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Abstract: Semiparametric additive partial linear models, containing both linear and

nonlinear additive components, are more flexible than linear models, and they are

more efficient compared to general nonparametric regression models because they

reduce the “curse of dimensionality”. In this paper, we propose a new estima-

tion approach for these models, in which we use polynomial splines to approximate

the additive nonparametric components and derive the asymptotic normality for

the resulting estimators of the parameters. We also develop a variable selection

procedure to identify significant linear components using the smoothly clipped ab-

solute deviation penalty (SCAD), and we show that the SCAD-based estimators

of non-zero linear components have an oracle property. Simulations are performed

to examine the performance of our approach as compared to several other variable

selection methods, such as the Bayesian Information Criterion and Least Absolute

Shrinkage and Selection Operator (LASSO). The proposed approach is also applied

to data from a nutritional epidemiology study.
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1. Introduction

Additive partial linear models (APLMs) are a generalization of multiple lin-
ear regression models, and can be regarded as a special case of generalized ad-
ditive nonparametric regression models (Hastie and Tibshirani (1990)) as well.
APLMs allow an easier interpretation of the effect of each variable, and are
preferable to completely nonparametric additive models since they combine both
parametric and nonparametric components when it is believed that the response
variable depends on some variables in a linear way but is nonlinearly related to
the remaining independent variables.

Estimation and inference for APLMs have been well studied in literature
(Stone (1985); Opsomer and Ruppert (1997)), with a backfitting algorithm gen-
erally used for estimation. Opsomer and Ruppert (1999) studied the asymp-
totics of the kernel-based backfitting estimators. Liang et al. (2008) suggested
that a kernel-based estimation procedure is available for APLMs without an un-
dersmoothing requirement, and applied this to study the relationship between
environmental chemical exposures and semen quality. When there are multiple
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nonparametric terms, it is both useful and necessary that estimation and infer-
ence methods be efficient and easily implemented. Additionally, implementation
should be able to be achieved in a commonly used computational environment like
R. Kernel-based procedures (Opsomer and Ruppert (1999); Liang et al. (2008))
are intuitively attractive and theoretically justifiable, but computationally in-
expedient; spline-based procedures (Li (2000)) are computationally expedient,
but theoretically unreliable. Challenged by these demands, we propose approx-
imating the nonparametric components with polynomial splines. As the models
become linear, the resulting estimators for the linear components are easily cal-
culated and, of most importance, still asymptotically normal.

Motivated by a dataset from a nutritional epidemiology project (details in
Section 4), we study variable selection for APLMs. To the best of our knowledge,
no variable selection procedures are available for APLMs. Best subset selection
is commonly used to select significant variables in regression models. But it
has two basic limitations. First, it is computationally infeasible to do subset
selection when the number of predictors is large; second, it is extremely vari-
able because of its inherent discreteness (Breiman (1996); Fan and Li (2001)).
Stepwise selection is often used to reduce the number of candidate subsets. How-
ever, it still suffers from the high variability. Instead, Tibshirani (1996) proposed
a regression method using the L1 penalty, the LASSO, that is similar to ridge
regression but can shrink some coefficients to 0, and thus implement variable se-
lection. Fan and Li (2001) proposed a very general variable selection framework
by using a smoothly clipped absolute deviation (SCAD) penalty. The choice of
the SCAD penalty function encompasses the commonly used variable selection
approaches as special cases (see Section 2.2 for details). Most importantly the
SCAD-based approach has appealing statistical properties, as Fan and Li (2001)
demonstrated. This approach has become popular and been widely studied by,
for instance, Fan and Li (2002) for Cox models, Li and Liang (2008) for semi-
parametric models, and Liang and Li (2009) for partially linear models with
measurement errors. Xie and Huang (2009) and Ni, Zhang, and Zhang (2009)
studied variable selection for partially linear models with a divergent number of
linear covariates, and established selection consistency and asymptotic normality.
The former used polynomial splines and the latter used smoothing splines to ap-
proximate the nonparametric function. Since partially linear models have only
one nonparametric component, they are not as flexible as APLM. In contrast
to that in partially linear models, estimation or variable selection is much more
difficult in APLM. Ravikumar et al. (2008, 2009) investigated high-dimensional
nonparametric sparse additive models (SpAM), developed a new class of algo-
rithms for estimation and discussed asymptotic properties of their estimators.
SpAMs are more general but lack of the simplicity property of APLM, which are
more appropriate when some covariates are not continuous.
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In this paper we develop a SCAD-based variable selection procedure for
APLMs combining the spline approximation. This combination overcomes a po-
tential problem of how to define the objective function if a backfitting algorithm is
used. Furthermore, employing a spline approximation can still allow our variable
selection procedure to have the oracle property, the best theoretical performance
of any procedure.

The rest of the article is organized as follows. Section 2 introduces the esti-
mation and SCAD-based variable selection procedures for APLMs, and presents
the theoretical results. Numerical comparisons and simulation studies are given
in Section 3. Section 4 examines in detail the nutritional data to illustrate the
procedure. Section 5 concludes with a discussion. Technical details are given in
the Appendix.

2. Estimation and Variable Selection Procedure

Suppose that {(X1, Z1, Y1), . . . , (Xn, Zn, Yn)} is an i.i.d. random sample of
size n from the APLM

Y = XTβ +
K∑

k=1

gk(Zk) + ε, (2.1)

where X = (X1, . . . , Xd)T and Z = (Z1, . . . , ZK)T are the linear and nonpara-
metric components, g1, . . . , gK are unknown smooth functions, β = (β1, . . . , βd)
is a vector of unknown parameters, and the model error ε has conditional mean
zero and finite variance σ2 given (X, Z). To ensure identifiability of the non-
parametric functions, we assume that E{gk(Zk)} = 0 for k = 1, . . . ,K.

2.1. Spline approximation

Let g0 = g01 (z1) + · · · + g0K (zK) and β0 be the true additive function and
parameter. For simplicity, we assume that the covariate Zk is distributed on a
compact interval [ak, bk], k = 1, . . . ,K, and without loss of generality, we take
all intervals [ak, bk] = [0, 1], k = 1, . . . ,K. Under some smoothness assumptions,
the g0k’s can be well-approximated by spline functions. Let Sn be the space of
polynomial splines on [0, 1] of degree % ≥ 1. We introduce a knot sequence with
Jn interior knots,

t−% = · · · = t−1 = t0 = 0 < t1 < · · · < tJn < 1 = tJn+1 = · · · = tJn+%+1,

where Jn increases with sample size n at the precise order given in Condition
(C4). Then Sn consists of functions ξ satisfying
(i) ξ is a polynomial of degree % on each of the subintervals Ij = [tj , tj+1),

j = 0, . . . , Jn − 1, IJn = [tJn , 1];
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(ii) for % ≥ 2, ξ is % − 1 continuously differentiable on [0, 1].

Equally spaced knots are used here for simplicity. However other regular knot
sequences can also be used, with similar asymptotic results. Let h = 1/ (Jn + 1)
be the distance between neighboring knots.

We consider the additive spline estimates ĝ of g0 based on the independent
random sample (Xi, Zi, Yi), i = 1, . . . , n. Let Gn be the collection of functions
g with the additive form g (z) = g1 (z1) + · · · + gK (zK), where each component
function gk ∈ Sn and

∑n
i=1 gk (Zik) = 0.

We would like to find a function g ∈ Gn and a value of β that minimize the
following sum of squared residuals function

L (g,β) =
1
2

n∑
i=1

[Yi − {g(Zi) + XT
i β}]2 , g ∈ Gn. (2.2)

For the k-th covariate zk, let bj,k (zk) be the B-spline basis functions of degree %.
For any g ∈ Gn, one can write

g (z) = γTb (z) , (2.3)

where b (z) = {bj,k (zk) , j = −%, . . . , Jn, k = 1, . . . ,K}T, and the spline coeffi-
cient vector γ = {γj,k, j = −%, . . . , Jn, k = 1, . . . ,K}T. Thus the minimization
problem in (2.2) is equivalent to finding β and γ to minimize

`(γ, β) =
1
2

n∑
i=1

[Yi − {γTb (Zi) + XT
i β}]2 . (2.4)

We denote the minimizer as β̂ and γ̂ = {γ̂j,k, j = −%, . . . , Jn, k = 1, . . . ,K}T.
Then the spline estimator of g0 is ĝ = γ̂Tb (z), and the centered spline estimator
of the component gk is

ĝk (zk) =
Jn∑

j=−%

γ̂j,kbj,k (zk) −
1
n

n∑
i=1

Jn∑
j=−%

γ̂j,kbj,k (Zik) ,

for k = 1, . . . ,K. The above estimation approach can be easily implemented
with existing linear models in any statistics software.

