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Abstract: We construct a simple counterexample to the conjectures of Pollak (1985)

and Yakir, Krieger and Pollak (1999), which state that Page’s CUSUM procedure

and the Shiryayev-Roberts procedure are asymptotically minimax optimal for de-

pendent observations. Moreover, our example shows that the close relationship

between open-ended tests and change-point detection procedures no longer holds

for dependent observations. As a consequence, the standard approach which con-

structs change-point detection procedures based on asymptotically optimal open-

ended tests does not in general provide asymptotically optimal procedures for de-

pendent observations.
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1. Introduction

Sequential change-point detection problems have many important applica-

tions, including industrial quality control, reliability, fault detection, signal de-

tection, surveillance and security systems. Extensive research has been done in

this field during the last few decades. For recent reviews, we refer readers to

Basseville and Nikiforov (1993), Lai (1995, 2001), and the references therein.

In change-point problems, one observes a sequence of observations X1, X2, . . .

from some process. Initially, the process is “in control,” i.e., the X’s have some

distribution f. At some unknown time ν, the process may go “out of control”

and the distribution of the observations {Xn} changes abruptly to another dis-

tribution g. It is desired to raise an alarm as soon as the change occurs so that

appropriate action can be taken.

In the simplest situation where the observations {Xn} are independent and

both the pre-change distribution f and the post-change distribution g are com-

pletely specified, the problem is well understood and has been solved under a

variety of criteria. Two efficient detection schemes are Page’s cumulative sum

(CUSUM) procedure and the Shiryayev-Roberts procedure, see, for example,
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Page (1954), Shiryayev (1963), Roberts (1966), Lorden (1971), Moustakides

(1986), Pollak (1985) and Ritov (1990).

In practice, the assumption of independent observations is too restrictive, and

change-point problems involving dependent observations have been important

topics in the literature, see, for example, Lai (1995, 2001). It is natural to extend

Page’s CUSUM procedure or the Shiryayev-Roberts procedure, both of which

are based on likelihood ratios, to dependent observations by simply replacing

the probability densities with the corresponding conditional densities. But it is

unclear whether Page’s CUSUM and the Shiryayev-Roberts procedures are still

efficient in the presence of dependent observations.

There are two standard mathematical formulations for studying the optimal-

ity properties of Page’s CUSUM and the Shiryayev-Roberts procedures. The first

one is a Bayesian formulation, due to Shiryayev (1963), in which the change-

point ν is assumed to have a known prior distribution. There are a few papers in

the literature that used this approach to study dependent observations, see, for

example, Yakir (1994), Beibel (1997) and Lai (1998), and all show that Page’s

CUSUM and the Shiryayev-Roberts procedures are asymptotically optimal under

Bayesian formulations in their respective special models.

The second option is a minimax formulation, proposed by Lorden (1971),

in which the change-point ν is assumed to be unknown (possibly ∞) but non-

random. Lai (1998) showed that Page’s CUSUM procedure is still asymptotically

minimax optimal for dependent observations under some conditions which are

difficult to verify in general. Pollak (1987) showed that the Shiryayev-Roberts

procedure is asymptotically minimax optimal in change-point problems for post-

change distributions that are a certain type of mixture. Fuh (2003, 2004) proved

asymptotic minimax optimality of Page’s CUSUM and the Shiryayev-Roberts

procedures for hidden Markov models. Pollak conjectured that Page’s CUSUM

and the Shiryayev-Roberts procedures are asymptotically minimax optimal for

dependent observations in a wide context, see page 226 of Pollak (1985) and page

1905-1906 of Yakir, Krieger and Pollak (1999).

In this paper, we use the second of these formulations and disprove Pollak’s

conjecture by constructing a counterexample where the pre-change distribution

is a so-called “mixture distribution” and the post-change distribution is fully

specified. Section 2 states our counterexample, and Section 3 shows that Page’s

CUSUM and the Shiryayev-Roberts procedures are not asymptotically minimax

optimal in this setting. Numerical simulation results are given in Section 4.

