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Abstract: A profile likelihood inference is made for the regression coefficient and

frailty parameters in the correlated gamma-frailty model for current status family

data. With the introduction of an identifiability assumption, the identifiability
of the parameters and the existence of the nonparametric maximum likelihood

estimate (NPMLE) are established, the consistency and convergence rate of the

NPMLE are obtained, the invertibility of the efficient Fisher information matrix
is proved, and a quadratic expansion of the profile likelihood is established. From

these, we show that the NPMLE of the parameters of interest is asymptotically

normal and efficient, its covariance matrix can be estimated consistently by means

of the profile likelihood, and the likelihood ratio test is asymptotically chi-squared.
A simulation study is carried out to illustrate the numerical performance of the

likelihood ratio test.
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1. Introduction

As explained in Parner (1998) and Yashin, Vaupel and Iachine (1995), an

appropriate survival model for the analysis of family data with covariates is

the correlated gamma-frailty model, henceforth CGFM. This model extends the

Cox’s proportional hazards model by the introduction of a frailty variable, which

acts multiplicatively on the baseline hazard function, and consists of a compo-

nent common to every individual in the family and a component specific to each

individual. Parner (1998) provided an asymptotic theory for nonparametric max-

imum likelihood estimation in the CGFM for right censored family data. In this

paper, we are interested in the likelihood approach to statistical inference in the

CGFM for current status family data.

Let Tik, Cik and Zik be the survival time, the examination time, and the co-

variate of the ith individual in the kth family in a study of current status family

data. We assume there are m ≥ 2 members in each family and there are K fam-

ilies. Since every subject in the study is examined at a random observation time
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Cik, and at this time it is observed whether the survival time Tik has occurred or

not, the observed data is {(C1k,∆1k, Z1k, . . . , Cmk,∆mk, Zmk) | k = 1, . . . ,K},
where ∆ik = I[Tik≤Cik ] indicates whether Tik has occurred before Cik. Both Tik

and Cik take values in [0,∞).

We suppress the k’s in the notation when considering a single family. Thus

X = (C1,∆1, Z1, . . . , Cm,∆m, Zm) denotes the data from a single family.

Let H0,H1, . . . ,Hm be independent gamma distributed random variables

with parameters (θ1θ
−2
· , θ−1

· ), (θ2θ
−2
· , θ−1

· ), . . . , (θ2θ
−2
· , θ−1

· ) respectively, where

(θ1, θ2) ∈ [0,∞)2\{(0, 0)}, and θ· = θ1 + θ2. We assume that, given Z1 =

z1, . . . , Zm = zm and H0 = η0, . . . ,Hm = ηm, the cumulative hazard function of

Ti at time t is

eθ3zi(η0 + ηi)Λ(t), (1.1)

where Λ(·) is a nondecreasing deterministic baseline function, and θ3 is a real

number.

The quantity η0 +ηi in (1.1) is called the frailty for the ith individual, where

η0 is a common component for all individuals in the family and ηi is an individual

component. We note that the frailty variable H0 +Hi is gamma distributed with

mean 1 and variance θ·. The correlation between H0 +Hi and H0 +Hj, i 6= j, is

θ1θ
−1
· . Hence, if θ2 is zero, the correlation reduces to 1, and (1.1) is the so-called

shared gamma frailty model.

We assume further that given Z1, . . . , Zm, H0, . . . ,Hm, the variables T1, . . .,

Tm, C1, . . . , Cm are conditionally independent, the random vectors (C1, . . . , Cm,

Z1, . . . , Zm) and (H0, . . . ,Hm) are independent, and the joint distribution of

(C1, . . . , Cm, Z1, . . . , Zm) does not involve θ1, θ2, θ3 and Λ. Let η = (η0, . . . , ηm)

and θ = (θ1, θ2, θ3). Using (1.1) and the preceding assumptions, we know the

likelihood for X given H0 = η0, . . . ,Hm = ηm is proportional to

q(θ3,Λ; η,X) =

m
∏

i=1

[

1 − e−eθ3Zi(η0+ηi)Λ(Ci)
]∆i

[

e−eθ3Zi(η0+ηi)Λ(Ci)
]1−∆i

. (1.2)

Multiplying (1.2) by the joint density of (H0,H1, . . . ,Hm), denoted by p(η; θ1, θ2),

and integrating over η, we get the likelihood for X:

lik(θ,Λ;X) =

∫

[0,∞)m+1

p(η; θ1, θ2)q(θ3,Λ; η,X)dη. (1.3)

We note that if γ(y; a, b) = (ba/Γ(a))ya−1e−by denotes the density of the gamma

distribution with shape parameter a and scale parameter b, then

p(η; θ1, θ2) = γ(η0; θ1θ
−2
· , θ−1

· )

m
∏

i=1

γ(ηi; θ2θ
−2
· , θ−1

· ).
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The parameter space for (θ,Λ) we consider is Θ × L, where Θ is a compact

subset of ([0,∞)2\{(0, 0)}) ×R1 and

L = {Λ : [0, τ) → [0,∞) | Λ(0) = 0, Λ is nondecreasing and right continuous}.

Here τ ∈ (0,∞]. Throughout, we assume that the true baseline cumulative hazard

function Λ0 is continuous. In Sections 3, 4 and 5, we suppose the true parameter

θ0 = (θ10, θ20, θ30) is an interior point of Θ. This paper studies the inference

problem regarding the frailty parameters θ1, θ2, and the regression coefficient θ3
based on observations of X only.

Statistical inference in Cox’s proportional hazards model for current

status data was studied by Huang and Wellner (1995), Huang (1996) and

Murphy and van der Vaart (1997, 1999, 2000), among others. In particular, they

show that the nonparametric maximum likelihood estimate, henceforth NPMLE,

of the regression coefficient is asymptotically normal and efficient with
√
K con-

vergence rate, the likelihood ratio test for the regression parameter is asymptoti-

cally chi-squared, and the covariance matrix of the NPMLE can be estimated con-

sistently by means of the profile likelihood. In fact, Murphy and van der Vaart

(2000) provide a set of conditions under which semiparametric profile likelihoods

admit asymptotic quadratic expansions, and present many of the above results

as consequences of the quadratic expansion, consistency of the NPMLE, and the

invertibility of the efficient Fisher information matrix.

The purpose of this paper is to establish, with the introduction of an identifia-

bility assumption, the consistency of the NPMLE, the invertibility of the efficient

Fisher information, and the asymptotic quadratic expansion for the semiparam-

etic profile likelihood. Based on these results and Murphy and van der Vaart

(2000) we obtain an asymptotic profile likelihood theory. We note that Bickel

and Ritov (2000) and Murphy and van der Vaart (2000) pointed out that the

hardest part of a profile likelihood theory might be the verification of the gen-

eral conditions described, for example, in Murphy and van der Vaart (2000), and

this is borne out here. For example, we need to show that the efficient score is

Lipschitz, without the availability of its closed form; we need an upper bound

for the entropy of the log-likelihoods; we need to use the identifiability assump-

tion to study the modulus of continuity of certain empirical process indexed by

log-likelihoods.

This paper is organized as follows. Section 2 establishes the identifiability

of the parameters and the existence and the consistency of the NPMLE under

certain regularity conditions. These conditions are reasonable, and can be verified

computationally in applications. Section 3 exhibits the efficient score function

and the efficient Fisher information matrix, and indicates the invertibility of the

latter. Section 4 provides a convergence rate of the NPMLE in an appropriate
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norm. Section 5 establishes a quadratic expansion of the profile likelihood for

θ, and derives from it the asymptotic normality and efficiency of the NPMLE

of θ, the asymptotic distribution of the profile likelihood ratio statistic, and

a consistent estimate of the covariance matrix of the NPMLE of θ. Section 6

presents a simulation study to indicate the numerical performance of the profile

likelihood ratio statistic, and Section 7 discusses computational issues for future

studies.

Throughout, let P0 denote the underlying distribution. For a real vector ν,

let νT denote its transpose, νi its ith component, and ‖ν‖ its Euclidean norm.

