E{f(Xs) | X1, . . . , Xs−1} = EIID{f(Xs)}+O(n−1),

where the first expectation is over an OLHD in (2.1), an NLHD in (2.3) or an

SLHD in (2.5).

Lemma 3. Let

R̄ = n−1
n∑

i=1

r(Xi),

where r(x) is the remaining part by (3.2) of a continuous function f on [0, 1]q.

Then for any positive integer p and fixed l, as n→ ∞,

E{(n1/2R̄)p} = EIID{(n1/2R̄)p}+ o(1),

where the first expectation is over an OLHD in (2.1), an NLHD in (2.3), or an

SLHD in (2.5).

Theorem 1. Suppose f is a continuous function from [0, 1]q to R, µ̂ in (1.1)

is based on X1, . . . , Xn generated from an OLHD, NLHD, or SLHD. Then, as

n→ ∞,

n1/2(µ̂− µ) → N

(
0,

∫
r(x)2dx

)
.

Proof. The mean of n1/2(µ̂ − µ) is 0 and the variance of n1/2(µ̂ − µ) tends to∫
r(x)2dx. From Lemma 3, for p = 1, 2, . . .,

E{(n1/2R̄)p} = EIID{(n1/2R̄)p}+ o(1).

When the points are generated identically and independently, n1/2R̄ follows a

normal distribution with mean zero and variance σ2 =
∫
r(x)2dx. From Owen

(1980),

EIID{(n1/2R̄)p} =

{
0, p = 1, 3, 5, . . . ,

σp(p− 1)!!, p = 2, 4, 6, . . . .

Thus lim supp→∞(σp(p − 1)!!)1/p/p = 0 and, from Lemma 1, n1/2R̄ from an

OLHD, an NLHD or an SLHD has the same normal limiting distribution as

n1/2R̄ with the points generated identically and independently.
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Figure 3. Density plots (solid curves) of µ̂ based on NLHDs (left) and SLHDs
(right), both close to a normal distribution (dashed curves).

We can easily extend Theorem 1 to a multivariate function f = (f1, . . . , fp).

Parallel to (3.2), define ri(x) via

fi(x) = µi +

q∑
k=1

αi,k(x) + ri(x).

Corollary 1. Suppose f is a continuous function from [0, 1]q to Rp, µ̂ in (1.1)

is based on X1, . . . , Xn generated from an OLHD, NLHD or SLHD. Then, as

n → ∞, n1/2(µ̂ − µ) → N(0,Σ), where Σ is a p × p matrix with the (i, j)th

element Σi,j =
∫
ri(x)rj(x)dx.

Proof. The normality of multivariate f follows from the fact that any linear

combinations of (f1, . . . , fp) has a limiting normal distribution.

As an example, take an NLHD and an SLHD with n = 24, m = 6, l = 4, and

q = 2. We estimate the mean output µ of the Branin function (Branin (1972))

f =

(
x2 −

5.1

4π2
x21 +

5

π
x1 − 6

)2

+ 10

(
1− 1

8π

)
cos(x1) + 10

on the domain [−5, 10] × [0, 15]. The true value of µ is approximately 54·31,
computed from a large grid. We computed µ̂ =

∑24
i=1 f(Xi)/24 for the two

designs, repeated for 100,000 times. The density plots of µ̂ from the two designs

are shown in Figure 3.
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4. Conclusions

A central limit theorem has been derived for nested or sliced Latin hypercube

designs. It is shown that µ̂ in (1.1) computed from a nested or sliced Latin

hypercube design has the same limiting normal distribution as that of an ordinary

Latin hypercube design. The derived results are useful for making confidence

statements in numerical integration (Kuo, Schwab, and Sloan (2011)), stochastic

optimization (Birge and Louveaux (2011); Shapiro, Dentcheva, and Ruszczynski

(2009)), uncertainty quantification (Xiu (2010)) and other applications.

For extending our technique to derive central limit theorems for more general

types of Latin hypercube designs, such as NLHD or SLHD of multiple layers or a

mix of NLHD and SLHD, it remains a challenge to derive probabilistic structures

of this general class of designs. Another problem for future research would be to

allow l to go to infinity.

Supplementary Materials

The supplementary materials contain the proofs of Propositions 1-4 and

Lemma 3.

Acknowledgement

The authors thank the Editor, an AE, and two referees for valuable com-

ments which improved the article. He is partially supported by NSFC 11501550

and DOE DE-SC0010548. Qian is partially supported by National Science Foun-

dation Grants CMMI 1233570 and DMS 1055214.

References

Birge, J. R. and Louveaux, F. (2011). Introduction to Stochastic Programming. Springer-Verlag,

New York.

Branin, F. K. (1972). A widely convergent method for finding multiple solutions of simultaneous

nonlinear equations. IBM J. Res. Dev. 16, 504-22.

Durrett, R. (2010). Probability: Theory and Examples. Cambridge University Press, Cambridge.

He, X. and Qian, P. Z. G. (2014). A central limit theorem for general orthogonal array based

space-filling designs. Ann. Statist. 42, 1725-1750.

Kuo, F. Y., Schwab, C. and Sloan, I. H. (2011). Quasi-Monte Carlo method for high-dimensional

integration: the standard (weighted Hilbert space) setting and beyond. Anziam J. 53, 1-37.

McKay, M. D., Beckman, R. J. and Conover, W. J. (1979). A comparison of three methods

for selecting values of input variables in the analysis of output from a computer code.

Technometrics 21, 239-45.

Owen, A. B. (1992). A central limit theorem for Latin hypercube sampling. J. Roy. Statist. Soc.

Ser. B 54, 541-51.

Owen, A. B. (1994). Lattice sampling revisited: Monte Carlo variance of means over randomized

orthogonal arrays. Ann. Statist. 22, 930-45.



1128 XU HE AND PETER Z. G. QIAN

Owen, D. B. (1980). A table of normal integrals. Commun. Stat. Simulat. 9, 389-419.

Qian, P. Z. G. (2009). Nested latin hypercube designs. Biometrika 96, 957-970.

Qian, P. Z. G. (2012). Sliced latin hypercube designs. J. Amer. Statist. Assoc. 107, 393-399.

Shapiro, A., Dentcheva, D. and Ruszczynski, A. (2009). Lectures on Stochastic Programming:

Modeling and Theory. SIAM-Society for Industrial and Applied Mathematics, Philadelphia.

Stein, M. (1987). Large sample properties of simulations using Latin hypercube sampling. Tech-

nometrics 29, 143-51.

Xiu, D. (2010). Numerical Methods for Stocahstic Computations: A Spectral Method Approach.

Princeton University Press, New Jersey.

Academy of Mathematics and Systems Science, Chinese Academy of Sciences, 55 East Zhong-

guancun Rd., Haidian Dist., Beijing 100190, China.

E-mail: hexu@amss.ac.cn

Department of Statistics, University of Wisconsin-Madison, 1300 University Avenue, Madison,

WI 53706, USA.

E-mail: peterq@stat.wisc.edu

(Received July 2015; accepted August 2015)

hexu@amss.ac.cn
peterq@stat.wisc.edu

	1. Introduction
	2. Dependence Structures of Latin Hypercube Designs
	3. A Central Limit Theorem
	4. Conclusions
	Supplementary Materials