Our example also shows that the close relationship between “open-ended

tests,” developed by Robbins (1970) and Robbins and Siegmund (1970, 1973),

and change-point detection procedures no longer holds for dependent observa-

tions. Since Lorden (1971) established such a relationship in the setting of
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independent observations and completely specified pre-change and post-change

distributions, it has been a standard approach to study change-point problems

via open-ended tests, for example, see Pollak and Siegmund (1975), Basseville

and Nikiforov (1993), and Lai (1995, 1998). Actually, it is this relationship that

leads to Pollak’s conjecture, see Section 5 of Yakir, Krieger and Pollak (1999). In

Section 5 of this paper, we demonstrate that this relationship fails for dependent

observations, and thus the standard approach of studying change-point problems

via open-ended tests could be misleading when observations are dependent.

2. The Counterexample

Consider three given probability densities f1, f2 and g such that

Eg

(

log
g(X)

fj(X)

)2
< ∞ and Efj

(

log
f1(X)

f2(X)

)2
< ∞, for j = 1, 2, (2.1)

and I1 > I2 > 0, where Ij = I(g, fj) = Eg(log(g(X)/fj(X))), j = 1, 2, are

the Kullback-Leibler information numbers. Denote respectively by Pf1
,Pf2

and

Pg the probability measures when X1, X2, . . . are independent and identically

distributed (i.i.d.) with densities f1, f2 and g. Choose a constant π0 ∈ (0, 1), say

π0 = 1/3, and define Pf = π0Pf1
+ (1 − π0)Pf2

. That is, under Pf , X1, . . . , Xn

have a “mixture” joint density

f(x1, . . . , xn) = π0

n
∏

i=1

f1(xi) + (1 − π0)

n
∏

i=1

f2(xi). (2.2)

To simplify notations, we also denote by f(·|X1, . . . , Xn−1) and g(·|X1, . . . , Xn−1)

the conditional density functions of Xn given X1, . . . , Xn−1 under Pf and Pg,

respectively. Note that g(·|X1, . . . , Xn−1) = g(·) because observations are inde-

pendent under Pg.

In change-point problems, we are interested in detecting a change in distri-

bution from Pf to Pg. For 1 ≤ ν < ∞, let P(ν) and E(ν) denote the probability

measure and expectation, respectively, when the change in distribution from Pf

to Pg occurs at the νth observation, so that X1, . . . , Xν−1 have a mixture joint

density f and Xν , Xν+1, . . . are i.i.d. with density g. Denote by Pf and Ef the

probability measure and expectation when there is no change, i.e. ν = ∞, in

which case X1, X2, . . . are distributed with mixture joint density f.

A procedure for detecting that a change has occurred is defined as a stopping

time N with respect to {Xn}n≥1. The interpretation of N is that, when N = n, we

stop taking observations at time n and declare that a change occurred somewhere

in the first n observations. We want to find a stopping time N which will stop

as soon as possible after a change occurs, but will continue taking observations
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as long as possible if no change occurs. Thus, the performance of a stopping

time N is evaluated by two criteria: the long and short Average Run Lengths

(ARL). The long ARL is defined by Ef (N). Imagining repeated applications of

such procedures, practitioners refer to the frequency of false alarms as 1/Ef (N)

and the ARL to false alarm as Ef (N). The short ARL can be defined by the

following worst case detection delay, proposed by Lorden (1971):

Eg(N) = sup
1≤ν<∞

(

ess supE(ν)[(N − ν + 1)+|X1, . . . , Xν−1]
)

.

In our theorems we can also use the average detection delay, proposed by

Shiryayev (1963) and Pollak (1985):

sup
1≤ν<∞

E(ν)(N − ν|N ≥ ν),

which is asymptotically equivalent to Eg(N).

Similar to the standard minimax formulation for independent observations,

our problem can be stated as follows: find a stopping time N that minimizes the

detection delay Eg(N) subject to

Ef (N) ≥ γ, (2.3)

where γ is a given, fixed lower bound.