For simplicity of notation, write T = (X, Z). Let m0 (T ) = g0 (Z) + XTβ0,
Γ (z) = E(X|Z = z), X̃ = X − Γ (Z), and Q⊗2 = QQT for any matrix or
vector Q. The result is that the estimator β̂ of β0 is root-n consistent and
asymptotically normal, although the convergence rate of the estimators of the
nonparametric component g0 is slower than root-n (Lemma A.4). The proof is
in the Appendix.



ADDITIVE PARTIAL LINEAR MODELS 1229

Theorem 1. Under the conditions (C1)−(C5) given in the Appendix,
√

n(β̂ −
β0) converges to N(0,D−1ΣD−1) in distribution, where D = E(X̃

⊗2
) and Σ =

E(ε2X̃
⊗2

). Furthermore, if ε and (X,Z) are independent,
√

n
(
β̂ − β0

)
→

N
(
0, σ2D−1

)
, where σ2 = E

(
ε2

)
.

2.2. SCAD-penalty variable selection procedure

Penalized likelihood has been widely used for non- and semi-parametric mod-
els to trade off model complexity and estimation accuracy; comprehensive survey
was given by Ruppert, Wand and Carroll (2003). The penalized objective func-
tion we use is

LP (β, γ) =
1
2

n∑
i=1

[Yi − {γTb (Zi) + XT
i β}]2 + n

d∑
j=1

pλj
(|βj |), (2.5)

where pλj
(·) is a penalty function with a tuning parameter λj that may be chosen

by a data-driven method. See Liang and Li (2009) for a detailed discussion of
the choice of the tuning parameter. Minimizing LP (β, γ) with respect to β
results in a penalized least squares estimator β̂. It is worth noting that the
penalty functions and the tuning parameters are not necessarily the same for all
coefficients. For instance, we wish to keep important variables in the final model,
and therefore do not penalize their coefficients.

The use of (2.5) gives a general framework of variable selection for APLMs.
Taking the penalty function to be the L0-penalty (also called the entropy penalty
in the literature), pλj

(|βj |) = 0.5λ2
jI{|βj | 6= 0}, where I{·} is an indicator func-

tion, we may extend the traditional variable selection criteria, including the AIC
(Akaike (1973)), BIC (Schwarz (1978)), and RIC (Foster and George (1994)), for
the APLM:

`(γ, β) +
n

2

d∑
j=1

λ2
jI{|βj | 6= 0}, (2.6)

as
∑d

j=1 I{|βj | 6= 0} is the size of the selected model. Specifically, the AIC, BIC,
and RIC correspond to λj ≡

√
2/nσ,

√
log(n)/nσ, and

√
log(d)/nσ, respectively.

Note that Bridge regression (Frank and Friedman (1993)) is equivalent to the
Lq-penalty pλ(|βj |) = q−1λ|βj |q; the LASSO (Tibshirani (1996); Zou (2006))
corresponds to the L1-penalty, and SCAD corresponds to the following smoothly
clipped absolute deviation penalty function

pλ(|β|) =


λ|β|, if 0 ≤ |β| < λ,

(a2−1)λ2−(|β|−aλ)2

2(a−1) , if λ ≤ |β| < aλ,

(a+1)λ2

2 , if |β| ≥ aλ,
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where a = 3.7. As demonstrated in Fan and Li (2001), SCAD is an improvement
of LASSO in terms of modeling bias, and of bridge regression with q < 1 in terms
of stability. It also has an oracle property.

We turn to the sampling properties of the resulting penalized least squares
estimate. Let β0 = (β10, . . . , βd0)T = (βT

10, β
T
20)

T be the true value of β. Without
loss of generality, assume that β10 consists of all nonzero components of β0, and
β20 = 0. Let s denote the length of β10. Write an = max1≤j≤d{|p′λj

(|βj0|)|, βj0 6=
0}, bn = max1≤j≤d{|p′′λj

(|βj0|)|, βj0 6= 0}, κn = {p′λ1
(|β10|)sgn(β10), . . . , p′λs

(|βs0|)
sgn(βs0)}T, and Σλ = diag{p′′λ1

(|β10|), . . . , p′′λs
(|βs0|)}. Denote X1 as the vector

comprised by the first s elements of X.

Theorem 2. Suppose that an = O(n−1/2), bn → 0, and (C1)−(C5) in the
Appendix hold. Then (I) With probability approaching one, there exists a local
minimizer β̂ of LP (β, γ) such that ‖β̂ − β‖ = OP (n−1/2). (II) If λj → 0,
n1/2λj → ∞, and

lim inf
n→∞

lim inf
u→0+

p′λj
(u)

λj
> 0, (2.7)

then, with probability approaching one, the root-n consistent estimator β̂ in (I)
satisfies (a) β̂2 = 0, and (b) β̂1 has an asymptotic normal distribution

√
n{E(X̃

⊗2

1 ) + Σλ}[β̂1 − β10 + {E(X̃
⊗2

1 ) + Σλ}−1κn] D−→ N(0,Σs),

where Σs = Var
(
εX̃1

)
.

Theorem 2 indicates that the SCAD-penalty variable selection procedure can
effectively identify the significant components, with the associated estimators
holding the oracle property. The proof is in the Apprendix.

3. Simulation Studies

In this section, the finite sample performance of the proposed procedure is
investigated by Monte Carlo simulations. We numerically compare estimation
accuracy and complexity of models selected by SCAD, LASSO, and BIC. We use
the local quadratic approximation algorithm of Fan and Li (2001) to implement
the SCAD and LASSO procedures, and select the tuning parameter by general-
ized cross-validation (GCV) in both simulation studies and in the data example
in Section 4.

Let g1(z) = 5 sin(4πz) and g2(z) = 100{exp(−3.25z) − 4 exp(−6.5z) + 3 exp
(−9.75z)}. We generated 100 data sets consisting of n = 60, 100, and 200
observations from the model

Y = XTβ + g(Z) + σε,
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Table 1. Simulation Results for Case (i)

n method σ = 1 σ = 3 σ = 5
C I MRME C I MRME C I MRME

60 scad 4.49 0.00 0.852 4.39 0.12 0.899 4.29 0.61 0.903
lasso 3.38 0.00 0.882 3.49 0.02 0.750 3.41 0.31 0.723
bic 4.66 0.00 0.869 4.76 0.14 0.948 4.57 0.86 0.969
oracle 5.00 0.00 0.662 5.00 0.00 0.680 5.00 0.00 0.635

100 scad 4.45 0.00 0.838 4.44 0.03 0.870 4.35 0.32 0.947
lasso 3.31 0.00 0.906 3.53 0.00 0.775 3.40 0.09 0.768
bic 4.84 0.00 0.876 4.80 0.03 0.880 4.77 0.60 1.036
oracle 5.00 0.00 0.717 5.00 0.00 0.704 5.00 0.00 0.706

200 scad 4.40 0.00 0.798 4.37 0.00 0.818 4.38 0.03 0.788
lasso 3.27 0.00 0.884 3.37 0.00 0.829 3.37 0.00 0.797
bic 4.91 0.00 0.803 4.88 0.00 0.916 4.90 0.06 0.772
oracle 5.00 0.00 0.723 5.00 0.00 0.668 5.00 0.00 0.693

where β = (3, 1.5, 0, 0, 2, 0, 0, 0)T, σ = 1, 3, 5, and the components of X and ε

are standard normal with X and ε independent. The correlation between Xi

and Xj is ρ|i−j| with ρ = 0.5 for i, j = 1, · · · , 8. We considered three cases: (i)
g(Z) = g1(Z1); (ii) g(Z) = g2(Z2); and (iii) g(Z) = g1(Z1)+ g2(Z2). Here Z1 and
Z2 are independent uniformly distributed on [0, 1] so in the first two cases there
is only one nonparametric component, while in the third case there are two.