We use the notations oP (1) and OP (1), respectively, for a sequence of random

vectors converging to zero in probability and being uniformly tight.

We also use the notations PK and GK , respectively, for the empirical dis-

tribution and the empirical process for the random sample {X1, . . . ,XK} of X.

Moreover, we use the operator notation for evaluating expectation. Thus for

every measurable g and probability measure P, we have

PKg =
1

K

K
∑

k=1

g(Xk), Pg =

∫

gdP,

GKg =
√
K(PK − P0)g =

1√
K

K
∑

k=1

(g(Xk) − P0g).

2. Nonparametric Maximum Likelihood Estimate

This section contains three subsections. The first studies the parameter

identifiability; the second and the third establish, respectively, the existence and

consistency of the NPMLE (θ̂K , Λ̂K) of (θ0,Λ0). The following assumptions are

made.

(A1) Given (Z1, . . . , Zm) = (z1, . . . , zm), each examination variable Ci has a com-

mon continuous conditional density function whose support is an interval

[τ1, τ2], with 1/M < Λ0(τ1) ≤ Λ0(τ2) < M for some constant M > 0.

(A2) Each individual covariate Zi is bounded and non-degenerate.

(A3) (Identifiability) There exists (c∗1, . . . , c
∗
m) in (τ1, τ2)

m for which there are

m+ 3 different values of (δ1, . . . , δm, z1, . . . , zm) such that if

( 3
∑

i=1

ui
∂

∂θi
+

m
∑

i=1

ui+3
∂

∂yi

)

∣

∣

∣

∣

∣

(θ,y1,...,ym)=(θ0,Λ0(c∗1),...,Λ0(c∗m))

log

∫

p(η; θ1, θ2)

m
∏

i=1

[

1−e−eθ3zi (η0+ηi)yi

]δi
[

e−eθ3zi(η0+ηi)yi

]1−δi

dη=0 (2.1)
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for each of these m+ 3 values, then u1 = · · · = um+3 = 0. Here δi ∈ {0, 1}
for every i = 1, . . . ,m, and (z1, . . . , zm) is in the support of the distribution

of (Z1, . . . , Zm).

(A4) Λ0 is continuously differentiable on [τ1, τ2] with positive derivative.

Remarks. Assumption (A3) is needed in establishing the identifiability of the

parameters (see Theorem 2.1), the consistency of the NPMLE, the invertibility

of the efficient Fisher information matrix for θ at (θ0,Λ0) (see Theorem 3.3), and

a convergence rate of the NPMLE (see Section 4). This indicates that in the

general framework, Assumption (A3) plays the same fundamental role here as

the identifiability Assumption II plays in Chang, Hsiung, Wang and Wen (2005)

concerning NPMLE in the Cox-gene model. However, we would like to point

out that, except for the identifiability of parameters, the proofs of the major

theorems in the present paper are markedly different from those in Chang et al.

(2005); the main difference comes from the fact that the NPMLE in Chang et al.

(2005) can be viewed as a Z-estimator, meaning that it is the zero of estimating

functions, and that here it is still an M-estimator, the maximizer of a criterion

function. A general discussion of M-estimators and Z-estimators can be found in

van der Vaart and Wellner (1996) and van der Vaart (1998).

Without loss of generality, we assume that all the random variables are

defined on a sample space Ω with a specific σ-field.

2.1. Identifiability of the parameters

Theorem 2.1. There exists d∗ > 0 such that if ‖(θ − θ0, (Λ − Λ0)(c
∗
1), . . . , (Λ −

Λ0)(c
∗
m))‖ < d∗, and lik(θ,Λ) = lik(θ0,Λ0) a.s. under P0, then θ = θ0 and

Λ = Λ0 on [τ1, τ2].

Proof. For every positive integer n, we know from (1.2), (A1), and the condi-

tional independence of T1, . . . , Tm, C1, . . . , Cm given Z1, . . . , Zm,H0,H1, . . . ,Hm

that

P0

(

C1 ∈ [c1, c1 + 1
n), Ci ∈ [c∗i , c

∗
i + 1

n) for i = 2, . . . ,m;

∆i = 0, Zi ∈ (zi − 1
n , zi + 1

n) for i = 1, . . . ,m

)

> 0 (2.2)

for every (c1, z1, . . . , zm) in the support of the distribution of (C1, Z1, . . . , Zm).

This shows that there exists ωn in Ω such that Zi(ωn) ∈ (zi − 1/n, zi + 1/n),

∆i(ωn) = 0 for every i = 1, . . . ,m, C1(ωn) ∈ [c1, c1 +1/n), Ci(ωn) ∈ [c∗i , c
∗
i +1/n)

for every i = 2, . . . ,m, and lik(θ,Λ;X(ωn)) = lik(θ0,Λ0;X(ωn)). Letting n go to

infinity in lik(θ,Λ,X(ωn)) = lik(θ0,Λ0;X(ωn)), we obtain

∫

p(η; θ1, θ2) exp(−eθ3z1(η0 + η1)Λ(c1))

m
∏

i=2

exp(−eθ3zi(η0 + ηi)Λ(c∗i ))dη
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=

∫

p(η; θ10, θ20) exp(−eθ30z1(η0 + η1)Λ0(c1))
m
∏

i=2

exp(−eθ30zi(η0 + ηi)Λ0(c
∗
i ))dη.

(2.3)

Using the fact that both sides of (2.3) are monotone functions in c1, it suffices to

show θ = θ0 and Λ(c∗i ) = Λ0(c
∗
i ) for i = 2, . . . ,m to establish the identifiability.

Let δi ∈ {0, 1} for i = 1, . . . ,m. Considering c1 = c∗1 and (∆1, . . . ,∆m) =

(δ1, . . . , δm) in (2.2), and using the argument leading to (2.3), we get

∫

p(η; θ1, θ2)

m
∏

i=1

[

1 − e−eθ3zi(η0+ηi)Λ(c∗i )
]δi
[

e−eθ3zi(η0+ηi)Λ(c∗i )
]1−δi

dη

=

∫

p(η; θ1, θ2)

m
∏

i=1

[

1 − e−eθ30zi(η0+ηi)Λ0(c∗i )
]δi
[

e−eθ30zi(η0+ηi)Λ0(c∗i )
]1−δi

dη.

Let G : Rm+3 7→ Rm+3 be the vector valued function whose components are of

the form

(θ, y1, . . . , ym) 7→ log

∫

p(η; θ1, θ2)
m
∏

i=1

[

1−e−eθ3zi(η0+ηi)yi

]δi
[

e−eθ3zi (η0+ηi)yi

]1−δi

dη.

Here (δ1, . . . , δm, z1, . . . , zm) are those m+ 3 different values in (A3). It suffices

to show that G is locally invertible in order to obtain the identifiability.

Applying the Inverse Function Theorem (see, for example, Theorem 9.24 in

Rudin (1976)), the locally invertibility of G in a neighborhood of (θ0,Λ0(c
∗
1), . . .,

Λ0(c
∗
m)) follows if the determinant of the Jacobian of G, denoted by JG(θ, y1, . . .,

ym), evaluated at (θ0,Λ0(c
∗
1), . . . ,Λ0(c

∗
m)) is nonzero. Since JG is an analytic

function, it is zero only on a nowhere dense closed subset of Rm+3 if it is not

identically zero. Therefore, as long as JG is not zero at (θ0,Λ0(c
∗
1), . . . ,Λ0(c

∗
m)),

which is equivalent to (A3), we can find an appropriate d∗ such that the conclu-

sion of this theorem is valid. This completes the proof.