For this problem, Page’s CUSUM procedure has stopping time

TCM (A) = inf
{

n ≥ 1 : max
1≤k≤n

n
∏

i=k

g(Xi|X1, . . . , Xi−1)

f(Xi|X1, . . . , Xi−1)
≥ A

}

= inf
{

n ≥ 1 : max
1≤k≤n

∏n
i=k g(Xi)

πk−1
∏n

i=k f1(Xi) + (1 − πk−1)
∏n

i=k f2(Xi)
≥ A

}

,

where

πk =
π0

∏k
i=1 f1(Xi)

π0
∏k

i=1 f1(Xi) + (1 − π0)
∏k

i=1 f2(Xi)
.

Similarly, the Shiryayev-Roberts procedure has stopping time

TSR(A) = inf
{

n ≥ 1 :

n
∑

k=1

n
∏

i=k

g(Xi|X1, . . . , Xi−1)

f(Xi|X1, . . . , Xi−1)
≥ A

}

= inf
{

n ≥ 1 :
n

∑

k=1

∏n
i=k g(Xi)

πk−1
∏n

i=k f1(Xi) + (1 − πk−1)
∏n

i=k f2(Xi)
≥ A

}

.

3. Suboptimal Properties in Change-Point Problems
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We first establish sharp asymptotic lower bounds for the detection delays of

any procedures satisfying (2.3). Later these bounds will be used to prove the

asymptotic suboptimal properties of TCM (A) and TSR(A), Page’s CUSUM and

the Shiryayev-Roberts procedures.

Theorem 1. Let n(γ) be the infimum of Eg(N) as N ranges over the class of

stopping times satisfying (2.3). Then, as γ → ∞,

n(γ) =
(

1 + o(1)
) log γ

I1
. (3.1)

Proof. It is easy to see from the definition of the mixture distribution f that

for any stopping time N,

Ef (N) = π0Ef1
(N) + (1 − π0)Ef2

(N). (3.2)

Thus, for any stopping time N satisfying (2.3), Ef1
(N) ≥ γ or Ef2

(N) ≥ γ. Note

that since the observations are independent under Pf1
or Pf2

, by the classical

lower bound on the detection delay for independent observations (see Theorem

3 of Lorden (1971)),

Eg(N) ≥
(

1 + o(1)
) log γ

I1
or Eg(N) ≥

(

1 + o(1)
) log γ

I2
.

Since I1 > I2, we have

Eg(N) ≥
(

1 + o(1)
) log γ

I1
, as γ → ∞.

To prove the reverse inequality, consider Page’s CUSUM procedure for de-

tecting a change in distribution of independent observations from f1 to g, which

has a stopping time

T1 = inf
{

n ≥ 1 : max
1≤k≤n

n
∏

i=k

g(Xi)

f1(Xi)
≥

γ

π0

}

. (3.3)

By the classical results for independent observations (see Theorem 1 of Lorden

(1971)),

Eg(T1) =
(

1 + o(1)
) log( γ

π0
)

I1
=

(

1 + o(1)
) log γ

I1
as γ → ∞,

while for all γ, Ef1
(T1) ≥ γ/π0, showing that T1 satisfies (2.3) by virtue of (3.2).

This property of T1 shows the lower bound n(γ) is asymptotically no larger than

the right-hand side of (3.1), completing the proof.
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Next, we consider the asymptotic behavior of TCM (A) and TSR(A) for large

values of A, regardless of the constraint (2.3). For these procedures, it is well-

known that their detection delays and the logarithms of their ARLs to false alarm

are of order log A, in the setting of independent observations. The following

theorem, whose proof is given in the appendix, shows that similar conclusions

hold for our example.

Theorem 2. Let T be either TCM (A) or TSR(A). Then, as A → ∞,

log Ef (T ) ≤ (1 + o(1)) log A, (3.4)

Eg(T ) ≥ (1 + o(1))
log A

I2
. (3.5)

We are now in a position to establish the asymptotic suboptimal properties

of TCM (A) and TSR(A) in the change-point problems with the constraint on the

ARL to false alarm.

