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Abstract: Vaccines have received a great deal of attention recently as potential

therapies in cancer clinical trials. One reason for this is that they are much less toxic

than chemotherapies and potentially less expensive. However, little is currently

known about the biologic activity of vaccines and whether they are associated

with clinical outcome. The antibody immune measures IgG and IgM have been

proposed as potential useful measures in melanoma clinical trials because of their
observed association with clinical outcome in pilot studies. To better understand

the role of the IgG and IgM antibodies for a particular vaccine, we examine a

case study in melanoma and investigate the association between clinical outcome

and an individual’s antibody (IgG and IgM titers) history over time. The Cox

proportional hazards model is used to study the relationship between the antibody

titers as a time varying covariate and survival. We develop a Bayesian joint model

for multivariate longitudinal and survival data and give its biologic motivation.

Various scientific features of the model are discussed and interpreted. In addition,

we present a model assessment tool called the multivariate L measure that allows

us to formally compare different models. A detailed analysis of a recent phase II

melanoma vaccine clinical trial conducted by the Eastern Cooperative Oncology
Group is presented.
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1. Introduction

Melanoma incidence is increasing at a rate that exceeds all solid tumors. Al-
though education efforts have resulted in earlier detection of melanoma, patients
who have deep primary melanoma (> 4mm) or melanoma metastatic to regional
draining lymph nodes, classified as high-risk melanoma patients, continue to have
high relapse and mortality rates of 60% to 75% (see Kirkwood, Ibrahim, Sondak,
Richards, Flaherty, Ernstoff, Smith, Rao, Steele and Blum (2000)). Recently,
several post-operative (adjuvant) chemotherapies have been proposed for this
class of melanoma patients, and the one which seems to provide the most signifi-
cant impact on relapse-free survival (RFS) and overall survival (OS) is Interferon
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Alpha-2b (IFN). One of the major drawbacks of IFN, and chemotherapies in gen-
eral, is that they are highly toxic. As a result, there has been a recent surge in
research activity for finding effective vaccines for treating malignant melanoma.
These vaccines are not nearly as toxic and have much milder side-effects, and
could prove to be as efficacious as other chemotherapies.

The purpose of a vaccine therapy is that, after administration of a vaccine,
more antibodies would be induced by the immune system and that would help
eradicate the tumor cells. The primary measures of antibody response are the
IgG and IgM antibody titers. These are continuous serology measurements which
assess the degree of antibody activity. In vaccine clinical trials, it is then of im-
portance to assess the amount of IgG and IgM antibodies induced after several
vaccinations are given at various time points. It is of interest to assess the as-
sociation of the antibody measurements with primary outcome measures, such
as RFS. From several pilot studies conducted, it has been conjectured that the
amount of antibody titers produced from certain vaccines for cancer are associ-
ated with clinical outcome. However, this hypothesis has never been formally
assessed in any statistical or mathematical model. In this paper, we formally
address this issue in the context of melanoma.

A vaccine that has recently been developed for treating melanoma is called
GM2-KLH/QS-21, which we abbreviate here by GMK. GM2 is a ganglioside
expressed by most melanoma cells. From previous pilot studies, patients with
pre-existing natural antibody against GM2 or patients who developed antibodies
against GM2 as a result of immunization, demonstrated an improved RFS com-
pared to patients without GM2 antibodies. From these studies, GMK appears
to enhance antibody response to GM2. However, the level of antibody response
to GM2 induced by GMK is not directly observable. The IgG and IgM titers are
measured intermittently over several time periods, and they can be viewed as in-
dependent measurements of a latent covariate process – an unobservable antibody
response to GM2. The prognostic value of these covariates is of great interest
in these studies, and the covariate process itself may be of interest, as it sheds
light on the natural history of the disease. In order to study the relationship of
these observable covariates to RFS or OS, we develop a Bayesian model for joint
modeling of the survival data and the longitudinal IgG and IgM measurements.
Since inference is based on the parameters that describe the covariate process
and those that describe the risk of failure as a function of the covariate process
at the same time, our method not only uses the observed covariate data, but also
uses survival information to get estimates of the true latent covariate values at
any time. We can expect, therefore, more precise and accurate estimates of the
strength of the relationship between the latent covariate and the risk of failure.
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We consider a case study of a recent Eastern Cooperative Oncology Group
(ECOG) phase II clinical trial, E2696, that used the GMK vaccine. Two treat-
ment arms are used in our analysis. The treatment arms consist of a combination
of interferon (IFN) and the ganglioside vaccine (GMK), which we label as A (IFN
+ GMK). The other treatment arm consists of GMK alone, labeled as B. There
were 35 patients on each treatment arm, resulting in a sample size of n = 70
patients. There were a total of 27 completely observed RFS times. The median
RFS based on n = 70 patients was 11.93 months. IgG and IgM antibody titer
measurements were taken at the five time points, 0, 4, 6, 12 and 52 weeks. In
all of the analyses, the IgG and IgM measures were transformed to logarithms.
Since many of the IgG and IgM measures were 0 before transformation, we first
added a value of 1 to all IgG and IgM titer values, then took natural logarithms.
Table 1 gives a detailed summary of the (log(IgG + 1), log(IgM + 1)) measures
along with summaries of missing values. For ease of exposition, we denote this
transformation by log(IgG) and log(IgM) throughout the paper.