Remarks. Although the above proof is similar to the one for Proposition A.1

in Chang et al. (2005), and could have been omitted, we keep it here because

its argument appears several times in the rest of this paper. The proof sug-

gests a method to check the identifiability assumption (A3). We now illustrate

it by considering the model with true parameters θ0 = (1, 1, 0.5) and Λ0(t) =

log(100/(100 − t)), and m = 3 members in each family. Let c∗1 = 45, c∗2 = 50 and

c∗3 = 55. Since the determinant of the linear mapping from R6 to R6 obtained

from (2.1) by specifying (δ1, δ2, δ3, z1, z2, z3) = (1, 1, 1, 0, 0, 0), (1, 1, 0, 0, 0, 0),

(1, 0, 1, 0, 1, 1), (0, 1, 1, 0, 0, 1), (0, 1, 0, 1, 0, 0) and (0, 0, 0, 1, 0, 0) is equal to 0.1866,

which is not zero, we know (A3) is satisfied, and Theorem 2.1 indicates that there
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is a neighborhood of (θ0,Λ0) on which the parameters are identifiable. Because

the above determinant is an real analytic function of (θ0,Λ0(c
∗
1), . . . ,Λ0(c

∗
m)), its

zero set is closed and nowhere dense, and if the determinant is not zero at one

point, it is never zero on a neighborhood of it. Therefore, if the identifiability is

established for a point in the parameter space, it is also established at each point

in a neighborhood of it.

2.2. Existence of NPMLE

Let X1, . . . ,XK be i.i.d. copies of X, then, according to (1.3), the likelihood

for the data {(C1k,∆1k, Z1k, . . . , Cmk,∆mk, Zmk) | k = 1, . . . ,K} is

LK(θ,Λ) =

K
∏

k=1

∫

[0,∞)m+1

p(η; θ1, θ2)

m
∏

i=1

[

1 − e−eθ3Zik (η0+ηi)Λ(Cik)

]∆ik

×
[

e−eθ3Zik (η0+ηi)Λ(Cik)

]1−∆ik

dη. (2.4)

Since only the values of Λ at the Cik matter in (2.4), all the estimates Λ̂K of Λ0

considered in this paper are right continuous nondecreasing step functions with

possible jump points Cik.

Theorem 2.2. If the set {(ik, i′k′) | Cik < Ci′k′ ,∆ik = 1,∆i′k′ = 0} is nonempty,

then there exists (θ̂K , Λ̂K) that maximizes LK(θ,Λ) subject to θ ∈ Θ and Λ in

the aforesaid and constrained class.

The condition in Theorem 2.2 is theoretically interesting. Consider, for ex-

ample, the situation that Tik refers to age of onset of a certain disease. In this

case, violation of the condition means all the early examined subjects are not af-

fected and the late examined are affected, which indicates that this age of onset

has little variance and hence little statistical study of the problem is needed.

Proof. For an estimate Λ̂K of Λ0, we take ŷik = Λ̂K(Cik) and ŶK to be the

matrix (ŷik). Then the maximum likelihood estimate of θ0 = (θ10, θ20, θ30) and

Λ0 is the θ̂K = (θ̂1K , θ̂2K , θ̂3K) and Λ̂K , represented by ŶK that maximizes

ψ(θ, Y ) =

K
∏

k=1

∫

p(η; θ1, θ2)

m
∏

i=1

[

1−e−eθ3Zik (η0+ηi)yik

]∆ik
[

e−eθ3Zik (η0+ηi)yik

]1−∆ik

dη,

subject to (θ, Y ) ∈ Θ ×D, where

D = {(yik) ∈ Rm×K | 0 ≤ yik ≤ yi
′
k
′ if Cik ≤ Ci

′
k
′ for every pair (ik, i

′

k
′

)}.

For fixed θ, we first show that there exists an element Λ̂K(·, θ) in L that

maximizes LK(θ,Λ) under the above constraint.
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Let C(1) ≤ · · · ≤ C(mK) denote the order statistic of {Cik | i = 1, . . . ,m, k =

1, . . . ,K}, and let ∆(j) = ∆ik, Z(j) = Zik, y(j) = Λ(Cik) if C(j) = Cik. We note

that if ∆(1) = 0, then Λ̂K(C(1), θ) = 0, and if ∆(mK) = 1, then Λ̂K(C(mK), θ) =

∞. This shows that the terms associated with ∆(1) = 0 and ∆(mK) = 1 in ψ
are 1, and hence do not contribute anything to ψ. Therefore, without loss of

generality, we may assume that ∆(1) = 1 and ∆(mK) = 0 in establishing the

existence of Λ̂K(·, θ).
In view of

|ψ(θ, Y )| ≤
∫

p(η; θ1, θ2) exp(−eθ3Z(mK)(η0 + η1)y(mK))dη

= (1 + θ·e
θ3Z(mK)y(mK))

−θ−1
· , (2.5)

there exists d0 > 0 such that

max
y(mK)≤d0

ψ(θ, Y ) > sup
y(mK)>d0

ψ(θ, Y ). (2.6)

Because ψ is a continuous function, it has a maximizer on any compact set. This
together with (2.6) gives the existence of Λ̂K(·, θ).

Using (2.5), we can show ψ is uniformly continuous on Θ×D, and hence the

mapping θ 7→ LK(θ, Λ̂K(·, θ)) is continuous. Since Θ is compact, the maximizer
θ̂K exists. Let Λ̂K(·) = Λ̂K(·, θ̂K). Since sup(θ,Λ) LK(θ,Λ) = supθ LK(θ, Λ̂K(·, θ)),
we know (θ̂K , Λ̂K) maximizes (2.4). This completes the proof.

2.3. Consistency

The following theorem can be established in the framework of Wald that
studies the consistency of maximum likelihood estimates (see, for example, van

der Vaart (1998), pp.47-51); its proof is hence omitted.

Theorem 2.3. θ̂K → θ0 a.s. and supt∈[τ1,τ2] |Λ̂K(t) − Λ0(t)| → 0 a.s..

3. Efficient Score

The purpose of this section is to find the efficient score and to show

the invertibility of the Fisher information matrix. Readers are referred to
Bickel, Klaassen, Ritov and Wellner (1993) and van der Vaart (1998) for these

definitions and concepts.

Let

lθ(θ,Λ)(X) =

(

lθ1(θ,Λ)(X), lθ2(θ,Λ)(X), lθ3(θ,Λ)(X)

)

,

where lθi
(θ,Λ)(X) = ∂

∂θi
log lik(θ,Λ;X). lθi

(θ,Λ) and lθ(θ,Λ) are the score func-

tion for θi and θ at (θ,Λ), respectively.
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Let Λε = Λ+εh, where ε is positive and h is a nondecreasing and nonnegative

function defined on [0, τ ]. The score function for Λ in the direction h at (θ,Λ),

denoted by lΛ(θ,Λ)[h], is defined by

lΛ(θ,Λ)[h](X) =
∂

∂ε

∣

∣

∣

∣

ε=0

log lik(θ,Λε;X).

A little calculation shows that

lΛ(θ,Λ)[h](X) =
m
∑

i=1

h(Ci)Wi(θ,Λ;X), (3.1)

where

Wi(θ,Λ;X) = lik(θ,Λ;X)−1

×
∫

p(η; θ1, θ2)q(θ3,Λ; η,X)eθ3Zi(η0 + ηi)

[

∆i

1 − e−eθ3Zi (η0+ηi)Λ(Ci)
− 1

]

dη.

We consider the closed linear span (in L2(P0)) of the score functions lΛ(θ,Λ)

[h] for h ∈ H, the set of all bounded functions defined on [0, τ ] with ‖h‖BV <∞.

Here the bounded variation norm ‖h‖BV is defined to be the sum of the absolute

value of h(τ1) and the total variation of h on the interval [τ1, τ2]. H is a Banach

space under this norm. Let A be the continuous operator from H to H defined

by

(Ah)(u) =

m
∑

i=1

m
∑

j=1

E0(h(Cj)Wj(θ0,Λ0;X)Wi(θ0,Λ0;X)|Ci = u), (3.2)

which is motivated by (3.6) below. Using the following Lemma 3.2, the inverse

A−1 of A exists. Let h∗ = (h∗1, h
∗
2, h

∗
3) be defined by

h∗j (u) =

(

A−1(

m
∑

i=1

E0

[

lθj
(θ0,Λ0;X)Wi(θ0,Λ0;X)|Ci = ·

]

)

)

(u), (3.3)

for j = 1, 2, 3. In fact, (3.3) becomes

h∗j (u) =
E0

[

lθj
(θ0,Λ0;X)

∑m
i=1Wi(θ0,Λ0;X)|C1 = u

]

E0 [(
∑m

i=1Wi(θ0,Λ0;X))2|C1 = u ]
(3.4)

when all the members in the same family share a common examination time C1.