Cubic B-splines were used to approximate the nonparametric functions as
described in Section 2.1. To determine the number of knots in the approximation,
we examined several (say M) models, with the number of knots from 2 to 12 for
each nonparametric component. Thus, M = 11 in both Case (i) and Case (ii),
and M = 112 = 121 in Case (iii). In each case, the M linear prediction models
were taken into account, and the model with the smallest median relative model
error when compared to the full model, which includes all covariates, was taken
as the selected model.

Simulation results are presented in Tables 1−3; the columns labeled “C”
give the average number of the 5 zero coefficients correctly set to 0, the columns
labeled “I” give the average number of the 3 nonzero coefficients incorrectly set
to 0, and the columns labeled “MRME” give the median of relative model errors,
which is defined as the ratio of model error comparing the selected model to
the full model. Rows refer to procedures, where “Oracle” stands for the oracle
estimates computed by using the true model Y = β1X1+β2X2+β5X5+g(Z)+σε.
The oracle estimates always set the 5 zero coefficients correctly to zero and do
not set any of the 3 nonzero coefficients to zero.

The results for SCAD, BIC, and LASSO of correctly and incorrectly se-
lected covariates show a similar pattern as those obtained by Fan and Li (2001)
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Table 2. Simulation Results for Case (ii)

n method σ = 1 σ = 3 σ = 5
C I MRME C I MRME C I MRME

60 scad 4.44 0.00 0.774 4.48 0.14 0.937 4.32 0.69 1.028
lasso 3.28 0.00 1.017 3.41 0.02 1.003 3.47 0.35 0.889
bic 4.60 0.00 0.792 4.74 0.19 0.983 4.58 0.88 1.058
oracle 5.00 0.00 0.673 5.00 0.00 0.674 5.00 0.00 0.662

100 scad 4.49 0.00 0.784 4.46 0.03 0.874 4.47 0.38 1.017
lasso 3.58 0.00 1.044 3.50 0.00 0.996 3.58 0.11 0.963
bic 4.85 0.00 0.784 4.76 0.03 0.907 4.78 0.61 1.041
oracle 5.00 0.00 0.747 5.00 0.00 0.655 5.00 0.00 0.681

200 scad 4.40 0.00 0.768 4.31 0.00 0.805 4.31 0.03 0.870
lasso 3.29 0.00 1.006 3.38 0.00 0.983 3.36 0.00 0.910
bic 4.89 0.00 0.767 4.89 0.01 0.839 4.84 0.08 0.954
oracle 5.00 0.00 0.716 5.00 0.00 0.644 5.00 0.00 0.677

Table 3. Simulation Results for Case (iii)

n method σ = 1 σ = 3 σ = 5
C I MRME C I MRME C I MRME

60 scad 4.43 0.00 0.924 4.39 0.28 1.045 4.37 0.74 1.010
lasso 3.52 0.00 1.072 3.68 0.10 0.922 3.67 0.26 0.783
bic 4.32 0.00 0.939 4.42 0.31 1.077 4.43 0.87 1.012
oracle 5.00 0.00 0.802 5.00 0.00 0.802 5.00 0.00 0.752

100 scad 4.41 0.00 0.926 4.49 0.02 0.957 4.28 0.35 1.052
lasso 3.58 0.00 1.028 3.58 0.00 0.964 3.56 0.09 0.883
bic 4.60 0.00 0.939 4.77 0.05 0.977 4.66 0.65 1.112
oracle 5.00 0.00 0.800 5.00 0.00 0.782 5.00 0.00 0.784

200 scad 4.44 0.00 0.881 4.45 0.00 0.953 4.45 0.06 0.973
lasso 3.42 0.00 1.022 3.48 0.00 0.995 3.41 0.01 0.891
bic 4.84 0.00 0.900 4.79 0.00 0.988 4.86 0.11 1.021
oracle 5.00 0.00 0.821 5.00 0.00 0.806 5.00 0.00 0.797

for linear models. In all three cases, BIC performed the best in correctly setting
coefficients to 0, followed by SCAD and LASSO. However, BIC had the high-
est average number of coefficients erroneously set to 0, followed by SCAD and
LASSO. This indicates that BIC was the most aggressive method in terms of ex-
cluding variables, while LASSO was the most conservative and tended to include
more variables.

As for the MRME, SCAD performed the best when the sample size was large
or the error variance small , while LASSO performed the best when the sample
size was small or the error variance large. The performance of BIC was worse
than, although sometimes close to, SCAD.
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Overall, SCAD and BIC had the best performances in our simulations. Com-
pared to BIC, SCAD had the higher prediction accuracy by slightly increasing
the model complexity. In other words, SCAD selected more variables to reduce
prediction error. Furthermore, SCAD was much more computationally efficient
than the best subset selection method using BIC.

4. A Nutritional Study

It is well known that there is a direct relationship between beta-carotene and
cancers such as lung, colon, breast, and prostate cancer (Fairfield and Fletcher
(2002)). Some observational epidemiological studies have shown that beta
carotene cannot only effectively prevent cancer because beta carotene has pow-
erful antioxidant properties, but can also help cleanse the body of free radicals
that can cause cancer. Sufficient beta carotene supply can also strengthen the
body’s autoimmune system, making it more effective in fighting degenerative dis-
eases such as cancer. Clinicians and nutritionists are therefore interested in the
relationship between serum concentrations of beta-carotene and other factors
such as age, smoking status, alcohol consumption, and dietary intake because
this information may be potentially useful in clinical decision-making and in-
dividualization of therapy. For example, Nierenberg et al. (1989) found that
dietary carotene and female were positively related to beta-carotene levels, while
cigarette smoking and body mass index (BMI) were negatively related to beta-
carotene levels. Age was not associated with beta-carotene levels to a statistically
significant extent. Faure et al. (2006) recently found that beta-carotene concen-
tration depends on gender, age, smoking status, dietary intake, and location of
residence. Examination of this relationship therefore shows diverse results so far,
and there is insufficient evidence to draw a convincing conclusion regarding the
relationship between beta-carotene and these factors.

A closer investigation of these publications finds either a simple analysis of
variance(ANOVA) method or linear models used to explore the relationship be-
tween beta-carotene and other factors to determine those that influence beta-
carotene concentration. However, the use of advanced statistical techniques
seems necessary in appropriately modeling the relationship. We examine a
dataset from a nutritional epidemiology study where the interest is in the re-
lationships between the plasma beta-carotene levels and personal characteristics,
including AGE, GENDER, BMI, and other factors: CALORIES (number of calo-
ries consumed per day), FAT (grams of fat consumed per day), FIBER (grams
of fiber consumed per day), ALCOHOL (number of alcoholic drinks consumed
per week), CHOL (cholesterol consumed mg per day), BETADIET (dietary beta-
carotene consumed mcg per day), SMOKE2 (smoking status [1 = former smoker,
0 = never smoked], and SMOKE3 (smoking status [1 = current smoker, 0 = never
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smoked]). There was one extremely high leverage point in alcohol consumption
that was deleted prior to analysis. See Nierenberg et al. (1989) for a detailed
description of the data. A general linear model was used to fit this dataset and
the results are presented in the left panel of Table 4. These results indicate that
only BMI, FIBER, GENDER, and SMOKE3 are statistically significant, while
the other seven variables are not. However, a closer study shows that the re-
lationship between the logarithm of beta-carotene levels and AGE and CHOL
may be nonlinear. We therefore fitted the same dataset using the R function
gam and found that the beta-carotene level seems to be linearly related to BMI,
CALORIES, FAT, FIBER, ALCOHOL and BETADIET, but nonlinearly related
to AGE and CHOL. Figure 1 shows the patterns of AGE and CHOL that indicate
a positive correlation before 45 or after 65, and a slightly negative correlation
between 45 and 65. Interestingly, we discern a concave curve in the pattern of
CHOL.