Table 1. Summary of transformed IgG and IgM measures.

log(IgG) log(IgM)
Treatment Week 0 4 6 12 52 0 4 6 12 52

Median 0.00 3.38 4.39 3.71 7.15 0.00 5.08 5.08 3.71 4.73
Mean 0.00 2.84 4.17 3.05 6.74 0.14 5.07 5.26 3.31 3.53

A SD 0.00 2.53 2.18 2.40 2.15 0.78 1.84 1.54 2.29 2.59
Number of

Missing
3 1 5 5 13 3 1 5 5 13

Median 0.00 3.04 3.71 3.04 6.46 0.00 5.08 5.08 4.39 3.71
Mean 0.00 2.23 3.12 2.23 5.87 0.58 5.02 4.99 3.85 2.99

B SD 0.00 2.35 2.47 2.39 1.86 2.04 1.94 1.40 2.04 2.46
Number of

Missing
7 2 0 6 16 7 2 0 6 16

There are three main objectives in this study: (i) to formally examine and
assess the association between the antibody titers and RFS for these data in order
to determine the potential efficacy of GMK, (ii) to examine an appropriate form
of a longitudinal model for describing the behavior of the longitudinal measures
over time, and (iii) to examine the relationships between the (IgG, IgM) antibody
titers through an appropriate statistical model. Characterizing the relationship
between the (IgG, IgM) antibody titers may shed light on which is the better
measure to use in assessing immune response, and whether these two measures
act in concert over time.

Toward these goals, an exploratory analysis of these data revealed the fol-
lowing features.
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1. By plotting the antibody titer counts vs. a model-based estimate of the haz-
ard, given in Figure 1 (see Section 5), we see a decrease in the hazard estimate
for each individual. This phenomenon is observed for both treatment arms as
well as for both the IgG and IgM antibody measurements, and therefore gives
us initial evidence that there is indeed some positive association between high
antibody titers and longer relapse-free survival.

Figure 1. Estimated hazard rate as a function of IgG (left) or IgM (right)
taken at time point of peak IgG, where • and ◦ correspond to treatments A
and B, respectively.

Figure 2. Boxplots for log(IgG) (left) and log(IgM) (right) where the solid
and dashed lines correspond to treatments A and B, respectively.

2. Figure 2 shows box plots of the logarithm of the IgG and IgM antibody titer
measurements, respectively, against time, at each of the five time points. From
Figure 2, we see evidence of the quadratic trend in the IgG trajectory, which
occurs in the period from 2 − 8 weeks, with the peak IgG titer occurring
at approximately 52 weeks. Figure 3 confirms that the peak (maximum) IgG
titer occur at 52 weeks. Figure 2 also shows evidence of the quadratic trend in
the IgM trajectory, which also occurs in the period from 2 − 8 weeks, with the
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peak IgM titer occurring at approximately 4 weeks. Figure 3 confirms that the
peak (maximum) IgM titer occurs at 4 weeks. Figure 4 shows the individual
patient trajectory plots by treatment arm for each individual patient for the
IgG and IgM titers, respectively. Figure 4 confirms the need for a quadratic
trajectory.

Figure 3. Histograms of Max(IgG) (left) and Max(IgM) (right).

Figure 4. Trajectory plots for log(IgG) (left) and log(IgM) (right) where the
solid and dashed lines correspond to Treatments A and B, respectively.

3. Table 1 shows a statistical summary of the IgG and IgM measures for each
treatment arm for each time point, and it also shows the fraction of missing
antibody titers at each time point. Table 1 indicates that, on average, the
IgM titer is greater than that of the IgG titer in a wide window of time. This
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implies that IgG and IgM are linked on the same scale biologically, and this
should be taken into account when jointly modeling these two longitudinal
measures.

There has been much previous work in joint modeling of survival and longitu-
dinal data focused almost exclusively on AIDS studies, and in particular, jointly
modeling of survival data and univariate or multivariate longitudinal CD4 counts.
These articles include DeGruttola and Tu (1994), Tsiatis, DeGruttola and Wulf-
sohn (1995), Faucett and Thomas (1996), Wulfsohn and Tsiatis (1997), Taylor,
Cumberland and Sy (1994) and Wang and Taylor (2001). Other approaches con-
sidering a multivariate longitudinal measure and related to our development here
include Henderson, Diggle and Dobson (2000), Xu and Zeger (2001a, 2001b) and
Song, Davidian and Tsiatis (2002).

The rest of this paper is organized as follows. In Section 2, we present
the statistical model and provide a biological motivation for it. In Section 3, we
present the likelihood and the priors as well as providing biological interpretations
of the parameters. In Section 4, we provide model assessment tools that will
enable us to judge the goodness of fit for the various models as we consider
different forms of the trajectory, priors, and survival model. In Section 5, we
provide a detailed analysis of the E2696 data and in Section 6, we present a
discussion of our findings and examine their biological and scientific implications.