We note that the functions {h∗j | j = 1, 2, 3} are unique only up to null sets

relative to Q, the distribution of examination variable Ci.

Let lΛ(θ0,Λ0)[h
∗] = (lΛ(θ0,Λ0)[h

∗
1], lΛ(θ0,Λ0)[h

∗
2] , lΛ(θ0,Λ0)[h

∗
3]).
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Theorem 3.1. The efficient score function for θ at (θ0,Λ0) is l̃0 = lθ(θ0,Λ0) −
lΛ(θ0,Λ0)[h

∗].

We note that the efficient Fisher information matrix for θ at (θ0,Λ0), denoted

by I0, is I0 = P0 l̃
T
0 l̃0. We will show that I0 is positive definite in Theorem 3.3.

Proof. It suffices to show that

P0(lθj
(θ0,Λ0)−lΛ(θ0,Λ0)[h

∗
j ])(lΛ(θ0,Λ0)[h]) = 0, (3.5)

for every h ∈ H and every j = 1, 2, 3. Substituting (3.1) into (3.5), we get

E0

[

lθ(θ0,Λ0;X)

m
∑

i=1

h(Ci)Wi(θ0,Λ0;X)

]

= E0

[ m
∑

k=1

h∗(Ck)Wk(θ0,Λ0;X)

m
∑

i=1

h(Ci)Wi(θ0,Λ0;X)

]

. (3.6)

Since each Ci has the same marginal distribution Q, (3.6) becomes

m
∑

i=1

∫

h(Ci)E0

[

lθ(θ0,Λ0;X)Wi(θ0,Λ0;X)|Ci

]

dQ(Ci)

=
m
∑

i=1

∫

h(Ci)E0

[ m
∑

k=1

h∗(Ck)Wk(θ0,Λ0;X)Wi(θ0,Λ0;X)|Ci

]

dQ(Ci).

Thus (3.5) is equivalent to

∫

h(u)
m
∑

i=1

E0

[

lθ(θ0,Λ0;X)Wi(θ0,Λ0;X)|Ci = u

]

dQ(u)

=

∫

h(u)

m
∑

i=1

E0

[ m
∑

k=1

h∗(Ck)Wk(θ0,Λ0;X)Wi(θ0,Λ0;X)|Ci = u

]

dQ(u). (3.7)

In view of the definition of h∗ in (3.3), we know (3.7) is satisfied. This completes

the proof.

Lemma 3.2. The linear operator A defined by (3.2) is onto and continuously

invertible.

Proof. It suffices to show that A is injective and is the sum of a compact operator

and a continuously invertible and surjective operator (see, for example, Theorem

4.25 in Rudin (1973), or Lemma 25.93 in van der Vaart (1998)).

We first consider the injectivity of A. If Ah = 0 for some h ∈ H, then
∫

h(Ah)dQ = 0. Combining this with (3.1) and (3.2), we know P0(lΛ(θ0,Λ0)[h])
2

= 0, and hence lΛ(θ0,Λ0)[h] = 0 a.s. [P0].
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Considering ∆i = 0, Zi near zi, and Ci near c1 from the right for i = 1, . . . ,m

in lΛ(θ0,Λ0)[h] = 0, and use the argument for deriving (2.3) to get

h(c1)

[ m
∑

i=1

∫

p(η; θ10, θ20)e
θ30zi(η0 + ηi)

m
∏

j=1

e−eθ30zj (η0+ηj)Λ0(c1)dη

]

= 0

for almost every (c1, z1, . . . , zm) in the support of the distribution (C1, Z1, . . .,

Zm). Since the term in the square brackets of the preceding equation is positive

for almost every (c1, z1, . . . , zm), we know h = 0 a.e. [Q].

We now show that A is the sum of a compact operator and a continuously

invertible and surjective operator. In view of

(Ah)(u) = h(u)

m
∑

i=1

E0(W
2
i (θ0,Λ0;X)|Ci = u)

+
m
∑

i=1

m
∑

j=1
j 6=i

E0(h(Cj)Wj(θ0,Λ0;X)Wi(θ0,Λ0;X)|Ci = u),

we define A0 : H → H by

(A0h)(u) = h(u)

m
∑

i=1

E0(W
2
i (θ0,Λ0;X)|Ci = u).

Since
∑m

i=1E0(W
2
i (θ0,Λ0;X)|Ci = u) > 0 with probability 1, we know A0 is

onto and continuously invertible. Therefore, it suffices to show that A−A0 is a

compact operator. Note that A−A0 is a linear operator with

‖Ah−A0h‖BV

=
∥

∥

∥

m
∑

i=1

m
∑

j=1
j 6=i

∫ τ2

τ1

h(Cj)E0(Wj(θ0,Λ0;X)Wi(θ0,Λ0;X)|Ci = u,Cj)dQ(Cj)
∥

∥

∥

BV

≤ b‖h‖BV , (3.8)

for every h ∈ H and some constant b > 0. Using (3.8), Helly’s Selection

Lemma, and the Dominated Convergence Theorem, we know every sequence

(Ahn −A0hn)n≥1 has a convergent subsequence if hn in H satisfies ‖hn‖BV ≤ 1.

This completes the proof.

Theorem 3.3. I0 is positive definite.

Proof. Let ν = (ν1, ν2, ν3) ∈ R3. Since νI0ν
T = P0(l̃0ν

T )2 ≥ 0, it suffices to

show that νI0ν
T = 0 implies ν = 0.
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Suppose νI0ν
T = 0, then l̃0ν

T = 0 a.s. [P0]. Let δi ∈ {0, 1}, zi be the point

in the support of the distribution of Zi, and c∗i be the point given in (A3).

Considering ∆i = δi, Zi near zi, and Ci near c∗i from the right for i = 1, . . . ,m

in l̃0ν
T = 0, and use the argument for deriving (2.3) to get

( 3
∑

j=1

νj
∂

∂θj
−

m
∑

i=1

(
3
∑

j=1

νjh
∗
j (c

∗
i ))

∂

∂yi

)

∣

∣

∣

∣

∣

∣

(θ,y1,...,ym)=(θ0,Λ0(c∗1),...,Λ0(c∗m))

log

∫

p(η; θ1, θ2)

m
∏

k=1

[

1 − e−eθ3zk (η0+ηk)yk

]δk
[

e−eθ3zk (η0+ηk)yk

]1−δk

dη = 0

for (δ1, . . . , δm) ∈ {0, 1}m and almost every (z1, . . . , zm) in the support of the

distribution of (Z1, . . . , Zm). Using (A3), we know ν1 = ν2 = ν3 = 0. This

completes the proof.

4. Rate of Convergence

With the consistency established in Subsection 2.3, we now apply empiri-

cal process theory to study the rate of convergence for (θ̂K , Λ̂K) under the as-

sumption that (θ̂K , Λ̂K) ∈ Nθ0 × L0, where Nθ0 is a neighborhood of θ0 and

L0 = {Λ ∈ L | 1/M ≤ Λ(τ1) ≤ Λ(τ2) ≤M}. Define the profile likelihood for θ,

pLK(θ) = sup
Λ∈L0

LK(θ,Λ),

where LK(θ,Λ) is the full likelihood given by (2.4). For every fixed θ, denote by

Λ̂θ a random element at which the supremum in the definition of pLK is achieved.

The existence of Λ̂θ can be established by the argument in the proof of Theorem

2.2.

The main result of this section is the following.

Theorem 4.1. For every random sequence θ̃K
P→ θ0,

‖Λ̂θ̃K
− Λ0‖2,Q = OP (‖θ̃K − θ0‖ +K− 1

3 ), (4.1)

where ‖Λ̂θ̃K
−Λ0‖2,Q = (

∫

(Λ̂θ̃K
−Λ0)

2dQ)1/2, and Q is the marginal distribution

of the examination variable Ci.