We use an APLM and the proposed procedures to study the relationship
between beta-carotene and other factors, assuming beta-carotene concentration
depends linearly on covariates BMI, CALORIES, FAT, FIBER, ALCOHOL, BE-
TADIET, GENDER, and SMOKE2/3 but is nonlinearly related to AGE and
CHOL. We look to which linear covariates should be included in our model and
appropriately fit the nonlinear unknown functions that can objectively reflect
impact on beta-carotene level and avoid misleading conclusions. To this end, we
used a model to fit the nutritional dataset and applied SCAD, LASSO, and BIC
procedures for variable selection:

log(beta-carotene) = β0 + β1BMI + β2CALORIES + β3FAT + β4FIBER

+β5BETADIET + β6GENDER + β7ALCOHOL + β8SMOKE2

+β9SMOKE3 + g1(AGE) + g2(CHOL) + ε.

To determine the number of knots in the cubic B-splines approximation of the
nonparametric components AGE and CHOL, we examined the number of knots
from 2 to 9 for each component and chose the number that gave the smallest
relative mean squared error when compared to the full model. As a result, for
the nonparametric component AGE, 2 and 5 knots were chosen using SCAD and
LASSO, respectively; for the nonparametric component CHOL, 2 knots were
used in both SCAD and LASSO. The tuning parameters selected by GCV were
0.035 and 0.015 for SCAD and LASSO, respectively.

The estimated coefficients and their standard errors are listed in the right
panel of Table 4. SCAD found BMI, FIBER, BETADIET, GENDER, and
SMOKE3 significant, while LASSO also identified FAT as being significant; BIC
had it that only BMI, FIBER, and SMOKE3 are significant. The standard er-
rors of non-zero coefficients based on the APLM are consistently smaller than
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Table 4. Results for the nutritional study. Left panel: Estimated values,
associated standard error, and P-value by using the ordinary least squares.
Right panel: Estimates, associated standard errors of the coefficients using
the APLM with the proposed variable selection procedures.

LS APLM

Est. s.e z value Pr(> |z|) SCAD (s.e.) LASSO (s.e.) BIC (s.e.)
BMI -0.976 0.202 -4.829 < 10−4 -0.947(0.189) -0.948(0.173) -1.001(0.188)
CALORIES 0 0 -0.457 0.648 0(0) 0(0) 0(0)
FAT -0.002 0.003 -0.711 0.477 0(0) -0.001(0.001) 0(0)
FIBER 0.027 0.012 2.352 0.019 0.021(0.007) 0.019(0.007) 0.025(0.008)
BETADIET 0.137 0.073 1.889 0.060 0.046(0.027) 0.101(0.051) 0(0)
GENDER 0.277 0.135 2.060 0.040 0.194(0.088) 0.201(0.096) 0(0)
ALCOHOL 0.043 0.048 0.901 0.368 0(0) 0(0) 0(0)
SMOKE2 -0.068 0.091 -0.742 0.458 0(0) 0(0) 0(0)
SMOKE3 -0.286 0.130 -2.191 0.029 -0.245(0.097) -0.224(0.096) -0.293(0.117)
AGE 0.005 0.003 1.724 0.086
CHOL -0.015 0.114 -0.133 0.894

Figure 1. The patterns of AGE and CHOL with ±s.e. using the R function,
gam, for the dataset from a nutritional study.

the corresponding ones based on the linear fit. The estimated values using dif-
ferent methods under the APLM setting are similar, but there are differences in
magnitude. The estimated curves of the two nonparametric components, AGE
and CHOL, are similar to those in Figure 1, and therefore are not shown here.
It is worthwhile to mention that the effects of AGE and CHOL are not only
significant, but also should not be described by linear functions.

5. Discussion

We proposed an effective routine using a regression spline technique, then
used an advanced variable selection procedure to identify which linear predic-
tors should be included in our model fitting. There are three principal advan-
tages of our method: it avoids iterative algorithms and computational challenges;
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the estimators of the linear components, which are of primary interest, are still
asymptotically normal; the variable selection procedure has the oracle property.
Combined with ideas of Liang and Li (2009), we believe a similar procedure can
be developed for partially linear additive models with error-prone linear covari-
ates. The approach possibly extends to generalized additive partial linear models
and the situation with longitudinal data (Lin and Carroll (2001)). However, these
extensions are by no means straightforward.

It appears possible, at least in principle, to extend our methods to cases in
which the numbers of linear components and nonparametric components diverge.
An alternative is a combination of the methods of Xie and Huang (2009) and
Ravikumar et al. (2009). One main challenge is the establishment of the asymp-
totic properties of the methods. A detailed investigation of these issues is beyond
the scope of this article.

An important question to nutritionists is whether available scientific data
support an important role of beta-carotene in the prevention of pathologic con-
ditions such as cancer. In this paper, we have proposed the use of an APLM to
describe such a relationship since the APLM model can parsimoniously reflect
the influence of covariates in linear or nonlinear forms.
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Appendix

Let ‖·‖ be the Euclidean norm. For matrix A, denote its L2 norm as ‖A‖2 =
sup‖u‖6=0 ‖Au‖ / ‖u‖. Let ‖ϕ‖∞ = supm |ϕ (m)| be the supremum norm of a
function ϕ on [0, 1].

Following Stone (1985) and Huang (2003), for any measurable functions ϕ1,
ϕ2 on [0, 1]K , we take the empirical inner product and the corresponding norm
to be

〈ϕ1, ϕ2〉n = n−1
n∑

i=1

ϕ1 (Zi) ϕ2 (Zi) , ‖ϕ‖2
n = n−1

n∑
i=1

ϕ2 (Zi) ,

where {Zi} is a sample from density f . If ϕ1 and ϕ2 are L2-integrable, take the
inner product

〈ϕ1, ϕ2〉 =
∫

[0,1]K
ϕ1 (z) ϕ2 (z) f(z)dz



ADDITIVE PARTIAL LINEAR MODELS 1237

with the corresponding induced norm ‖ϕ‖2
2 =

∫
[0,1]K ϕ2 (z) f(z)dz. The empirical

and theoretical norm of a univariate function ϕ on [0, 1] are to be

‖ϕ‖2
nk = n−1

n∑
i=1

ϕ2 (Zik) , ‖ϕ‖2
2k =

∫ 1

0
ϕ2 (zk) fk (zk) dzk,

where fk is the density of Zk for k = 1, . . . ,K. Define the centered version spline
basis

b∗j,k (zk) = bj,k (zk) −
E (bj,k)
E (b1,k)

b1,k (zk) , k = 1, . . . ,K, j = −% + 1, . . . , Jn, (A.1)

with the standardized version given by, for any k = 1, . . . ,K,

Bj,k (zk) =
b∗j,k (zk)
‖b∗j,k‖2k

, j = −% + 1, . . . , Jn. (A.2)

Notice that finding the (γ, β) that minimizes (2.4) is equivalent to finding the
(γ, β) that minimizes

1
2

n∑
i=1

[Yi − {γTB (Zi) + XT
i β}]2 ,

where B (z) = {Bj,k (zk) , j = −% + 1, . . . , Jn, k = 1, . . . ,K}T. Then the spline
estimator of g0 is ĝ(z) = γ̂TB (z) and the centered spline estimators of a com-
ponent function is

ĝk (zk) =
Jn∑

j=−%+1

γ̂j,kBj,k (zk) −
1
n

n∑
i=1

Jn∑
j=−%+1

γ̂j,kBj,k (Zik) , k = 1, . . . ,K.

In practice, basis {bj,k, j = −% + 1, . . . , Jn, k = 1, . . . ,K}T is used for data-
analytic implementation, and (A.2) is convenient for asymptotic analysis.