2. Model and Notation

For a clear focus and ease of exposition, we develop our model in the con-
text of vaccines in cancer clinical trials and, in particular, for the E2696 study.
The model, however, is quite general and can be used in many other con-
texts. The longitudinal component of the model can be described as follows.
Let Xi(t) denote the true, unobservable antibody level against GM2, and let
Y i(t) = (Yi1(t), Yi2(t))′ denote the 2× 1 vector of observed (IgG, IgM) immuno-
logical titer measures for subject i at risk at time t, i = 1, . . . , n. We assume

Yi1(t) = Xi(t) + εi1(t), (2.1)

Yi2(t) = α0 + α1Xi(t) + εi2(t) , (2.2)

εi(t) ∼ N2


( 0

0

)
,Σ =


 σ2

1 ρσ1σ2

ρσ1σ2 σ2
2




 , (2.3)

where εi(t) = (εi1(t), εi2(t))′ is independent of Xi(t). We also model Xi(t)
through a known but arbitrary function gγi

(t) indexed by parameter vector γi.
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The form of (2.1) and (2.2) is based on sound biological considerations and
is partially verified from Table 1. For melanoma, the IgG antibody titer is a
biologically preferred measure of the unobserved level Xi(t) of antibody response
to GM2 compared to IgM. It has also been established by Kirkwood et al. (2000)
that an IgG response typically implies a change in antibody response (Xi(t)) to
GM2. In Table 1 we see that, on average, the IgM titer is greater than that
of the IgG titer in a wide window of time. For this reason, we measure Xi(t)
on the same scale as the IgG response. The error term εi(t) represents the fact
that the (IgG, IgM) measures are not perfect measures of the unobserved immu-
nity level, but rather, in some sense, an approximation to the true underlying
immunity level. Since the (IgG, IgM) are serologic measures on the same indi-
vidual conducted on the same assay, they are correlated conditional on Xi(t),
and ρ represents this unknown correlation. The unobserved immunity level of a
patient is related to his/her serologic measurements (Y1(t), Y2(t)), and the corre-
lation between the serologic measurements is primarily due to their relationship
to the common latent factor - immunity level. The argument for this is anal-
ogous to the assumption that the frailty distribution has mean 1 in the frailty
model. In our model, the Xi(t)’s can be viewed as time varying frailties, that is,
latent variables measuring subject specific morbidity, which are also related to
the serological immune response measures. Since the (IgG, IgM) measures have
different unknown dispersion, given Xi(t), we assume different error variances
(σ2

1 , σ
2
2) for (IgG, IgM). A more general version of this model can be considered

by assuming within subject autocorrelation over time. An empirical investigation
of this showed that the autocorrelations are nearly zero for these data, and such
a model is perhaps not needed here.

For subject i, write Xi(t) ≡ gγi
(t), where γi is a vector of random effects

for subject i. We call gγi
(t) the trajectory function throughout. The name “tra-

jectory” is meaningful, as gγi
(t) actually measures the trajectory of immune re-

sponse to GM2. The function g explains the behavior of the unobserved covariate
process over time, and thus is a critical component of the model for understand-
ing the biology of the vaccine and the disease. The exploratory analyses for
E2696 shown by Figure 2 indicated that a quadratic trajectory might be suitable
for these data and, in this case, γi = (γ1i, γ2i, γ3i) and Xi(t) = γ1i + γ2it + γ3it

2.
One can also incorporate interactions and higher order terms in Xi(t). In this
paper, we develop the model assuming a general structure for Xi(t) = gγi

(t),
and consider specific forms for gγi

(t) in Section 5.
The random effects γi play a critical role in the model development. They

represent the subject specific trajectory parameters. A common distribution
that is specified for the γi’s is a multivariate normal distribution, as in the usual
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assumption in a mixed model. In the case of a quadratic trajectory model, we
assume in our data analysis that

γi ∼ N3(µ0,Σ0), (2.4)

where µ0 = (µ01, µ02, µ03) represents the population mean of the individual-
specific trajectory parameters, and Σ0 = (σ0jk) represents the variation in the
parameters that define the individual trajectories across the population of pa-
tients. The form of Σ0 plays a crucial role in the analysis and, in Section 5, we
consider two main analyses. The first analysis is based on an unstructured Σ0 in
which we take a Wishart prior for Σ−1

0 ,

Σ−1
0 ∼ W3(n∗

0, Q
∗
0), (2.5)

where n∗
0 and Q∗

0 are chosen to make the prior noninformative. An unstructured
form of Σ0 is the most biologically meaningful specification since it allows gen-
eral correlations between the subject-specific trajectory parameters (the γi’s). In
Section 5, our main analyses will be based on an unstructured Σ0. If the associa-
tions between the γi’s is not too strong it may be reasonable to consider simplified
versions of Σ0, such as a diagonal Σ0. This more parsimonious structure for Σ0

has less biological meaning than an unstructured Σ0 but may be empirically at-
tractive since it may result in a more efficient parameter estimates if indeed the
associations between the γi’s are weak. For comparison to the unstructured Σ0,
we carry out a second analysis using a diagonal form

Σ0 =


 σ2

01 0 0
0 σ2

02 0
0 0 σ2

03


 , (2.6)

where the σ2
0j have independent inverse gamma distributions. In addition, we

take µ01 ∼ N(ξ01, v
2
01), µ02 ∼ N(ξ02, v

2
02), µ03 ∼ N(ξ03, v

2
03), σ2

01 ∼ IG(e01, f01),
σ2

02 ∼ IG(e02, f02) and σ2
03 ∼ IG(e03, f03). Here IG(a, b) denotes the inverse

gamma distribution with shape parameter a and scale parameter b. In the data
analysis, The hyperparameters are all chosen so that the resulting priors for
(µ0,Σ0) in Section 5 are noninformative. The above specifications can be easily
extended to more general trajectory models.