Theorem 3. Under the constraint (2.3), TCM (A) and TSR(A) do not asymptot-

ically minimize the detection delay.

Proof. Let T be either TCM (A) or TSR(A). In order to satisfy (2.3), the threshold

A = Aγ must be chosen so that log A ≥ (1 + o(1)) log γ, by (3.4). Combining

this with (3.5) yields Eg(T ) ≥ (1 + o(1))(log γ)/I2. By Theorem 1, we have

Eg(T )/n(γ) ≥ (1 + o(1))(I1/I2). Since I1 > I2, the detection delay of T is

asymptotically larger than the sharp lower bound n(γ) for sufficient large γ, so

the theorem is proved.

Remarks. The first-order asymptotic expansions in Theorems 1−3 can be im-

proved to second order (up to O(1)) by nonlinear renewal theory, see Theorem

4.5 in Woodroofe (1982), or Theorem 9.28 in Siegmund (1985). For our purpose,

the first-order expansions are sufficient since Page’s CUSUM and the Shiryayev-

Roberts procedures are not even first-order asymptotically optimal.

As one referee pointed out, if one considers a Bayesian version of our example

by assuming that the change-point ν is geometrically distributed, then TCM (A)

and TSR(A) are asymptotically optimal in the Bayesian formulation, see, for

example, Beibel (1997) and Lai (1998).

A subtle point here lies in the criteria that one uses to assess change-point

detection procedures. In the Bayesian formulation, the false alarm criterion is

Pf (N < ν), which is asymptotically equivalent to Pf2
(N < ν) for our example

in Section 2. Thus, the Bayesian formulation of our example is asymptotically

equivalent to the problem of detecting a change from f2 to g. Meanwhile, in

the standard minimax formulation, the false alarm criterion is Ef (N), which

is asymptotically equivalent to Ef1
(N) for our example. Thus, the standard
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minimax formulation of our example is asymptotically equivalent to the problem

of detecting a change from f1 to g.

By Theorems 1−3, TCM (A) and TSR(A) perform poorly when detecting a

change from f1 to g, although they can effectively detect a change from f2 to g.

Therefore, they are asymptotically optimal under the Bayesian formulation, but

are asymptotically suboptimal under the standard minimax formulation. At a

small additional cost of detection delay, either of the following procedures is able

to detect both changes well:

M(a) = inf
{

n ≥ 1 : min
j=1,2

min
1≤k≤n

1

Ij

n
∑

i=k

log
g(Xi)

fj(Xi)
≥ a

}

;

(3.6)

M∗(a) = inf
{

n ≥ 1 : min
1≤k≤n

min
j=1,2

1

Ij

n
∑

i=k

log
g(Xi)

fj(Xi)
≥ a

}

.

The properties of these last procedures were studied in Mei (2006). In particular,

it can be shown that they are asymptotically first-order optimal in both Bayesian

and minimax formulations for our Section 2 example.

4. A Numerical Example

The purpose of this section is to illustrate Theorem 3 about the suboptimality

of Page’s CUSUM and the Shiryayev-Roberts procedures within the traditional

minimax framework.

Table 4.1 compares the results of a 2,500-repetition Monte Carlo experiment

in MATLAB for our Section 2 change-point problem with f1 = N(1, 1), f2 =

N(−0.5, 1), g = N(0, 1) and π0 = 1/3. Note that the expected values of sam-

ple means are 0 under both the pre-change distribution f and the post-change

distribution g.

Four different procedures are considered in Table 4.1: Page’s CUSUM pro-

cedure TCM (A); Shiryayev-Roberts procedure TSR(A); T1(γ), defined by (3.3);

and M(a), defined by (3.6).

For each of these four procedures τ, the threshold value was first determined

from the criterion Ef (τ) ≈ 1, 000. Rather than simulating Ef (τ) directly (which

is complicated because it requires generating dependent random numbers), an

efficient, easy-to-implement algorithm is to simulate Ef1
(τ) and Ef2

(τ), and then

to calculate Ef (τ) by (3.2).