A.1. Assumptions

The following conditions are necessary for Theorems 1 and 2. Let r be a
positive integer and ν ∈ (0, 1] be such that p = r + ν > 1.5. Let H be the
collection of functions g on [0, 1] whose r-th derivative, g(r) exists and satisfies
the Lipschitz condition of order ν:∣∣∣g(r)

(
z′

)
− g(r) (z)

∣∣∣ ≤ C
∣∣z′ − z

∣∣ν , for 0 ≤ z′, z ≤ 1,

where and below C is a generic positive constant.
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(C1) Each component function g0k ∈ H, k = 1, . . . ,K.

(C2) The distribution of Z is absolutely continuous and its density f is bounded
away from zero and infinity on [0, 1]K .

(C3) The random vector X satisfies that for any vector w ∈ Rd

c ‖w‖2 ≤ wTE
(
X⊗2|Z = z

)
w ≤ C ‖w‖2 ,

where c is a positive constant.
(C4) The number of interior knots Jn satisfies: n1/(2p) ¿ Jn ¿ n1/3.

(C5) The projection function Γ (z) has the additive form Γ (z) = Γ1(z1) + · · · +
ΓK(zK), where Γk ∈ H, E[Γk(Zk)] = 0, and E[Γk(Zk)]2 < ∞, k = 1, . . . ,K.

A.2. Technical lemmas

According to the result of de Boor (2001, p.149), for any function η ∈ H and
n ≥ 1, there exists a function η̃ ∈ Sn such that ‖η̃ − η‖∞ ≤ Chp. Recall that
B(z) = {Bj,k(zk), j = −% + 1, . . . , Jn, k = 1, . . . ,K}T. For g0 satisfying (C1),
we can find γ̃ = {γ̃j,k, j = −% + 1, . . . , Jn, k = 1, . . . ,K}T and an additive spline
function g̃ = γ̃TB (z) ∈ Gn, such that

‖g̃ − g0‖∞ = O (hp) . (A.3)

In the following, let

β̃ = arg min
β

1
2

n∑
i=1

[Yi − {g̃ (Zi) + XT
i β}]2 . (A.4)

Write m0i ≡ m0 (T i) = g0 (Zi) + XT
i β0, and

m̃0 (t) = g̃ (z) + xTβ0, m̃0i ≡ m̃0 (T i) = g̃ (Zi) + XT
i β0. (A.5)

Lemma A.1. Under Conditions (C1)−(C4),
√

n(β̃−β0) → N(0,A−1Σ1A−1),
where A = E

(
X⊗2

)
and Σ1 = E

(
ε2X⊗2

)
.

Proof. Let δ̂ =
√

n
(
β̃ − β0

)
. According to (A.4), δ̂ minimizes

l̃n (δ) =
1
2

n∑
i=1

[{
Yi −

(
m̃0i + n−1/2δTXi

)}2
− {Yi − m̃0i}2

]
.

By expansion, one has

l̃n (δ) = −n−1/2
n∑

i=1

(Yi − m̃0i) δTXi + 2−1δTAnδ,
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where An = (1/n)
∑n

i=1 X⊗2
i = A + oP (1). Observe that

n−1/2
n∑

i=1

(Yi − m̃0i) Xi

= n−1/2
n∑

i=1

[Yi − {g̃ (Zi) + XT
i β0}] Xi

= n−1/2
n∑

i=1

[Yi − {g0 (Zi) + XT
i β0}] Xi + n−1/2

n∑
i=1

{g0 (Zi) − g̃ (Zi)}Xi

= n−1/2
n∑

i=1

εiXi + n−1/2
n∑

i=1

{g0 (Zi) − g̃ (Zi)}Xi.

By (A.3) and Condition (C3), the absolute value of the second term on the
right-hand side of the above equation is

|n−1/2
n∑

i=1

{g0 (Zi) − g̃ (Zi)}Xi| ≤ n−1/2
n∑

i=1

|Xi| ‖g̃ − g0‖∞ = oP (1) .

Thus,

l̃n (δ) = −n−1/2
n∑

i=1

εiδ
TXi + 2−1δTAδ + oP (1) ,

and the convexity lemma of Pollard (1991) implies that

δ̂ = A−1n−1/2
n∑

i=1

εiXi + oP (1) .

It follows that
√

n
(
β̃ − β0

)
→ N

(
0,A−1Σ1A−1

)
.

Let

Vn = n−1
n∑

i=1

{
{B (Zi)}⊗2 B (Zi) XT

i

XiBT (Zi) X⊗2
i

}
. (A.6)

Lemma A.2. Under (C1)−(C4), there exists a positive constant C such that∥∥V−1
n

∥∥
2
≤ C, a.s..

Proof. We first derive the lower and upper bound of the eigenvalues of Vn.
For any vectors ω1 = {ωj,k, j = −% + 1, . . . , Jn, k = 1, . . . ,K} ∈ R(Jn+%)K and
ω2 ∈ Rd, let ω = (ωT

1 , ωT
2)T. Then one has

nωTVnω = ωT
1

n∑
i=1

{B (Zi)}⊗2 ω1 + ωT
2

n∑
i=1

X⊗2
i ω2 + 2ωT

1

n∑
i=1

B (Zi) XT
i ω2.
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Lemma 1 of Stone (1985) provides a constant c > 0 such that∥∥∥∥ K∑
k=1

Jn∑
j=−%+1

ωj,kBj,k

∥∥∥∥2

2

≥ c
K∑

k=1

∥∥∥∥ Jn∑
j=−%+1

ωj,kBj,k

∥∥∥∥2

2

.

According to Theorem 5.4.2 of DeVore and Lorentz (1993), Condition (C2) and
the definition of Bj,k in (A.2), there exist constants C ′

k > c′k > 0 such that, for
any k = 1, . . . ,K,

c′k

Jn∑
j=−%+1

ω2
j,k ≤

∥∥∥∥ Jn∑
j=−%+1

ωj,kBj,k

∥∥∥∥2

2

≤ C ′
k

Jn∑
j=−%+1

ω2
j,k.

Thus there exist constants C0 > c0 > 0 such that

c0 ‖ω1‖2 ≤
∥∥∥∥ K∑

k=1

Jn∑
j=−%+1

ωj,kBj,k

∥∥∥∥2

2

≤ C0 ‖ω1‖2 .

By Lemma A.8 in Wang and Yang (2007), we have

An ≡ sup
g1,g2∈Gn

∣∣∣∣〈g1, g2〉n − 〈g1, g2〉
‖g1‖2 ‖g2‖2

∣∣∣∣ = O

{(
log

n

nh

)1/2
}

, a.s.. (A.7)

It is clear to see that

(1 − An)
∥∥∥∥ K∑

k=1

Jn∑
j=−%+1

ωj,kBj,k

∥∥∥∥2

2

≤ ωT
1n−1

n∑
i=1

{B (Zi)}⊗2 ω1

=
∥∥∥∥ K∑

k=1

Jn∑
j=−%+1

ωj,kBj,k

∥∥∥∥2

2,n

≤ (1 + An)
∥∥∥∥ K∑

k=1

Jn∑
j=−%+1

ωj,kBj,k

∥∥∥∥2

2

.

Therefore, c ‖ω1‖2 ≤ ωT
1n−1

∑n
i=1 {B (Zi)}⊗2 ω1 ≤ C ‖ω1‖2, a.s.. Next,

ωT
2n−1

n∑
i=1

X⊗2
i ω2 = ωT

2E
(
X⊗2

)
ω2 + ωT

2

[
n−1∑n

i=1

{
X⊗2

i − E
(
X⊗2

)}]
ω2

= ωT
2E

(
X⊗2

)
ω2 + ‖ω2‖2 o(1), a.s..

and, according to (C3), c ‖ω2‖2 ≤ ωT
2n−1

∑n
i=1 X⊗2

i ω2 ≤ C ‖ω2‖2, a.s.. Then∣∣ωT
1n−1

∑n
i=1 B (Zi) XT

i ω2

∣∣ = o(‖ω1‖ ‖ω2‖), a.s.. Thus

c ‖ω‖2 ≤ ωTVnω ≤ C ‖ω‖2 , a.s.. (A.8)

Let λmax (Vn) and λmin (Vn) be the maximum and minimum eigenvalues of
Vn. Algebra and (A.8) show that ‖Vn‖2 = λmax (Vn) ≤ C and

∥∥V−1
n

∥∥
2

=
λ−1

min (Vn) ≤ c−1, a.s..
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In the following, take θ =
(

γ

β

)
, θ̃ =

(
γ̃

β̃

)
, θ̂ =

(
γ̂

β̂

)
, l̂n (θ) = `(γ, β), and

m̃i ≡ m̃ (T i) = g̃ (Zi) + XT
i β̃ = γ̃TB (Zi) + XT

i β̃. (A.9)

Lemma A.3. Under (C1)−(C4),
∥∥∥θ̂ − θ̃

∥∥∥ = OP

{
J

1/2
n

(
hp + n−1/2

)}
.