Several papers in the literature have questioned the adequacy and robustness
of the normality assumption for the random effects γi, and various alternative
approaches, Bayesian and non-Bayesian, have been proposed in the literature.
Brown and Ibrahim (2003) consider a nonparametric approach where they spec-
ify a Dirichlet process prior for the γi’s. In any case, the normal distribution
assumption for the γi’s needs careful scrutiny and examination.
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The survival component of the model is taken to have a proportional haz-
ards structure. For the ith subject at risk at time t, let Xi(t) denote the his-
tory of Xi(·) up to time t, Yi(t) denote the history of the observable covariates
(Yi1(·), Yi2(·)) up to t, and let zi denote a p × 1 vector of baseline covariates for
subject i, such as treatment, gender, age, and so forth. We assume that the zi’s
are measured without error. We make the usual assumption that the hazard
h(t|Xi(t),Yi(t),zi) = h(t|Xi(t),zi), and model the hazard function for the ith
subject as

h(t|Xi(t),Yi(t),zi) = h0(t) exp
{
β1Xi(t) + z′

iβ2

}
, (2.7)

where h0(t) is the baseline hazard function, β1 is a scalar regression coefficient for
the longitudinal covariate process, and β2 is a p×1 vector of regression coefficients
for the baseline covariates. The random measurement errors are not prognostic of
the survival time. That is, given the unobservable trajectory Xi(t), the observable
serologic measurements are not prognostic. The regression coefficient β1 plays
a critical role in the model, since it is the parameter that yields information on
the association between the longitudinal measurements and survival. Inference
about this parameter will help us address point 1 in the previous section. Values
of β1 near 0 imply a weak association, whereas values of β1 far from 0 imply a
strong association.

Another important aspect of the model is the form of the trajectory function.
The assessment of the appropriate form of the trajectory function is critical for
making predictions and for understanding the biology of the vaccine and the
disease. There are several other important features of the joint model given by
(2.1), (2.2) and (2.7). First, the model explains a good portion of the variability in
survival time through the variability in the ‘unobservable’ immunity level for an
individual. This relationship between risk of cancer and time-varying immunity
level is of great clinical importance. Second, the form of the hazard function (2.7)
assumes that the hazard at time t only depends on the current, true, unobservable
antibody level Xi(t). In the cancer vaccine context, this implies that the true
antibody levels measured at time t are the only relevant quantities characterizing
the survival time at time t. This seems to be a reasonable assumption for this
cancer vaccine application since the course of the vaccine treatment is given over
a long period of time, and the effects of the vaccine on survival are best assessed
at the most recent vaccine injection.

To fully characterize the relationship between the survival time ti and the co-
variate process Y i(t), it is of interest to compute the conditional survival function
of ti given Xi(t), Yi(t) and zi. This can be expressed as a posterior expectation,
given by E[h(t|Xi(t),Yi(t),zi)|D], where D denotes the observed data. Gibbs
sampling can then be used to calculate this quantity once samples from the joint
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posterior distribution of the parameters are available. The major Gibbs steps
are provided and the implementation of these Gibbs steps is discussed in detail
in the Appendix.

3. Likelihood and Priors

To construct the likelihood function, we discretize the time axis into J in-
tervals. Let Ai1, . . . , Aimi denote the times at which the antibody measurements
are taken, and let gγi

(Ail) denote the trajectory function evaluated at Ail. For
example, for a quadratic trajectory, we have gγi

(Ail) = γ1i + γ2iAil + γ3iA
2
il

and γi = (γ1i, γ2i, γ3i)′. Let the IgG and IgM antibody titers for subject i be
denoted by Y i1 = (yi11, . . . , yimi1)

′ and Y i2 = (yi12, . . . , yimi2)
′, and let Y 1 =

(Y ′
11, . . . ,Y

′
n1)

′, and Y 2 = (Y ′
12, . . . ,Y

′
n2)

′. Further, let ti denote the event time
for the ith subject, which may be right censored and let t = (t1, . . . , tn)′ denote
the vector of event times. We take h0(t) to be a constant λj over the time inter-
vals Ij = (cj−1, cj ], for j = 1, . . . , J , where c0 = 0 < c1 < . . . < cJ < cJ+1 = ∞.
Let δ = (δ1, . . . , δn)′ denote the vector of censoring indicators, where δi = 1 indi-
cates a failure and δi = 0 indicates a right censored observation. The likelihood
function for the joint model involves two components, denoted by L1 and L2.
The first component L1 is the likelihood for (Y 1,Y 2), and L2 is the likelihood
function for t. Let θ be a generic label for the vector of all the parameters in L1

and L2. The likelihood function of θ is given by

L(θ) = L1(γ, α0, α1,Σ|Y 1,Y 2)L2(λ, β1,β2,γ|t, δ,z), (3.1)

where

L1(γ, α0, α1,Σ|Y 1,Y 2) ∝
n∏

i=1

[
|Σ|−mi/2 exp

{
− 1

2

mi∑
l=1

(
(yil1 − gγi

(Ail), yil2

−(α0 + α1gγi
(Ail)))Σ−1(yil1 − gγi

(Ail), yil2 − (α0 + α1gγi
(Ail)))