The proof of Theorem 4.1 is at the end of this section, when a series of

lemmas is established. Lemma 4.2 provides an upper bound for the entropy-

with-bracketing integral for the class of log-likelihood functions. Lemmas 4.4

and 4.5 concern the modulus of continuity of the empirical process indexed by

the log-likelihoods.
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Let Ψ = {log lik(θ,Λ) | (θ,Λ) ∈ Nθ0 × L0}. For any probability measure P

on the sample space Ω, let L2(P ) = {g | Pg2 < ∞} and ‖g‖2,P = (Pg2)1/2 for
g ∈ L2(P ). Given any subclass C of L2(P ), we define the bracketing number

N[ ](ε, C, L2(P )) = min{N | there exists fL
1 , f

U
1 , . . . , f

L
N , f

U
N such that

‖fL
n − fU

n ‖2,P < ε, and for each f ∈ C, fL
n ≤ f ≤ fU

n for some 1 ≤ n ≤ N},
and the bracketing integral

J[ ](δ, C, L2(P )) =

∫ δ

0

√

1 + logN[ ](ε, C, L2(P ))dε.

Lemma 4.2. logN[ ](ε,Ψ, L2(P0)) = O(1/ε) as ε decreases to 0.

Proof. Because of the monotonicity of the elements in L0, we know N[ ](ε,L0,

L2(Q)) ≤ ec/ε for some constant c > 0. (See, for example, Theorem 2.7.5 of
van der Vaart and Wellner (1996)). This implies that there exists a sequence of

functions {Λ̃L
j , Λ̃

U
j , j = 1, . . . , J}, where J = O(ec/ε), such that ‖Λ̃U

j −Λ̃L
j ‖2,Q < ε,

and for each Λ ∈ L0, Λ̃L
j ≤ Λ ≤ Λ̃U

j for some 1 ≤ j ≤ J. Let ΛL
j = Λ̃L

j − ε and

ΛU
j = Λ̃U

j + ε. Then, ‖ΛU
j − ΛL

j ‖2,Q < 3ε. Since elements of L0 are uniformly

bounded away from zero, we can choose ε small enough that each ΛL
j also stays

away from zero.

For each Λ ∈ L0, we assign one pair ΛL
j and ΛU

j so that Λ̃L
j ≤ Λ ≤ Λ̃U

j . For

(θ,Λ) ∈ Nθ0 × L0, we define

lLj,θ(x)=log

∫

p(η; θ1, θ2)

m
∏

i=1

[

1−e−eθ3zi (η0+ηi)ΛL
j (ci)

]δi
[

e−eθ3zi(η0+ηi)ΛU
j (ci)

]1−δi

dη,

lUj,θ(x)=log

∫

p(η; θ1, θ2)

m
∏

i=1

[

1−e−eθ3zi (η0+ηi)Λ
U
j (ci)

]δi
[

e−eθ3zi(η0+ηi)Λ
L
j (ci)

]1−δi

dη.

Here x = (c1, δ1, z1, . . . , cm, δm, zm).

Consider the function

f(α;x) = log

∫

p(η; θ1, θ2)

m
∏

i=1

[

1 − e−eθ3zi(η0+ηi)yi

]δi
[

e−eθ3zi(η0+ηi)yi

]1−δi

dη,

(4.2)

where α = (θ, y1, . . . , ym) is in Nθ0 × [1/M,M ]m, and x in the range of X.

Let α
′

= (θ
′

, (δ1Λ
U
j + (1 − δ1)Λ

L
j )(c1), . . . , (δmΛU

j + (1 − δm)ΛL
j )(cm)) and

α
′′

= (θ,Λ(c1),
. . . ,Λ(cm)). Applying the Mean Value Theorem, there exists an intermediate

point α̃ between α
′

and α
′′

such that

lU
j,θ′

(x) − log lik(θ,Λ;x)
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= f(α
′

;x) − f(α
′′

;x)

=

3
∑

i=1

fi(α̃)(θ
′

i−θi)+

m
∑

i=1

fi+3(α̃)

[

δi(Λ
U
j −Λ)(ci)+(1−δi)(ΛL

j −Λ)(ci)

]

. (4.3)

Here fi denotes the partial derivative of f with respect to αi with (α1, α2, α3) = θ,

and (α4, . . . , αm+1)=(y1, . . . , ym). We note that, for 4≤ i≤m+3, fi(α;x)/(2δi−1)

is positive and uniformly bounded in (α;x). It follows from (4.3) that

lU
j,θ′

(x) − log lik(θ,Λ;x)

≥ −b0‖θ
′ − θ‖ + b1

m
∑

i=1

[2δi − 1]

[

δi(Λ
U
j − Λ)(ci) + (1 − δi)(Λ

L
j − Λ)(ci)

]

(4.4)

for some constants b0, b1 > 0.

By the definition of (ΛL
j ,Λ

U
j ), we know form (4.4) that lU

j,θ
′ (x)−log lik(θ,Λ;x)

≥ −b0‖θ′ −θ‖+ b1ε. Similarly, we have lL
j,θ′

(x)− log lik(θ,Λ;x) ≤ b0‖θ′ −θ‖− b2ε
for some constant b2 > 0.

Let θ(1), . . . , θ(N) be points in Nθ0 such that for every θ ∈ Nθ0, ‖θ − θ(n)‖ ≤
min{b1ε/b0, b2ε/b0} for some 1 ≤ n ≤ N. Therefore, for every (θ,Λ) in Nθ0 ×L0,

there exist θ(n), ΛL
j and ΛU

j such that

lL
j,θ(n) ≤ log lik(θ,Λ) ≤ lU

j,θ(n) . (4.5)

Because Nθ0 ⊂ R3, we note that N can be on the order of O(1/ε3).

Furthermore, we know from the Mean Value Theorem that

‖lU
j,θ(n) − lL

j,θ(n)‖2
2,P ≤ E

(

b3

m
∑

i=1

|ΛU
j (ci) − ΛL

j (ci)|2
)

= b3m‖ΛU
j − ΛL

j ‖2
2,Q < b3m(3ε)2 (4.6)

for some b3 > 0. It follows from (4.5) and (4.6) that N[ ](ε,Ψ, L2(P )) is of the or-

der NJ = O(ec/ε/ε3), and hence logN[ ](ε,Ψ, L2(P )) = O(1/ε). This completes

the proof.

Let P1 and P2 denote the distribution of (C1, . . . , Cm) and (C1, . . . , Cm, Z1,

. . . , Zm) respectively. We consider the family of conditional log-densities of X

given (C1, . . . , Cm) = (c1, . . . , cm),

g(α;x) = log

[

lik(θ,Λ;x)
dP2(c1, . . . , cm, z1, . . . , zm)

dP1(c1, . . . , cm)

]

, (4.7)

parameterized by α = (θ,Λ(c1), . . . ,Λ(cm)) ∈ Rm+3. Here x = (c1, δ1, z1, . . . , cm,

δm, zm).
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Denote the first and the second derivative of g relative to α by ġ and g̈

respectively, and let Σ(c1,...,cm) ≡ E0(g̈(α0;X)|C1 = c1, . . . , Cm = cm). Here

α0 = (θ0,Λ0(c1), . . . ,Λ0(cm)). Since (4.7) defines a parametric model, we have

−uΣ(c1,...,cm)u
T = E0

(

(ġ(α0;X)uT )2 | C1 = c1, . . . , Cm = cm

)

≥ 0,

for every u = (u1, . . . , um+3) ∈ Rm+3.

Lemma 4.3. Σ(c∗1,...,c∗m) is negative definite.

Proof. It suffices to show that uΣ(c∗1,...,c∗m)u
T = 0 implies u = 0. Let α∗

0 =

(θ0,Λ0(c
∗
1), . . . ,Λ0(c

∗
m)). Suppose uΣ(c∗1,...,c∗m)u

T = 0, then

ġ(α∗
0; c

∗
1, δ1, z1, . . . , c

∗
m, δm, zm)uT = 0 (4.8)

for almost every δi ∈ {0, 1} and zi in the support of the distribution of Zi. Noting

that (4.8) is (2.1) precisely, we get u = 0 by (A3). This completes the proof.