Proof. Note that

∂l̂n (θ)
∂θ

∣∣∣∣∣
θ=bθ

− ∂l̂n (θ)
∂θ

∣∣∣∣∣
θ=eθ

=
∂2 l̂n (θ)
∂θ∂θT

∣∣∣∣∣
θ=θ

(
θ̂ − θ̃

)
,

where θ is between θ̂ and θ̃. So

θ̂ − θ̃ = −

(
∂2 l̂n (θ)
∂θ∂θT

∣∣∣∣∣
θ=θ

)−1
∂l̂n (θ)

∂θ

∣∣∣∣∣
θ=eθ

.

Next write

∂l̂n (θ)
∂θ

∣∣∣∣
θ=eθ

=
{ (

∂l̂n (θ)
∂γ

)T

,

(
∂l̂n (θ)

∂β

)T }T
∣∣∣∣
θ=eθ

=−
n∑

i=1

(Yi − m̃i) {B (Zi) , Xi},

where

∂l̂n (θ)
∂γ

∣∣∣∣∣
θ=eθ

= −
n∑

i=1

(Yi − m0i)B (Zi) +
n∑

i=1

{g̃ (Zi) − g0 (Zi)}B (Zi)

+
n∑

i=1

XT
i

(
β̃ − β0

)
B (Zi) ,

∂l̂n (θ)
∂β

∣∣∣∣∣
θ=eθ

= −
n∑

i=1

(Yi − m0i) Xi +
n∑

i=1

{g̃ (Zi) − g0 (Zi)}Xi

+
n∑

i=1

(
β̃ − β0

)T

X⊗2
i .

Observing that∥∥∥∥ − 1
n

n∑
i=1

(Yi − m0i)B (Zi)
∥∥∥∥ =

[ K∑
k=1

Jn∑
j=−%+1

{
1
n

n∑
i=1

εiBj,k (Zik)
}2]1/2

,

E

[ K∑
k=1

Jn∑
j=−%+1

{
1
n

n∑
i=1

εiBj,k (Zik)
}2]

≤ C
Jn

n
,
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we have ‖−(1/n)
∑n

i=1 (Yi − m0i)B (Zi)‖ = OP

{
(Jn/n)1/2

}
. By (C4), (A.3)

and Lemma 1,∥∥∥∥ 1
n

n∑
i=1

{g̃ (Zi) − g0 (Zi)}B (Zi)
∥∥∥∥ = OP

(
J1/2

n hp
)

,

∥∥∥∥ 1
n

n∑
i=1

(
β̃ − β0

)T

XiB (Zi)
∥∥∥∥ = OP

{(
Jn

n

)1/2
}

.

Therefore,
∥∥∥(1/n) (∂l̂n (θ)/∂γ)

∣∣∣
θ=eθ

∥∥∥ = OP

{
J

1/2
n

(
hp + n−1/2

)}
. Similarly, one

has ∥∥∥∥ 1
n

n∑
i=1

(m0i − Yi) Xi

∥∥∥∥ =
∥∥∥∥ 1

n

n∑
i=1

εiXi

∥∥∥∥ = OP

{(
Jn

n

)1/2 }
,

∥∥∥∥ 1
n

n∑
i=1

{g̃ (Zi) − g0 (Zi)}Xi

∥∥∥∥ = OP

(
J1/2

n hp
)

,

∥∥∥∥ 1
n

n∑
i=1

(
β̃ − β0

)T

XiX
T
i

∥∥∥∥ = OP

{(
Jn

n

)1/2 }
.

Thus
∥∥∥(1/n) (l̂n (θ)/∂θ)

∣∣∣
θ=eθ

∥∥∥ = OP

{
J

1/2
n

(
hp + n−1/2

)}
. For the second order

derivative, one has

1
n

∂2 l̂n (θ)
∂θ∂θT

∣∣∣∣∣
θ=θ

=
1
n


∂2

bln(θ)
∂γ∂γT

bln(θ)
∂γ∂βT

bln(θ)
∂β∂γT

bln(θ)
∂β∂βT


∣∣∣∣∣∣
θ=θ

= Vn.

According to Lemma A2,
∥∥V−1

n

∥∥
2

= OP (1). Thus∥∥∥θ̂ − θ̃
∥∥∥ ≤

∥∥V−1
n

∥∥
2

∥∥∥∥ 1
n

∂l̂n (θ)
∂θ

∣∣∣∣
θ=eθ

∥∥∥∥ = OP

{
J1/2

n

(
hp + n−1/2

)}
.

Lemma A.4. Under (C1)−(C4), ‖ĝ − g0‖2 = OP {(Jn/n)1/2}, ‖ĝ − g0‖n =
OP {(Jn/n)1/2}, ‖ĝk −g0k‖2k =OP {(Jn/n)1/2} and ‖ĝk−g0k‖nk =OP {(Jn/n)1/2},
for k = 1, . . . ,K.

Proof. According to Lemmas A2 and A3, ‖ĝ − g̃‖2
2 is equal to

∫
[0,1]K (ĝ −

g̃)2(z)f(z)dz = (γ̂ − γ̃)T
(〈

Bj,k, Bj′,k′
〉)

−%≤j,j′≤Jn,
1≤k,k′≤K

(γ̂ − γ̃) ≤ C ‖γ̂ − γ̃‖2
2 , thus

‖ĝ − g̃‖2 = OP {J1/2
n (hp + n−1/2)} and

‖ĝ − g0‖2 ≤ ‖ĝ − g̃‖2 + ‖g̃ − g0‖2 = OP

{
J1/2

n

(
hp + n−1/2

)}
+ OP (hp)

= OP

{
J1/2

n

(
hp + n−1/2

)}
.
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By Lemma 1 of Stone (1985), ‖ĝk − g0k‖2k =OP

{
J

1/2
n

(
hp+n−1/2

)}
, 1≤k≤K.

Equation (A.7) then implies that ‖ĝ − g̃‖n = OP

{
J

1/2
n

(
hp + n−1/2

)}
. Then

‖ĝ − g0‖n ≤ ‖ĝ − g̃‖n + ‖g̃ − g0‖n = OP

{
J1/2

n

(
hp + n−1/2

)}
+ OP (hp)

= OP

{
J1/2

n

(
hp + n−1/2

)}
.

Similar to (A.7),

sup
g∈Sn

∣∣∣∣‖g‖nk

‖g‖2k

− 1
∣∣∣∣ = OP

{(
log n

nh

)1/2
}

, k = 1, . . . ,K.

Thus ‖ĝk − g0k‖nk = OP

{
J

1/2
n

(
hp + n−1/2

)}
, for any k = 1, . . . ,K. The desired

result follows by (C4).

Lemma A.5. Under (C1)−(C4),

1
n

n∑
i=1

X̃iΓ (Zi)
T
(
β̂ − β0

)
= oP

(
n−1/2

)
, (A.10)

1
n

n∑
i=1

{ĝ (Zi) − g0 (Zi)} X̃i = oP

(
n−1/2

)
. (A.11)

Proof. We first show (A.11). Let s (z, g) = g(z)x̃. Note that

E {s (Z, ĝ) − s (Z, g0)}2 = E
{

(ĝ − g0) (Zi) X̃i

}2
≤ O

(
‖ĝ − g0‖2

2

)
.