)′}]
, (3.2)

L2(λ, β1,β2,γ|t, δ,z)

∝ exp
{
−

J∑
j=1

n∑
i=1

λjBij

}( J∏
j=1

λ
dj

j

)
exp

{ J∑
j=1

n∑
i=1

δi(β1gγi
(t∗ij) + z′

iβ2)
}
, (3.3)

z = (z′
1, . . . ,z

′
n)′, γ = (γ1, . . . , γn)′, α = (α0, α1)′, λ = (λ1, . . . , λJ)′, θ =

(γ,α, β1,β2, σ1, σ2,λ), dj is the number of failures, and t∗ij denotes the nearest
past time point where antibody measurements are taken. We also assume here
that the scheduling of the (IgG, IgM) measurements is not predictive of survival.
In (3.3), the computational algorithm for Bij proceeds as follows.
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(i) If ti < cj−1, Bij = 0.
(ii) If ti > cj , letting ji1 = max{l : A∗

il ≤ cj−1} and ji2 = max{l : A∗
il ≤ cj},

where A∗
il is the rescaled Ail so that A∗

il has the same unit as ti, then if
ji1 = ji2, Bij = (cj − cj−1) exp{β1gγi

(Aiji1) + z′
iβ2}, and if ji1 < ji2,

Bij = (A∗
i,ji1+1 − cj−1) exp

{
β1gγi

(Ai,ji1+1) + z′
iβ2

}

+
ji2∑

l=ji1+1

(A∗
i,l+1 − A∗

il) exp
{
β1gγi

(Ail) + z′
iβ2

}

+(cj − A∗
iji2

) exp
{
β1gγi

(Aiji2) + z′
iβ2

}
.

(iii) If cj−1 < ti ≤ cj, using ji1 and ji2 given in (ii), then if ji1 = ji2 or ti ≤ A∗
i,ji1+1,

when ji1 < ji2, Bij = (ti − cj−1) exp
{
β1gγi

(Aiji1) + z′
iβ2

}
, and otherwise,

we define

Bij = (A∗
i,ji1+1 − cj−1) exp

{
β1gγi

(Ai,ji1+1) + z′
iβ2

}

+
ki∑

l=ji1+1

(A∗
i,l+1 − A∗

il) exp
{
β1gγi

(Ail) + z′
iβ2

}

+(ti − A∗
iki

) exp
{
β1gγi

(Aiki
) + z′

iβ2

}
,

where ji1 + 1 ≤ ki ≤ ji2 is chosen so that A∗
iki

< ti ≤ A∗
i,ki+1.

When jil (l = 1, 2) does not exist, we define jil = 1, and the calculation of
Bij needs a minor adjustment.

In the likelihood function (3.3), we have invoked an approximation. The
likelihood contribution for the ith subject in L2(λ, β1,β2,γ|t, δ,z) is given by
(h0(ti) exp{β1gγi

(ti)+z′
iβ2})δi exp{− ∫ ti

0 h0(u) exp{β1gγi
(u)+z′

iβ2}du}. An ap-
proximation of this integral is needed primarily for computational convenience.
We approximate the integral involving the term gγi

(u) by
∑n

i=1[
∫ ti
0 h0(u) exp{β1

gγi
(u)z′

iβ2}]du ≈ ∑n
i=1

∑J
j=1 λjBij. This approximation should work well as

long as the trajectory of the latent antibody level affecting the hazard function
does not change over time too rapidly compared to the scheduled serology mea-
surements. If they do change too rapidly, we have too little information about
the trajectory to use any kind of model or analysis for such an example. It
is also more sensible to use this approximation in the likelihood instead of the
previous one since, in our data, we have indirect information on the trajectory
only at the t∗ij’s, and to use the values of the trajectory at other time points will
require interpolations which are impossible to validate through data. This type
of approximation was also used by Tsiatis, DeGruttola and Wulfsohn (1995).
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For ease of exposition, and without loss of generality, we assume p = 1 for the
survival component of the model. The priors for the parameters in the survival
component of the model are taken as: λj ∼ gamma(aj , bj), β1 ∼ N(ξ1, v

2
1),

β2 ∼ N(ξ2, v
2
2), α0 ∼ N2(ξ3, v

2
3), α1 ∼ N(ξ4, v

2
4), Σ−1 ∼ W2(n0, Q0), where Q0 is

a 2× 2 symmetric and positive definite matrix, W2(n0, Q0) denotes the Wishart
distribution with degrees of freedom n0 and mean matrix n0Q0 and n0 and Q0 are
prespecified a priori. For the E2696 analysis, we take n0 = 3 and Q−1

0 = 0.001I2,
where I2 is the 2-dimensional identity matrix, so that the prior is sufficiently
diffuse. In Section 5, noninformative priors are taken for all parameters. We can
see that the above prior specification can be easily generalized for p > 1.