Lemma 4.4. There exists a constant b > 0 such that

P0

(

log lik(θ,Λ) − log lik(θ,Λ0)

)

≤ b(−‖Λ − Λ0‖2
2,Q + ‖θ − θ0‖2)

for every (θ,Λ) ∈ Nθ0 × L0.

Proof. It suffices to show that

P0

(

log lik(θ0,Λ0) − log lik(θ,Λ0)

)

≤ b‖θ − θ0‖2, (4.9)

P0

(

log lik(θ,Λ) − log lik(θ0,Λ0)

)

≤ −b‖Λ − Λ0‖2
2,Q. (4.10)

A Taylor series argument in θ can be used to verify (4.9). We prove (4.10).

Using the Taylor’s expansion of g around α0, we know

P0

(

log lik(θ,Λ) − log lik(θ0,Λ0)

)

= E0E0

(

g(α;X) − g(α0;X) | C1, . . . , Cm

)

= E0

(

E0(ġ(α0;X)|C1, . . . , Cm)(α − α0)
T

+(α− α0)Σ(C1,...,Cm)(α− α0)
T + o(‖α − α0‖2)

)

= E0

(

lθ(θ0,Λ0)(X)(θ − θ0)
T + lΛ(θ0,Λ0)[Λ − Λ0](X)

)
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+E0

(

(α− α0)Σ(C1,...,Cm)(α− α0)
T + o(‖α− α0‖2)

)

. (4.11)

Recalling that lθ and lΛ are the score functions and using Rayleigh’s principle

(see, for example, Theorem 6.37 in Stephen, Arnold and Lawrence (1997)), we

know from (4.11) that

P0

(

log lik(θ,Λ)−log lik(θ0,Λ0)

)

≤ E0

(

λ(C1, . . . , Cm)‖α−α0‖2+o(‖α−α0‖2)

)

,

(4.12)

where λ(C1, . . . , Cm) is the largest eigenvalue of Σ(C1,...,Cm). Noting that λ is

continuous at (c∗1, . . . , c
∗
m) and using Lemma 4.3, we know λ has a negative upper

bound on some neighborhood of (c∗1, . . . , c
∗
m). Combining this with the negative

semi-definiteness of Σ(C1,...,Cm) and (4.12), we obtain (4.10). This completes the

proof.

Lemma 4.5. Let φK(δ) =
√
δ(1 +

√
δ/(δ2

√
K)) and let E∗ denote outer expec-

tation. Then there exists a constant B > 0 such that

E∗ sup
θ∈Nθ0

, Λ∈L0, ‖θ−θ0‖<δ, ‖Λ−Λ0‖2,Q<δ
|GK(log lik(θ,Λ) − log lik(θ0,Λ0))|≤BφK(δ),

for δ sufficiently small.

Proof. We first note that all elements of Ψ are uniformly bounded. Using the

Mean Value Theorem, there exists a constant b > 0 such that

P0

(

log lik(θ,Λ)−log lik(θ,Λ0)
)2 ≤ b(‖Λ−Λ0‖2

2,Q+‖θ−θ0‖2) (4.13)

for every (θ,Λ) ∈ Nθ0 × L0.

Furthermore, we know from Lemma 4.2 that

J[ ](δ,Ψ, L2(P )) = O(
√
δ) (4.14)

as δ decreases to 0. It follows from (4.13), (4.14), and Lemma 3.3 of Murphy and

van der Vaart (1999) that the proof is complete.

Proof of Theorem 4.1. In view of Lemma 4.4 and Lemma 4.5, we know

the conditions of Theorem 3.2 of Murphy and van der Vaart (1999) are satisfied

for φK(δ) =
√
δ(1 +

√
δ/(δ2

√
K)). Since K2/3φK(K−1/3) = 2

√
K, we know

‖Λ̂θ̃K
− Λ0‖2,Q = OP (‖θ̃K − θ0‖ +K−1/3) for every random sequence θ̃K

P→ θ0.

This completes the proof.

5. Profile Likelihood Theory

In this section, we focus our attention on the estimation of θ and present a

profile likelihood theory.
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Formally, the efficient score function l̃0 is the derivative at ν = θ0 of the log-

likelihood function evaluated at the path ν 7→ (ν,Λ0 +h∗(θ0−ν)T ). The so-called

least favorable submodel refers to this path. However, the second coordinate

of the preceding path may not lie in the space L0 defined in Section 4. We

now modify and replace this path to obtain an approximately least-favorable

submodel.

Let φ : [0,M ] → [0,∞) be defined by

φ(y) =



















0 for 0 ≤ y < 1
M ,

y−M−1

Λ0(τ1)−M−1 for 1
M ≤ y < Λ0(τ1),

1 for Λ0(τ1) ≤ y < Λ0(τ2),
M−y

M−Λ0(τ2) for Λ0(τ2) ≤ y ≤M.

For fixed (θ,Λ) and ν = (ν1, ν2, ν3) ∈ R3, we define

Λν(θ,Λ)(t) = Λ(t) + φ(Λ(t))(h∗ ◦ Λ−1
0 )(Λ(t))(θ − ν)T . (5.1)

Recall that a real-valued function g is Lipschitz if there exists a number L such

that |g(u1) − g(u2)| ≤ L|u1 − u2| for every u1 and u2. The least such number L

is denoted by ‖g‖Lip. Because of (A4), the mapping

u 7→
m
∑

i=1

E0(lθ(θ0,Λ0;X)Wi(θ0,Λ0;X)|Ci = u)

is Lipschitz. Let ‖∑iE0(lθ(θ0,Λ0;X)Wi(θ0,Λ0;X)|Ci = · )‖Lip = L0, and let

H0 be the closed linear span of {h ∈ H | h is Lipschitz with ‖h‖Lip ≤ L0}. We

note that the proofs of Theorem 3.1 and Lemma 3.2 indicate that the operator

A : H0 → H0 is onto and continuously invertible. This shows that the func-

tions {h∗j ; j = 1, 2, 3} are bounded and Lipschitz. Based on this and (A4), the

following result can be obtained straightforwardly.

Lemma 5.1. Λν(θ,Λ)(·) given by (5.1) defines a cumulative hazard function in

L0 for every ν sufficiently close to θ.

Using Lemma 5.1, we introduce the approximately least-favorable submodel

specified by the log-likelihood ν 7→ l(ν, θ,Λ;X) ≡ log lik(ν,Λν(θ,Λ);X). We

denote respectively the first and the second derivative of l relative to ν by

l̇(ν, θ,Λ;X) and l̈(ν, θ,Λ;X). Noting that

l̇(ν, θ,Λ;X) = lθ(ν,Λν(θ,Λ))(X) − lΛ(ν,Λν(θ,Λ))[(φh∗ ◦ Λ−1
0 )(Λ)](X), (5.2)

we know

l̇(θ0, θ0,Λ0;X) = l̃0(X), (5.3)
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the efficient score function for θ at (θ0,Λ0). Furthermore, noting that ν 7→
l(ν, θ0,Λ0) is a smooth parametric submodel, its derivatives at θ0 satisfies

P0l̈(θ0, θ0,Λ0) = −P0l̇
T (θ0, θ0,Λ0)l̇(θ0, θ0,Λ0) = −I0. (5.4)

Lemma 5.2. The class of functions {l̇(ν, θ,Λ) | (ν, θ,Λ) ∈ Nθ0 ×Nθ0 ×L0} is a

uniformly bounded Donsker class, and the class of functions {l̈(ν, θ,Λ) | (ν, θ,Λ) ∈
Nθ0 ×Nθ0 × L0} is a uniformly bounded Glivenko-Cantelli class.