Next, using the obtained threshold value, we ran 2,500-repetitions to simulate

Eg(τ), the expected sample size when the change happens at time ν = 1. By

definition, this gives a lower bound of the detection delay Eg(τ) in Eg(τ) for all

procedures including TCM (A) and TSR(A). Moreover, the renewal property of
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the CUSUM statistics implies that the detection delay Eg(τ) for the procedures

T1(γ) and M(a) is just Eg(τ).

Table 4.1. Comparisons of four stopping times.

Ef1
(τ) Ef2

(τ) Ef (τ) Eg(τ)

TCM (A) (A = 89.5) 557± 11 1225± 25 1002 ≥ 33.1± 0.3

TSR(A) (A = 675) 1218± 25 895± 17 1003 ≥ 32.5± 0.3

T1(γ) (γ = 156) 2997± 62 7 ± 0.1 1004 12.4± 0.1

M(a) (a = 12.24) 2928± 61 46 ± 1 1007 17.2± 0.1

Table 4.1 indicates that T1(γ) performs better than both TCM (A) and TSR(A)

in the sense that T1(γ) has a much smaller detection delay. This conclusion still

holds if T1(γ) is replaced by M(a). Table 4.1 also shows that under the standard

minimax formulation, the ARL to false alarm under f2 does not play any serious

role. To overcome this, a new approach, proposed by Mei (2006), is to specify

the required detection delay Eg(τ) while trying to maximize the ARLs to false

alarm under both f1 and f2. See also Section 3 of Mei (2003).

5. Open-Ended Hypothesis Testing Problems

In the literature, a standard approach to studying the problem of detect-

ing a change in distribution from f to g is to relate it to the following open-

ended hypothesis testing problems which were developed by Robbins (1970)

and Robbins and Siegmund (1970, 1973). Suppose that X1, X2, . . . are sampled

from a true distribution p, and we are interested in testing the null hypothe-

sis H0 : p = f against the alternative hypothesis H1 : p = g. Assume that if

H0 is true, sampling costs nothing and our preferred action is just to observe

X1, X2, . . . without stopping. On the other hand, if H1 is true, each observation

costs a fixed amount and we want to stop sampling as soon as possible and reject

the null hypothesis H0.

An open-ended test is a statistical procedure for an open-ended hypothesis

testing problem. Since there is only one terminal decision, an open-ended test is

defined by a stopping time τ. The null hypothesis H0 is rejected if and only if

τ < ∞. A good open-ended test τ should keep the error probabilities Pf (τ < ∞)

small while keeping Eg(τ) small. Thus, a standard formulation for open-ended

hypothesis testing problems is to seek an open-ended test τ that minimizes Eg(τ)

subject to the constraint

Pf (τ < ∞) ≤ α, (5.1)

where α ∈ (0, 1) is a given constant.
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Given an open-ended test τ, a standard method for finding change-point

procedures is to define a new stopping time

N = min
k≥1

(τk + k − 1), (5.2)

where τk is the stopping time obtained by applying τ to Xk, Xk+1, . . . . Lorden

(1971) showed that if the observations are independent and τ is asymptotically

optimal in the open-ended hypothesis testing problem, then the stopping time

N in (5.2) is asymptotically optimal in the corresponding change-point problem.

This important result illustrates the close relationship between open-ended test

and change-point procedures for independent observations. We now show that

this close relationship no longer holds for dependent observations.

Consider our example in Section 2, where the distributions f and g are

defined in (2.1) and (2.2). In the corresponding open-ended hypothesis testing

problem, as an open-ended test the one-sided sequential probability ratio test

(SPRT) is defined by

τA = inf
{

n ≥ 1 :

n
∏

i=1

g(Xi|X1, . . . , Xi−1)

f(Xi|X1, . . . , Xi−1)
≥ A

}

= inf
{

n ≥ 1 :

∏n
i=1 g(Xi)

π0
∏n

i=1 f1(Xi) + (1 − π0)
∏n

i=1 f2(Xi)
≥ A

}

.