By Lemma A.2 of Huang (1999), the logarithm of the ε-bracketing number
of the class of functions A1(δ) = {s (·, ĝ) − s (·, g0) : g ∈ Gn, ‖g − g0‖2 ≤ δ} is
c
{
(Jn + %) log (δ/ε) + log

(
δ−1

)}
, so the corresponding entropy integral J[](δ,A1

(δ), ‖·‖2) ≤ cδ{(Jn + %)1/2 +log1/2(δ−1)}. According to Lemma 7 of Stone (1986)
and Lemma A4, ‖ĝ − g0‖∞ ≤ cJ

1/2
n ‖ĝ − g0‖2 = OP

(
n−1/2Jn

)
. Lemma 3.4.2 of

van der Vaar and Wellner (1996) implies that, for rn = (n/Jn)1/2,

E

∣∣∣∣∣ 1n
n∑

i=1

{ĝ (Zi) − g0 (Zi)} X̃i − E
[
{ĝ (Z) − g0 (Z)} X̃

]∣∣∣∣∣
≤ n−1/2Cr−1

n

{
(Jn + %)1/2 + log1/2 (rn)

}
×

1 +
cr−1

n

{
(Jn + %)1/2 + log1/2 (rn)

}
r−2
n

√
n

C0


≤ O(1)n−1/2r−1

n

{
(Jn + %)1/2 + log1/2 (rn)

}
.
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By Condition (C4), O
(
n−1/2Jn

)
= o (1). Thus, one has

E

∣∣∣∣∣ 1n
n∑

i=1

{ĝ (Zi) − g0 (Zi)} X̃i − E
[
{ĝ (Z) − g0 (Z)} X̃

]∣∣∣∣∣ = o
(
n−1/2

)
.

By the definition of X̃, for any measurable function φ, E
{

φ (Z) X̃
}

= 0. Hence
(A.11) holds. Similarly, (A.10) follows from Lemma 3.4.2 of van der Vaart and
Wellner (1996) and Lemma A3.

Lemma A.6. Under the conditions of Theorem 2, with probability tending to 1,
for any given β1 satisfying ‖β1 − β10‖ = OP (n−1/2) and any constant C,

LP

{(
β1

0

)
, γ

}
= min

‖β2‖≤Cn−1/2
LP

{(
β1

β2

)
, γ

}
.

Proof. To prove that the minimum is attained at β2 = 0, it suffices to show that
with probability tending to 1, as n → ∞ , for any β1 satisfying ‖β1 − β10‖ =
OP (n−1/2) and ‖β2‖ ≤ Cn−1/2, ∂LP (β)/∂βj and βj have the same signs for
βj ∈ (−Cn−1/2, Cn−1/2), j = s + 1, · · · , d. It follows by arguments similar to
those in the proof of Theorem 1 that

`′j(β) ≡ ∂`(γ̂, β)
∂βj

= n

{
1
n

n∑
i=1

Ωj(Yi, T i) − (β − β0)
TRj + oP (n−1/2)

}
,

where Ωj(Yi, T i) is the jth element of −εiX̃i and Rj is the jth column of E(X̃
⊗2

).
Note that ‖β −β0‖ = OP (n−1/2) by assumption. Thus, n−1`′j(β) is of the order
OP (n−1/2). Therefore, for any zero βj and j = s + 1, · · · , d,

∂LP (β, γ)
∂βj

= `′j(β) + np′λjn
(|βj |) sgn(βj)

= nλjn{λ−1
jn p′λjn

(|βj |) sgn(βj) + OP (
1√
nλn

)}.

Because lim infn→∞ lim infβj→0+ λ−1
jn p′λjn

(|βj |) > 0 and
√

nλjn → ∞, the sign of
the derivative is completely determined by that of βj . Thus the desired result is
obtained.

A.3. Proof of Theorem 1

According to (C5), the projection function Γ (z) = Γ1(z1) + · · · + ΓK(zK),
where the theoretically centered function Γk ∈ H. By the result of de Boor
(2001, p.149), there exists an empirically centered function Γ̃k ∈ Sn, such that
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∥∥∥
∞

= OP (hp), k = 1, . . . ,K. If Γ̃ (z) = Γ̃1(z1) + · · · + Γ̃K(zK), Γ̃ ∈ Gn.
Define a class of functions

Mn = {m (x,z) = g (z) + xTβ : g ∈ Gn} . (A.12)

For any v ∈ Rd, let m̂(x, z) = ĝ(z) + xTβ̂ and m̂v = m̂(x, z) + vT{x − Γ̃(z)}.
Then m̂v = {ĝ(z) − vTΓ̃(z)} + (β̂ + v)Tx ∈ Mn. Note that m̂v minimizes the
function l̂n(m) = 1/2

∑n
i=1 {Yi − m (Xi, Zi)}2 for all m ∈ Mn when v = 0, thus

∂
∂v l̂n (m̂v)

∣∣∣
v=0

= 0. Write

m̂i ≡ m̂ (Xi, Zi) = ĝ (Zi) + XT
i β̂ = γ̂TB (Zi) + XT

i β̂, (A.13)

and X̃i = Xi − Γ (Zi). Then

0 ≡ ∂

∂v
l̂n (m̂v)

∣∣∣∣
v=0

= −
n∑

i=1

(Yi − m̂i)
{

Xi − Γ̃ (Zi)
}

= −
n∑

i=1

(Yi − m̂i) X̃i + OP (hp)

= −
n∑

i=1

εiX̃i +
n∑

i=1

(m̂i − m0i) X̃i + OP (hp) . (A.14)

Note that

m̂ (x,z) − m0 (x,z) =
(
β̂ − β0

)T

x̃ +
(
β̂ − β0

)T

Γ (z) + ĝ (z) − g0 (z) .

We can rewrite the second term
∑n

i=1 (m̂i − m0i) X̃i in (A.14) as( n∑
i=1

X̃
⊗2

i

)(
β̂−β0

)
+

{ n∑
i=1

X̃iΓ (Zi)
T
}(

β̂ − β0

)
+

n∑
i=1

{ĝ (Zi)−g0 (Zi)} X̃i.

By Lemma A5, one has

1
n

n∑
i=1

(m̂i − m0i) X̃i =
{

E(X̃
⊗2

) + oP (1)
} (

β̂ − β0

)
+ oP

(
n−1/2

)
. (A.15)

Combining (A.14), (A.15) and Condition (C4), one has

0 = − 1
n

n∑
i=1

εiX̃i +
{

E(X̃
⊗2

) + oP (1)
}(

β̂ − β0

)
+ oP

(
n−1/2

)
.

Thus the desired distribution of β̂ follows.
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A.4. Proof of Theorem 2

Let τn = n−1/2 +an. It suffices to show that for any given ζ > 0, there exists
a large constant C such that

P
{

sup
‖v‖=C

LP (β0 + τnv, γ) < LP (β0, γ)
}
≥ 1 − ζ. (A.16)

Let

Dn,1 =
1
2

n∑
i=1

[
{Yi−(γ̂TB(Zi) + XT

i (β0+τnv))}2−{Yi−(γ̂TB(Zi) + XT
i β0)}

2
]

and Dn,2 = n
∑s

j=1{pλn(|βj0 + τnvj |) − pλn (|βj0|)}, where s is the number of
components of β10. Note that pλn (0) = 0 and pλn (|β|) ≥ 0 for all β. Thus,
LP (β0+τnv, γ)−LP (β0, γ) ≥ Dn,1+Dn,2. Let m̂0i = γ̂TB(Zi)+XT

i β0. For Dn,1,

note that Dn,1 = (1/2)
∑n

i=1

[
{Yi − (m̂0i + τnvTXi)}2 − (Yi − m̂0i)2

]
. Mimick-

ing the proof of Theorem 1 indicates that

Dn,1 = −τnvT

n∑
i=1

εiX̃i +
1
2
τ2
nvTDv + oP (1), (A.17)

where the orders of the first term and the second term are OP (n1/2τn) and
OP (nτ2

n), respectively. For Dn,2, by a Taylor expansion and the Cauchy-Schwartz
inequality, n−1Dn,2 is bounded by

√
sτnan‖v‖+τ2

nwn‖v‖2 = Cτ2
n(
√

s+wnC). As
wn → 0, both the first and second terms on the right-hand side of (A.17) dominate
Dn,2, by making C sufficiently large. Hence (A.16) holds for a sufficiently large
C.