Readers are referred to van der Vaart and Wellner (1996) for the definitions

of a Donsker class and a Glivenko-Cantelli class. The proof for Lemma 5.2 is

technical and hence omitted. Readers can find it in Chang, Hsiung and Wen

(2002).

Lemma 5.3. For every random sequence θ̃K
P→ θ0,

P0 l̇(θ0, θ̃K , Λ̂θ̃K
) = oP (‖θ̃K − θ0‖ +K− 1

2 ). (5.5)

Proof. Since l̇(θ, θ,Λ) is a score function for the model indexed by (θ,Λ), we

have Pθ,Λl̇(θ, θ,Λ) = 0 for every (θ,Λ). Differentiating this identity relative to θ

yields

Pθ,Λl
T
θ (θ,Λ)l̇(θ, θ,Λ)+Pθ,Λl̈(θ, θ,Λ)+

∂

∂υ

∣

∣

∣

∣

υ=θ

Pθ,Λl̇(θ, υ,Λ) = 0,

where lθ(θ,Λ) is the score function for θ. Evaluating this at (θ,Λ) = (θ0,Λ0) gives

− ∂

∂υ

∣

∣

∣

∣

υ=θ0

P0 l̇(θ0, υ,Λ0) = P0l
T
θ (θ0,Λ0)l̇(θ0, θ0,Λ0)+P0 l̈(θ0, θ0,Λ0) = I0−I0 = 0.

Here (5.4) and the fact that l̇(θ0, θ0,Λ0)(= l̃0) is orthogonal to every Λ-score are

used to get the second to last equality. Thus,

P0(l̇(θ0, θ,Λ)−l̇(θ0, θ0,Λ)) = P0

(

∂

∂υ

∣

∣

∣

∣

υ=θ∗

l̇(θ0, υ,Λ)− ∂

∂υ

∣

∣

∣

∣

υ=θ0

l̇(θ0, υ,Λ0)

)

(θ−θ0)T

for an intermediate point θ∗ between θ and θ0. Letting θ = θ̃K and Λ = Λ̂θ̃K
, and

using (4.1) and the Mean Value Theorem, we know it suffices to verify

P0 l̇(θ0, θ0, Λ̂θ̃K
) = oP (‖θ̃K − θ0‖+K− 1

2 ) (5.6)

to establish (5.5).

Noting that Pθ0,Λl̇(θ0, θ0,Λ) = 0, we have

P0l̇(θ0, θ0,Λ) = (P0 −Pθ0,Λ)(l̇(θ0, θ0,Λ)− l̇(θ0, θ0,Λ0)) + (P0 −Pθ0,Λ)l̇(θ0, θ0,Λ0).

(5.7)
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We now explain, without giving the details, that both terms on the right-hand

side are bounded by a multiple of ‖Λ − Λ0‖2
2,Q. The desired bound for the

first term is obtained by means of the Mean Value Theorem and the Cauchy-

Schwarz inequality. The bound for the second term is obtained by means of the

second-order Taylor expansion for (Λ(C1), . . . ,Λ(Cm)) 7→ lik(θ0,Λ;X) around

(Λ0(C1), . . . ,Λ0(Cm)), and the fact l̇(θ0, θ0,Λ0) is the efficient score l̃0.

Applying the rate of convergence on Λ̂θ̃K
given by Theorem 4.1 to (5.7), we

obtain P0 l̇(θ0, θ0, Λ̂θ̃K
) = OP (‖θ̃K − θ0‖2 + K−2/3). This is more than required

and thus the proof is complete.

Theorem 5.4. For every random sequence θ̃K
P→ θ0,

log pLK(θ̃K) − log pLK(θ0) = (θ̃K − θ0)
K
∑

k=1

l̃T0 (Xk) − 1

2
K(θ̃K − θ0)I0(θ̃K − θ0)

T

+oP0(
√
K‖θ̃K − θ0)‖ + 1)2. (5.8)

Proof. We apply Theorem 1 of Murphy and van der Vaart (2000) to prove

this theorem. It is easy to see that the functions (ν, θ,Λ) 7→ l̇(ν, θ,Λ;X) and

(ν, θ,Λ) 7→ l̈(ν, θ,Λ;X) are continuous at (θ0, θ0,Λ0) for P0−almost every X.

For every random sequence θ̃K
P→ θ0, (4.1) implies that Λ̂θ̃K

P→ Λ0. In view

of (5.1), (5.3), (5.5) and Lemma 5.2, we know all conditions of Theorem 1 of

Murphy and van der Vaart (2000) are satisfied. Thus the proof is complete.

Using the consistency of θ̂K , the invertibility of the efficient Fisher informa-

tion matrix I0, and the second order expansion of the profile likelihood (5.8),

we obtain the following three theorems immediately from the profile likelihood

theory of Murphy and van der Vaart (2000).

Theorem 5.5. The NPMLE θ̂K is asymptotically normal and asymptotically

efficient at (θ0,Λ0); that is,

√
K(θ̂K − θ0) = I−1

0

√
KPK l̃

T
0 + oP0(1)

d→ N(0, I−1
0 ).

Theorem 5.6. Under the null hypothesis H0 : θ = θ0, the profile likelihood ratio

statistic

lrtK(θ0) ≡ 2 log
pLK(θ̂K)

pLK(θ0)
,

is asymptotically chi-squared with three degrees of freedom. The region {θ |
lrtK(θ) ≤ χ2

3,1−α} is an associated confidence region of asymptotic level 1 − α.
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Theorem 5.7. For all sequences νK
P→ ν ∈ R3 and hK

P→ 0 such that

(
√
KhK)−1 = OP (1),

−2
log pLK(θ̂K + hKνK) − log pLK(θ̂K)

Kh2
K

P→ νI0ν
T .

6. A Simulation Study

This section reports a simulation study that illustrates the numerical perfor-

mance of the profile likelihood ratio statistic. The main task is to find supΛ∈L0

LK(θ0,Λ) and supθ∈Θ0,Λ∈L0
LK(θ,Λ). This is an optimization problem with the

objective functions defined on a set of high dimension. In order to alleviate the

computation burden, we consider sieve estimates. Let b1 < · · · < bN in [τ1, τ2].

We consider the estimates Λ̂ that are in L1 ⊂ L, which comprises step functions

with possible jump points bi. A function Λ in L1 can thus be identified with a

nonnegative vector v = (v1, . . . , vN ) with vj = Λ(bj) − Λ(bj−1) for j = 1, . . . , N ;

in fact, Λ(c) =
∑

j:bj≤c vj . The sieve maximum likelihood estimates of θ0 and Λ0

is the θ̂ and Λ̂, represented by v̂, that maximizes

Φ1(θ, v) =

K
∑

k=1

log

∫

p(η; θ1, θ2)

m
∏

i=1

[

1 − e
−eθ3Zik (η0+ηi)

P

j:bj≤Cik
vj

]∆ik

×
[

e
−eθ3Zik (η0+ηi)

P

j:bj≤Cik
vj

]1−∆ik

dη

subject to θ ∈ Θ and v ∈ (0,∞)N .

Let ξ = (ξ1, . . . , ξN+3) = (log θ1, log θ2, θ3, log v1, . . . , log vN ). Consider the

bijective transform Φ(ξ) = Φ1(θ, v) and denote the gradient of Φ relative to ξ

by Φ′; namely, Φ′ = ( ∂Φ
∂ξ1
, . . . , ∂Φ

∂ξN+3
). The following algorithm based on gradient

method is used to find the estimates.

(1) Choose a starting point ξ(1).

(2) Set J = 1.

(3) Set n = 1.

(4) Let ξ̃ = ξ(J) + 2−nΦ′(ξ(J)).

(5) If Φ(ξ(J)) > Φ(ξ̃), then set n = n+ 1 and go back to (4).

(6) If Φ(ξ(J)) ≤ Φ(ξ̃), then set ξ(J+1) = ξ̃.

(7) J = J + 1.

(8) Repeat (3)∼(7) for a suitable number M of iterations once the evidence of

convergence occurs.