4. Model Choice via The L Measure

The choice of the parametric form of the trajectory function gγi
(t) is an

important issue. Here we propose a multivariate criterion for model assessment
called the multivariate L measure. It is motivated as follows. Consider an experi-
ment that yields the data w = (w1, . . . ,wn)′, where each wi = (wi1, wi2, . . . , wiq)′

is a q vector of response variables. In our joint modeling application, we have
wi = (yi1, yi2, ti)′ so that q = 3. Denote the joint sampling density of the wi’s
by p(w|θ), where θ is a vector of indexing parameters. We allow the wi’s to be
fully observed or right censored. In our specific application, the (yi1, yi2) are fully
observed and ti is right censored. Let v = (v1, . . . ,vn)′ denote future values of a
replicate experiment. That is, v is a future response vector with the same sam-
pling density as w|θ. The idea of using a future response matrix v in developing
a criterion for assessing a model or comparing several models has been used by
Ibrahim and Laud (1994), Laud and Ibrahim (1995), Ibrahim and Chen (1997)
and Ibrahim, Chen and Sinha (2001).

Let f(·) = (f1(·), . . . , fq(·))′ be known functions, and let the jth component
of wi be transformed to w∗

ij = fj(wij), with v∗ij = fj(vij), j = 1, . . . , q. For
example, one may take the logarithms of the survival times ti, and in this case
f3(ti) = log(ti) = w∗

i3. One may also want to transform the the longitudinal
measures to logarithms or apply some other transformation. In the analysis of
the E2696 data, we transform the survival time and the (IgG, IgM) measures to
logarithms.

The multivariate L measure can be written as

L2(w∗) =
n∑

i=1

Cov(v∗
i |w∗) + ν

n∑
i=1

(µi − w∗
i )(µi − w∗

i )
′, (4.1)

where 0 < ν < 1. Since L2(w∗) is a matrix, we take its determinant as our assess-
ment statistic, leading to L̂ = | L2(w∗) |. Allowing ν to vary between zero and
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one gives the user a great deal of flexibility in the tradeoff between bias and vari-
ance. If w∗ is fully observed, then (4.1) is straightforward to compute. However,
if w∗ contains right censored observations, then (4.1) is computed by taking the
expectation of these censored observations with respect to the posterior predictive
distribution of the censored observations. Let w∗ = (w∗

obs,w
∗
cens)

′, where w∗
obs

denotes the completely observed components of w∗ and w∗
cens denotes the cen-

sored components. We assume that w∗
cens is a random quantity and a∗ < w∗

cens,
where a∗ is known. For ease of exposition, we let D = (n,wobs,a

∗) denote the
observed data. Then (4.1) is modified as

L(w∗
obs) = Ewcens|D[I(a∗ < w∗

cens)L2(w∗)], (4.2)

where I(a∗ < w∗
cens) is a generic indicator function taking the value 1 if a∗ <

w∗
cens and 0 otherwise. When a∗ and w∗

cens are vectors, then a∗ < w∗
cens means

that the inequalities hold for each component of these vectors. Write (4.2) as
L(w∗

obs) =
∫ ∫

w∗
cens>a∗ L2(w∗)p(w∗

cens|θ)p(θ|D)dw∗
censdθ, where p(w∗

cens|θ) is
the sampling density of w∗

cens and p(θ|D) is the posterior density of θ given the
observed data D. It can be shown that (4.1) can be expressed as a posterior
expectation, so that

L2(w∗) =
n∑

i=1

{
Eθ|D

(
E
[
v∗

i v
∗′
i |θ

])
− µiµ

′
i

}
+ ν

n∑
i=1

(µi − w∗
i )(µi − w∗

i )
′, (4.3)

where µi = Eθ|D[E(v∗
i |θ)]. Once the posterior samples of θ are obtained, (4.3)

and (4.2) can be easily evaluated.

5. Analysis of the E2696 Data

For the E2696 data, there were 8 patients with intermittent missingness, 15
patients that were administratively censored before 52 weeks, of which 6 patients
had missing longitudinal measures, 28 patients were administratively censored
after 12 months, 18 patients had missing data at timepoints before relapse, 23
patients relapsed before 52 weeks and 4 patients who relapsed after 52 weeks.
Once a patient relapsed, they dropped out of the study, and hence no longitudinal
measures were collected after that time. Also, the minimum RFS time was 0.59
months and the maximum RFS time was 23.95 months based on n = 70 patients.

We consider two major analyses, one in which Σ0 is assumed unstructured
with a Wishart prior given by (2.5), and one in which Σ0 is assumed diagonal
with prior given by (2.6). Noninformative priors were used for all of the models
in the analyses below. For example, for the quadratic trajectory model with
p = 1, J = 8, and unstructured Σ0, we take, aj = bj = 0, j = 1, . . . , 8, (ξl, v

2
l ) =

(0, 100), l = 1, . . . , 4, ξ01 = ξ02 = ξ03 = 0, v2
01 = v2

02 = v2
03 = 100, Σ−1

0 ∼
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W3


4,


1.0 0 0

0 0.1 0
0 0 0.1




. For the analysis with a diagonal Σ0, we take e01 =

e02 = e03 = 0.001 and f01 = f02 = f03 = 0.001.