Page’s CUSUM procedure TCM (A) can still be constructed from τA by using

(5.2). However, Theorem 3 shows that TCM (A) is not asymptotically optimal

in the change-point problem even though the next theorem shows that τA is

asymptotically optimal (up to O(1)) in the open-ended hypothesis testing prob-

lem. In other words, asymptotically optimal open-ended tests do not in general

lead to asymptotically optimal change-point detection procedures for dependent

observations.

Theorem 4. For any 0 < α < 1 let A = 1/α. Then the one-sided SPRT, τA,

satisfies (5.1) and, as α → 0,

Eg(τA) ≤
| log α|

I2
+ O(1). (5.3)

Moreover, if {τ(α)} is a family of stopping times such that (5.1) holds, then

Eg(τ(α)) ≥
| log α|

I2
+ O(1), as α → 0. (5.4)

Thus, τA, the one-sided SPRT, minimizes the expected sample size Eg(τA) up to

O(1) among all open-ended tests satisfying (5.1).
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Proof. It follows at once from Wald’s likelihood ratio identity that τA satisfies

(5.1). Before we prove (5.3), let us first prove (5.4). For any stopping time τ,

Pf (τ < ∞) = π0Pf1
(τ < ∞) + (1 − π0)Pf2

(τ < ∞) (5.5)

by the definition of f. Thus, for any stopping time τ satisfying (5.1), we have

Pf2
(τ < ∞) ≤

α

1 − π0
.

Relation (5.4) follows at once from the well-known fact (Proposition 2.38 of

Siegmund (1985)) that

Eg(τ) ≥
| log Pf2

(τ < ∞)|

I2
.

Now let us prove (5.3). To find an upper bound for Eg(τA), define τ ∗
A =

inf
{

n ≥ 1 : Sn ≥ log A and Un ≤ 0
}

, where

Sn =

n
∑

i=1

log
g(Xi)

f2(Xi)
and Un =

n
∑

i=1

log
f1(Xi)

f2(Xi)
. (5.6)

It is obvious that τA ≤ τ∗
A, and so it suffices to show that Eg(τ

∗
A) satisfies (5.3).

Following the same lines as the proof of equations (2.21)−(2.25) of Kiefer and

Sacks (1963) (a modification is also used to prove Lemma 1 in the Appendix),

we have

Eg(τ
∗
A) ≤ Eg(tA) + Eg(t+)Eg(η), (5.7)

where the stopping times tA, t+ and η are defined by tA = inf
{

n ≥ 1 : Sn ≥

log A
}

, t+ = inf
{

n ≥ 1 : Sn ≥ 0
}

, and η = last time Un ≥ 0. Since the summands

in Un have mean I2 − I1 < 0 and finite variance under Pg, it is well known that

Eg(η) < ∞, see, for example, Theorem D in Kiefer and Sacks (1963). Moreover,

note that since Sn is a random walk with mean Eg(S1) = I2 > 0 and finite

variance under Pg, by standard renewal theory,

Eg(tA) =
log A

I2
+ O(1) and Eg(t+) < ∞.

Combining these with (5.7) shows that Eg(τ
∗
A) satisfies (5.3), which completes

the proof.

One may wonder why an asymptotically optimal open-ended test τ leads to

asymptotically optimal change-point procedure N defined in (5.2) for indepen-

dent observations, but does not do so for our example with dependent obser-

vations. The reasons behind this difference are given by the following heuristic
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arguments. For independent observations, the open-ended test τ and the change-

point detection procedure N constructed from τ by (5.2) are closely related be-

cause it is often true that

Ef (N) ∼
1

Pf (τ < ∞)
(5.8)

as Pf (τ < ∞) → 0. Here and everywhere below, x ∼ y means that x/y converges

to a finite positive value as y goes to ∞ or 0. However, (5.8) fails in general for

dependent observations, particularly in our example where f is defined by (2.2).

To see this, first note that (5.8) holds for f1 and f2 because observations are

independent under Pf1
and Pf2

. Then by (3.2),

Ef (N) = π0Ef1
(N) + (1 − π0)Ef2

(N) ∼
π0

Pf1
(τ < ∞)

+
1 − π0

Pf2
(τ < ∞)

.