We now prove part (II). From Lemma A6, it follows that β̂2 = 0. Let
β̂
∗
1 =

√
n(β̂1 − β10), m̂i1 = γ̂TB(Zi) + XT

i1β10, and mi1 = gT
0 (Zi) + XT

i1β10.
Then, β̂

∗
1 minimizes

1
2

n∑
i=1

[{
Yi − (m̂i1 + n−1/2XT

i1β̂
∗
1)

}2
− (Yi − m̂i1)

2

]
+ n

s∑
j=1

pλjn
(|βj |) . (A.18)

Let `n1 (β∗
1) be the first term in (A.18). Then

`n1 (β∗
1) = −n−1/2

n∑
i=1

(Yi − m̂i1)XT
i1β

∗
1 + 2−1 (β∗

1)
T

{
1
n

n∑
i=1

X⊗2
i1

}
β∗

1. (A.19)

Using the arguments similar to the proofs for (A.15) and (A.17) yields

`n1(β∗
1) = −n−1/2

n∑
i=1

β̂
∗
1 (Yi − mi1) X̃i1 +

1
2
β̂
∗T

1 E(X̃
⊗2

1 )β̂
∗
1 + oP (1).
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Using the Convexity Lemma (Pollard (1991)) and combining (A.18), one has(
E(X̃

⊗2

1 ) + Σλ

)
β̂
∗
1 + n1/2κn = n−1/2

n∑
i=1

(Yi − mi1) X̃i1 + oP (1).

Hence the asymptotic normality is derived.

References

Akaike, H. (1973). Maximum likelihood identification of gaussian autoregressive moving average

models. Biometrika 60, 255-265.

Breiman, L. (1996). Heuristics of instability and stabilization in model selection. Ann. Statist.

24, 2350-2383.

de Boor, C. (2001). A Practical Guide to Splines. Springer-Verlag, New York.

DeVore, R. A. and Lorentz, G. G. (1993). Constructive Approximation: Polynomials and Splines

Approximation. Springer-Verlag, Berlin.

Fairfield, K. M. and Fletcher, R. H. (2002). Vitamins for chronic disease prevention in adults.

J. Amer. Med. Assoc. 287, 3116-3226.

Fan, J. and Li, R. Z. (2001). Variable selection via nonconcave penalized likelihood and its or-

acle properties. J. Amer. Statist. Assoc. 96, 1348-1360.

Fan, J. and Li, R. Z. (2002). Variable selection for Cox’s proportional hazards model and frailty

model. Ann. Statist. 30, 74-99.

Faure, H., Preziosi, P., Roussel, A.-M., Bertrais, S., Galan, P., Hercberg, S. and Favie, A.

(2006). Factors influencing blood concentration of retinol, α-tocopherol, vitamin C, and β-

carotene in the French participants of the SU.VI.MAX trial. European Journal of Clinical

Nutrition 60, 706-717.

Foster, D. P. and George, E. I. (1994). The risk inflation criterion for multiple regression. Ann.

Statist. 22, 1947-1975.

Frank, I. E. and Friedman, J. H. (1993). A statistical view of some chemometrics regression

tools. Technometrics 35, 109-148.

Hastie, T. and Tibshirani, R. (1990). Generalized Additive Models. Chapman and Hall, London.

Huang, J. (1999). Efficient estimation of the partly linear additive Cox model. Ann. Statist. 27,

1536-1563.

Huang, J. Z. (2003). Local asymptotics for polynomial spline regression. Ann. Statist. 31, 1600-

1635.

Li, Q. (2000). Efficient estimation of additive partially linear models. Int. Econometric Rev. 41,

1073-1092.

Li, R. Z. and Liang, H. (2008). Variable selection in semiparametric regression modeling. Ann.

Statist. 36, 261-286.

Liang, H. and Li, R. Z. (2009). Variable selection for partially linear models with measurement

errors. J. Amer. Statist. Assoc. 104, 234-248.

Liang, H., Thurston, S., Ruppert, D., Apanasovich, T. and Hauser, R. (2008). Additive partial

linear models with measurement errors. Biometrika 95, 667-678.

Lin, X. H. and Carroll, R. J. (2001). Semiparametric regression for clustered data using gener-

alized estimating equations. J. Amer. Statist. Assoc. 96, 1045-1056.



1248 XIANG LIU, LI WANG AND HUA LIANG

Ni, H., Zhang, H. H. and Zhang, D. (2009). Automatic model selection for partially linear

models. J. Multivariate Anal. 100, 2100-2111.

Nierenberg, D. W., Stukel, T. A., Baron, J. A., Dain, B. J. and Greenberg, E. R. (1989).

Determinants of plasma levels of beta-carotene and retinol. Am. J. Epidemiology 130,

511-521.

Opsomer, J. D. and Ruppert, D. (1997). Fitting a bivariate additive model by local polynomial

regression. Ann. Statist. 25, 186-211.

Opsomer, J. D. and Ruppert, D. (1999). A root-n consistent backfitting estimator for semipara-

metric additive modeling. J. Comput. Graph. Statist. 8, 715-732.

Pollard, D. (1991). Asymptotics for least absolute deviation regression estimators. Econometric

Theory 7, 186-199.

Ravikumar, P., Liu, H., Lafferty, H. and Wasserman, L. (2008). Spam: Sparse additive models.

Advances in Neural Information Processing System 20, 1202-1208.

Ravikumar, P., Lafferty, H., Liu, H. and Wasserman, L. (2009). Sparse additive models. J. R.

Stat. Soc. Ser. B Stat. Methodol. 71, 1009-1030.

Ruppert, D., Wand, M. and Carroll, R. (2003). Semiparametric Regression. Cambridge Univer-

sity Press, New York.

Schwarz, G. (1978). Estimating the dimension of a model. Ann. Statist. 6, 461-464.

Stone, C. J. (1985). Additive regression and other nonparametric models. Ann. Statist. 13,

689-705.

Stone, C. J. (1986). The dimensionality reduction principle for generalized additive models.

Ann. Statist. 14, 590-606.

Tibshirani, R. (1996). Regression shrinkage and selection via the LASSO. J. R. Stat. Soc. Ser.

B Stat. Methodol. 58, 267-288.

van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes.

Springer-Verlag, New York.

Wang, L. and Yang, L. (2007). Spline-backfitted kernel smoothing of nonlinear additive autore-

gression model. Ann. Statist. 35, 2474-2503.

Xie, H. and Huang, J. (2009). SCAD-penalized regression in high-dimensional partially linear

models. Ann. Statist. 37, 673-696.

Zou, H. (2006). The adaptive lasso and its oracle properties. J. Amer. Statist. Assoc. 101,

1418-1429.

Department of Biostatistics and Computational Biology, University of Rochester Medical Cen-

ter, Rochester, NY 14642, U.S.A.

E-mail: xliu@bst.rochester.edu

Department of Statistics, University of Georgia, Athens, GA 30602, U.S.A.

E-mail: lilywang@uga.edu

Department of Biostatistics and Computational Biology, University of Rochester Medical Cen-

ter, Rochester, NY 14642, U.S.A.

E-mail: hliang@bst.rochester.edu

(Received May 2009; accepted January 2010)

file:xliu@bst.rochester.edu
file:lilywang@uga.edu
file:hliang@bst.rochester.edu

	1. Introduction
	2. Estimation and Variable Selection Procedure
	2.1. Spline approximation
	2.2. SCAD-penalty variable selection procedure

	3. Simulation Studies
	4. A Nutritional Study
	5. Discussion
	Appendix
	A.1. Assumptions
	A.2. Technical lemmas
	A.3. Proof of Theorem 1
	A.4. Proof of Theorem 2