Table 2. Posterior estimates for all parameters for unstructured Σ0 and J = 8.

Model with Quadratic Trajectory Model with Linear Trajectory
Parameter Mean SD 95% HPD Mean SD 95% HPD

β1 -0.256 0.195 (−0.648, 0.118) -0.228 0.182 (−0.602, 0.118)
β2 1.009 0.433 ( 0.154, 1.853) 1.007 0.430 ( 0.154, 1.839)
ρ 0.603 0.048 ( 0.507, 0.695) 0.611 0.043 ( 0.527, 0.695)
σ2

1 4.123 0.421 ( 3.321, 4.959) 4.261 0.399 ( 3.500, 5.054)
σ2

2 6.787 0.574 ( 5.726, 7.958) 6.788 0.569 ( 5.722, 7.929)
α0 3.638 0.353 ( 2.964, 4.330) 3.632 0.334 ( 3.002, 4.299)
α1 -0.032 0.114 (−0.256, 0.182) -0.029 0.104 (−0.231, 0.173)
µ01 2.765 0.176 ( 2.421, 3.112) 2.758 0.191 ( 2.390, 3.139)
µ02 1.802 0.517 ( 0.772, 2.781) 1.460 0.153 ( 1.156, 1.764)
µ03 -0.344 0.488 (−1.229, 0.659) − − −
σ011 1.085 0.379 ( 0.363, 1.866) 1.221 0.371 ( 0.546, 1.982)
σ012 0.026 0.090 (−0.150, 0.206) 0.035 0.113 (−0.195, 0.252)
σ013 -0.069 0.111 (−0.295, 0.145) − − −
σ022 0.026 0.022 ( 0.004, 0.065) 0.058 0.045 ( 0.007, 0.148)
σ023 -0.006 0.017 (−0.040, 0.023) − − −
σ033 0.064 0.056 ( 0.007, 0.173) − − −
λ1 0.055 0.039 (0.0043, 0.130) 0.054 0.037 (0.0050, 0.128)
λ2 0.052 0.042 (0.0022, 0.131) 0.049 0.038 (0.0020, 0.122)
λ3 0.053 0.045 (0.0016, 0.135) 0.049 0.039 (0.0018, 0.124)
λ4 0.051 0.046 (0.0020, 0.133) 0.046 0.037 (0.0031, 0.116)
λ5 0.111 0.100 (0.0060, 0.292) 0.098 0.080 (0.0058, 0.251)
λ6 0.019 0.019 (0.0006, 0.053) 0.017 0.015 (0.0004, 0.045)
λ7 0.032 0.034 (0.0001, 0.092) 0.028 0.027 (0.0005, 0.078)
λ8 0.257 0.507 (0.0003, 0.882) 0.207 0.347 (0.0003, 0.704)

Table 2 shows posterior estimates of all the parameters for the linear and
quadratic trajectory model using J = 8, assuming that Σ0 is unstructured and
ρ 	= 0. For both the linear and quadratic trajectory models the posterior mean of
β1 is negative and similar in magnitude for both models. The negative value of β1

indicates that increased (IgG, IgM) levels are associated with longer relapse-free
survival. For the quadratic trajectory model, the posterior mean and standard
deviation (SD) of β1 are −0.256 and 0.195, respectively. Figure 4 also gives the
marginal posterior distribution of β1 under the quadratic trajectory model. The
posterior mode is −0.245. The 95% Highest Posterior Density (HPD) interval
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for β1 is (−0.648, 0.118). Although the 95% HPD interval for β1 includes 0,
Figure 4 indicates that P (β1 < 0|D) = 0.85, and thus 85% of the area under the
density is to the left of 0. This confirms that there is indeed a moderate to strong
association between the (IgG, IgM) measures and relapse-free survival. This is
an interesting finding since it has long been conjectured that increased antibody
response is perhaps associated with longer relapse-free survival in melanoma.
This phenomenon is also confirmed in the posterior hazard plots given in Figure
1 where as the antibody titers increase, there is a decrease in the posterior hazard
estimate for each individual. The posterior mean of ρ for the quadratic trajectory
model is 0.603 with 95% HPD interval (0.507, 0.695). The estimate of ρ indicates
a positive correlation between the (IgG, IgM) measures, implying that these
measures act in concert, that is, a higher IgG implies a higher IgM, and the
correlation between them is fairly strong. Also, the posterior means of σ2

1 and
σ2

2 are quite different: 4.123 and 6.787, respectively. In Table 2 the parameter
estimates are similar for the linear and quadratic trajectory models, indicating
that they are fairly robust with respect to the choice of trajectory. The posterior
estimate of µ03 is −0.344 with 95% HPD interval (−1.229, 0.659). This includes
0, which perhaps partially explains why the linear and quadratic trajectories give
similar parameter estimates in Table 2.

Figure 5. Marginal posterior density for β1.