(9) Set (θ̂, v̂) = (eξ
(M)
1 , eξ

(M)
2 , ξ

(M)
3 , eξ

(M)
4 , . . . , eξ

(M)
N+3).
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We generate data with θ0 = (1, 1, 0.5), Λ0(t) = log(100/(100 − t)), Z1 ∼
unif{0, 1}, C1 ∼ unif(1, 99), m = 3, and K = 400. Our study consists of
100 replicates. The parameters for the sieve are N = 98 and bi = i for i =
1, . . . , N. In applying the above algorithm, we take the starting value ξ(1) =
(0, 0, 0.5, log(1/80), log(2/80), . . ., log(98/80)) to conduct the likelihood ratio test.
Our simulation study seems to suggest that the χ2 approximation works well for
the profile likelihood ratio statistic.

The following Table 1 reports the theoretical and simulated critical values
(CV) and rejection rate (RR) under the null hypothesis H0, and Figure 1 is the
Q-Q plot for lrt400(θ0) versus χ2

3.

Table 1. Comparison of theoretical and simulated critical values (CV) and
rejection rate (RR) under H0.

Significance Level (%) CV for χ3 CV for lrt900(θ0) RR (%)

90 0.5844 0.7058 93

80 1.0052 1.1144 82

70 1.4237 1.5589 72

60 1.8692 1.9569 61

50 2.3660 2.5947 51

40 2.9462 3.3848 47

30 3.6649 3.9840 36

20 4.6416 4.8706 21

10 6.2514 6.6243 13

5 7.8147 7.8293 6

1 11.3449 9.1968 0

Figure 1. Q.Q plot for lrt400(θ0) v.s. χ2

3.
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We also studied this problem by a nonlinear conjugate gradient method with
a strong global convergence property, as developed by Dai and Yuan (1999). The
results from this method are omitted, because they are similar to those in Table 1.

7. Discussion

With the introduction of the identifiability assumption (A3), we have es-
tablished a profile likelihood theory for the correlated gamma-frailty model with
current status family data. Specifically, we have obtained a quadratic expansion
of the profile likelihood for the parameters of interest, and derived from it the
asymptotic normality and efficiency of the NPMLE, the asymptotic distribution
of the profile likelihood ratio statistic, and a consistent estimate of the covariance
matrix of the NPMLE. This approach may also be useful in other models with
family data.

In this paper, we allowed different examination times for different members
in the same family. We note that our argument can be used to obtain a profile
likelihood theory for the case that all the members in the same family share a
common examination time. This situation arises, for example, when both eyes
of a person are examined at the same time for a given disease. In fact, in this
case, the efficient score has the closed form (3.4).

To make these methods useful in applications, we need to find good ap-
proximations to Λ̂, θ̂1, θ̂2, and θ̂3, and to know the numerical performance of
the NPMLE. The simulation study in Section 6 represents our initial effort
in this direction; although it is encouraging, a thorough study is needed and
is underway. The main challenges come from the fact that the log-likelihood
Φ1(θ, v) in Section 6 is not concave, its domain of definition has high dimen-
sionality, and the likelihood itself is not concave. The latter can leave the like-
lihood ratio statistic based confidence region not convex (see Lemma A.1 of
Murphy and van der Vaart (1997); in fact, our (unreported) simulation study
does indicate this possibility. We note that, in the study of Cox’s model with
current status data, Huang (1996) made significant use of the concavity of the log-
likelihood with respect to the cumulative hazard function. Faced with the above
mentioned difficulties, we believe some of the strategies in Wellner and Zhan
(1997) and Tsodikov (2003) may be needed in attacking this problem.

We note that, although sieve approximation was introduced to handle the
situations where the ordinary likelihood does not work due to large nuisance
parameter space (see Fan and Wong (2000)for a brief discussion), the sieve ap-
proximation in Section 6 is motivated by computational concerns. It seems de-
sirable to develop an asymptotic theory for sieve profile likelihoods, which can
be obtained by modifying the current theory, so as to get a good suggestion on
the choice of sieves for computational purposes, and to see if the sieve profile
likelihood is different from the theory in the present paper.



CURRENT STATUS FAMILY DATA 1045

References

Bickel, P., Klaassen, C., Ritov, Y. and Wellner, J. A. (1993). fficient and Adaptive Estimation

for Semiparametric Models. Johns Hopkins Univ. Press, Baltimore.

Bickel, P. and Ritov, Y. (2000). Comment on ”On profile likelihood”. J. Amer. Statist. Assoc.

95, 466-468.

Chang, I. S., Hsiung, C. A., and Wen, C. C. (2002). An Asymptotic Theory for the Correlated
Gamma-Frailty Model with Current Status Family Data. Technical Report DBB-2002-1,
Division of Biostatistics and Bioinformatics, National Health Research Institutes, Taipei,
Taiwan.

Chang, I. S., Hsiung, C. A., Wang, M. C., and Wen, C. C. (2005). An asymptotic theory for
the nonparametric maximum likelihood estimator in the Cox-gene model. Bernoulli 11,
863-892.

Dai, Y. H. and Yuan, Y. (1999). A nonlinear conjugate gradient method with a strong global
convergence property. SIAM J. Optim. 10, 177-182.

Fan, J. and Wong, W. H. (2000). Comment on “On profile likelihood”. J. Amer. Statist. Assoc.

95, 468-471.

Huang, J. (1996). Efficient estimation for the Cox model with interval censoring. Ann. Statist.

24, 540-568.

Huang, J. and Wellner, J. A. (1995). Asymptotic normality of the NPMLE of linear functionals
for interval censor data, case 1. Statist. Neerlandica 49, 153-163.

Murphy, S. A. and van der Vaart, A. W. (1997). Semiparametric likelihood ratio inference.
Ann. Statist. 25, 1471-1509.

Murphy, S. A. and van der Vaart, A. W. (1999). Observed information in semiparametric mod-
els. Bernoulli 5, 381-412.

Murphy, S. A. and van der Vaart, A. W. (2000). On profile likelihood. J. Amer. Statist. Assoc.

95, 449-465.

Parner, E. (1998). Asymptotic theory for the correlated gamma-frailty model. Ann. Statist. 26,
183-214.

Rudin, W. (1973). Functional Analysis. McGraw-Hill, New York.

Rudin, W. (1976). Principles of Mathematical Analysis. 3rd edition. McGraw-Hill, New York.

Stephen, H. F., Arnold, J. I. and Lawrence, E. S. (1997). Linear Algebra. 3rd edition. Prentice-
Hall, Inc.

Tsodikov, A. (2003). Semiparametric models: a generalized self-consistency approach. J. Roy.

Statist. Soc. Ser. B 65, 3, 759-774.

Wellner, J. A. and Zhan, Y. (1997). A hybrid algorithm for computation of the nonparametric
maximum likelihood estimator from censored data. J. Amer. Statist. Assoc. 92, 945-959.

van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge Univ. Press, New York.

van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes.

Springer, New York. Asymptotic Statistics. Cambridge Univ. Press, New York.

Yashin, A., Vaupel, J. and Iachine, I. (1995). Correlated individual frailty: an advantageous
approach to survival analysis of bivariate data. Mathematical Population Studies 5, 145-
159.

Institute of Cancer Research and Div. of Biostatistics and Bioinformatics, National Health
Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan.

E-mail: ischang@nhri.org.tw



1046 I-SHOU CHANG, CHI-CHUNG WEN AND YUH-JENN WU

Department of Mathematics, Tamkang University, 151 Ying-chuan Road Tamsui, Taipei County

251, Taiwan.

E-mail: ccwen@mail.tku.edu.tw

Department of Applied Mathematics Chung Yuan Christian University, 200, Chung Pei Rd.,

Chung Li 320, Taiwan.

E-mail: yuhjenn@cycu.edu.tw

(Received February 2004; accepted January 2006)


	1. Introduction
	2. Nonparametric Maximum Likelihood Estimate
	2.1. Identifiability of the parameters

	2.2. Existence of NPMLE
	2.3. Consistency

	3. Efficient Score
	4. Rate of Convergence

	5. Profile Likelihood Theory
	6. A Simulation Study
	7. Discussion