Assume Pf1
(τ < ∞) is much smaller than Pf2

(τ < ∞), i.e.,

Pf1
(τ < ∞) << Pf2

(τ < ∞). (5.9)

Then Ef (N) ∼ π0/Pf1
(τ < ∞). On the other hand, by (5.5) and (5.9),

Pf (τ < ∞) = π0Pf1
(τ < ∞) + (1 − π0)Pf2

(τ < ∞) ∼ (1 − π0)Pf2
(τ < ∞).

Hence, Ef (N)Pf (τ < ∞) ∼ π0(1 − π0)Pf2
(τ < ∞)/Pf1

(τ < ∞), which goes

to ∞ by virtue of (5.9). Therefore, (5.8) fails for our example when observations

are dependent under the pre-change distribution.
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Appendix. Proof of Theorem 2

Let T be either TCM (A) or TSR(A). Note that

n
∏

i=k

g(Xi|X1, . . . , Xi−1)

f(Xi|X1, . . . , Xi−1)
=

(

n
∏

i=k

g(Xi)

f1(Xi)

)( π0+(1−π0)
∏n

i=1
f2(Xi)
f1(Xi)

π0+(1−π0)
∏k−1

i=1
f2(Xi)
f1(Xi)

)−1

≥
(

n
∏

i=k

g(Xi)

f1(Xi)

)(

1 +
1 − π0

π0

n
∏

i=1

f2(Xi)

f1(Xi)

)−1
.
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Thus, if we define a new stopping time

M1 = inf
{

n ≥ 1 :

n
∏

i=1

f2(Xi)

f1(Xi)
≤ log A, and max

1≤k≤n

n
∏

i=k

g(Xi)

f1(Xi)
≥ KA

}

, (A.1)

where KA = A(1+(1−π0)π
−1
0 log A), then T ≤ M1. Applying Lemma 1 (below),

we have Ef1
(T ) ≤ O(A log A). Similarly, Ef2

(T ) ≤ O(A log A). Combining these
with (3.2), we have Ef (T ) ≤ O(A log A), which proves (3.4).

To prove (3.5), note that TCM (A) ≥ TSR(A) and Eg(T ) ≥ Eg(T ), so it
suffices to show that Eg(TSR(A)) satisfies (3.5). Rewrite TSR(A) as

TSR(A) = inf
{

n ≥ 1 : Sn + log
π0W

(1)
n + (1 − π0)W

(2)
n

π0 exp(Un) + (1 − π0)
≥ log A

}

,

where Sn and Un are defined in (5.6) and, for j = 1, 2,

W (j)
n = 1 +

n−1
∑

k=1

k
∏

i=1

fj(Xi)

g(Xi)
.

Here
∑0

k=1 is denoted 0. To find a lower bound for Eg(TSR(A)), define a new

stopping time T ∗
A = inf

{

n ≥ 1 : Sn + ηn ≥ log A
}

, where

ηn = log
π0W

(1)
n + (1 − π0)W

(2)
n

1 − π0
.

Clearly, TSR(A) ≥ T ∗
A since exp(Un) ≥ 0. So it suffices to show that

Eg(T
∗
A) ≥

(

1 + o(1)
) log A

I2
as A → ∞. (A.2)

We prove this inequality using the argument in the proof of Lemma 9.13
of Siegmund (1985). The crucial observation is that the increasing sequences

W
(j)
n , n = 1, 2, . . . converge to a finite random variable W (j) under Pg for j = 1, 2,

see the proof of Theorem 3 in Pollak (1987). Thus the increasing ηn, n ≥ 1,
converge to a finite random variable under Pg, and they are slowly changing

in the sense that n−1 max[η1, . . . , η2] → 0 in probability. The Strong Law of
Large Numbers implies that n−1 max1≤k≤n Sk converges to I2 with probability
one, so by the slowly changing property of the ηn, n−1 max1≤k≤n(Sk + ηk) → I2

in probability. For every 0 < ε < 1, let n1 = (1 − ε)(log A)/I2. Since log A =

n1I2/(1 − ε),

Pg

(

T ∗
A ≤ (1 − ε)

log A

I2

)

= Pg

(

max
1≤k≤n1

(Sk + ηk) ≥ log A
)

= Pg

(

max
1≤k≤n1

(Sk + ηk) ≥
n1I2

1 − ε

)

→ 0
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as A → ∞. Hence,

Pg

(

T ∗
A ≥ (1 − ε)

log A

I2

)

→ 1

and, therefore,

Eg(T
∗
A) ≥

(

1 − ε + o(1)
) log A

I2

as A → ∞. Since ε is arbitrary, it follows that T ∗
A satisfies (A.2), and the proof

of (3.5) is complete.

We need the following lemma to complete the proof of Theorem 2.

Lemma 1. As A → ∞, Ef1
(M1) = O(A log A), where M1 is defined in (A.1).

Proof. Let Vn =
∑n

i=1 log(g(Xi)/f1(Xi)) for n = 1, 2, . . . , and V0 = 0. If

Wn = max0≤k≤n−1(Vn − Vk), then M1 can be written as

M1 = inf{n ≥ 1 : Un ≥ − log log A and Wn ≥ log(KA)},

where Un is defined in (5.6). Using an idea of Kiefer and Sacks (1963), let v1 be

the first n such that Wn ≥ log(KA), v2 the second n such that Wn ≥ log(KA), etc.

Let φt be the indicator function of the set where Uvt
< − log log A, t = 1, 2, . . . .

Then as shown on page 719 of Kiefer and Sacks (1963),

M1 = v1 +
∞

∑

j=1

(vj+1 − vj)

j
∏

t=1

φt.

Let v∗j+1 − vj be the first m such that max1≤k≤m(Vm+vj
− Vk+vj

) ≥ log(KA).

Evidently, v∗j+1−vj ≥ vj+1−vj . Since v∗j+1−vj depends on X’s whose indices are

greater than vj , it follows that v∗j+1−vj is independent of φ1, . . . , φj . Consequently

Ef1
(M1) ≤ Ef1

(v1) +

∞
∑

j=1

[

Ef1
(v∗j+1 − vj)Ef1

(

j
∏

t=1

φt

)

]

.

Now v∗j+1 − vj has the same distribution as v1 (note that in Kiefer and Sacks

(1963) and the proof of Theorem 1 of the present paper, v∗
j+1 − vj is defined to

have same distribution as the first n for which Vn ≥ 0), so

Ef1
(M1) ≤ Ef1

(v1)
[

1 +

∞
∑

j=1

Ef1

(

j
∏

t=1

φt

)

]

.
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Observe that

v1 = inf
{

n ≥ 1 : Wn ≥ log(KA)
}

= inf
{

n ≥ 1 : max
1≤k≤n

n
∏

i=k

g(Xi)

f1(Xi)
≥ KA

}

,

which is just Page’s CUSUM procedure for detecting a change in distribution from

f1 to g. Now apply the standard bounds on the ARL to false alarm, Ef1
(v1) =

O(KA), see, for example, the proof of Theorem 1(i) on page 753 of Pollak (1987).

To estimate Ef1

(
∏j

t=1 φt

)

, we let σ be the last time Sn < − log log A. Since

vj ≥ j, we have

∞
∑

j=1

Ef1

(

j
∏

t=1

φt

)

≤

∞
∑

j=1

Pf1
(σ ≥ vj) ≤

∞
∑

j=1

Pf1
(σ ≥ j) = Ef1

(σ).

Since the summands in Un have positive mean and finite variance under Pf1
, by

our assumption in (2.1), it is well known that Ef1
(σ) < ∞, see, for example,

Theorem D in Kiefer and Sacks (1963). Therefore,

Ef1
(M1) ≤ Ef1

(v1)
[

1 + Ef1
(σ)

]

= O(KA)[1 + O(1)] = O(A log A),

and the lemma is proved.
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