We next investigate the importance of modeling ρ in (2.3). Table 3 shows
L measure values (L̂/104) based on several models assuming an unstructured
Σ0 and J = 8. These include models with linear and quadratic trajectories,
models with ρ = 0 and ρ 	= 0, and models with β1 = 0 and β1 	= 0. A value of
β1 = 0 corresponds to fitting a proportional hazards model to the survival data,
“ignoring ” the latent immune response information in the (IgG, IgM) antibody
measures. Table 3 shows that for all values of ν, the quadratic trajectory model
has a substantially smaller L measure value compared to the linear trajectory
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model, regardless of the value of β1 or ρ. Models with ρ 	= 0 have much smaller L
measure values than the corresponding models which assume ρ = 0, for both the
linear and quadratic trajectories. This clearly indicates the need for modeling a
non-zero correlation between the error terms as given in (2.3). Moreover, models
in which β1 	= 0 have smaller L measure values than models assuming β1 = 0.
This is appealing since it further demonstrates the importance of the association
between the (IgG, IgM) titer levels and relapse-free survival.

Table 3. L measure values for unstructured Σ0 using J = 8.

Model with ρ 	= 0 Model with ρ = 0
ν Trajectory β1 = 0 β1 	= 0 β1 = 0 β1 	= 0
0.2 linear 162.49 160.05 242.11 242.99

quadratic 154.21 149.91 207.78 207.10
0.5 linear 277.01 270.28 422.92 418.55

quadratic 266.12 256.55 366.38 359.77
1.0 linear 557.65 538.87 882.78 861.07

quadratic 544.79 520.71 774.60 748.98

Table 4. L measure values for diagonal Σ0 using J = 8.

Model with ρ 	= 0 Model with ρ = 0
ν Trajectory β1 = 0 β1 	= 0 β1 = 0 β1 	= 0
0.2 linear 170.76 167.46 246.76 246.69

quadratic 171.19 166.75 216.84 214.06
0.5 linear 287.93 279.71 416.87 411.95

quadratic 288.99 278.88 361.74 353.48
1.0 linear 570.53 549.27 833.10 814.15

quadratic 573.41 548.44 711.17 688.04

Table 4 shows results based on an analysis assuming a diagonal form of Σ0 in
(2.6), with noninformative inverse gamma priors for σ2

0j , j = 1, 2, 3. One striking
feature here is that, according to the L measure, the fit of the diagonal Σ0 model
is much worse than that of the unstructured Σ0 model. Somewhat similar trends
in Table 4 are observed as in Table 3. However, we do see some differences.
There is not much difference in the fits between the linear and the quadratic
trajectory models when ρ 	= 0, and even for ρ = 0 the differences are not as
dramatic as in Table 3. Also, when β1 = 0 and ρ 	= 0, the linear trajectory model
actually fits slightly better than the quadratic trajectory model. In summary, the
unstructured Σ0 model fits the data much better than the diagonal Σ0 model,
and it does a much better job of distinguishing between the various models under
consideration, including linear vs. quadratic trajectory, β1 = 0 vs. β1 	= 0 and
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ρ = 0 vs. ρ 	= 0. Our results for unstructured Σ0 and a diagonal Σ0 are consistent
with the findings of Heagerty and Kurland (2001).

Table 5. L measure values for several models with β1 	= 0 using J = 4.

Unstructured Σ0 Diagonal Σ0

ν Trajectory ρ 	= 0 ρ = 0 ρ 	= 0 ρ = 0
0.2 linear 204.50 310.16 213.88 315.59

quadratic 193.67 257.93 219.20 272.04
0.5 linear 354.33 549.58 366.86 540.87

quadratic 338.32 458.28 375.66 457.80
1.0 linear 724.79 1163.50 739.27 1096.85

quadratic 700.37 976.10 757.19 907.87

We also conducted a sensitivity analysis on J . Table 5 shows L measure
values for several models, including the unstructured and diagonal Σ0 models.
The L measure values based on J = 4 are much larger than the L measure values
in Tables 3 and 4 based on J = 8, implying that J = 8 gives a better model
fit in general, regardless of the structure of Σ0. Models with ρ 	= 0 have much
smaller L measure values than models which assume ρ = 0 for both the linear
and quadratic trajectories, consistent with the results of Tables 3 and 4. In ad-
dition, the posterior estimates of β1, β2 and (α0, α1) were robust with respect to
the choice of J , yielding similar estimates to those of Table 2 for several different
values of J . As a result, the posterior hazard and trajectory function estimates
were also robust with respect to the choice of J . In addition to the treatment
covariate, we also considered other covariates, such as gender, age and weight, in
the model given in (2.7). We found that, except for the treatment covariate, all
of the other covariates under consideration were highly insignificant. However,
with the other covariates included in (2.7), we still obtained L measure values for
the linear and quadratic trajectories with J = 4 and J = 8 that are similar to
those reported in Tables 3 and 4. In the above analyses, we chose the subintervals
(cj−1, cj ] with equal numbers of failures or censored observations. Different con-
structions of (cj−1, cj ], such as those with approximately equal lengths subject to
the restriction that at least one failure occurs in each interval, were also consid-
ered. The posterior estimates were fairly robust with respect to these different
constructions.

In the E2696 data, many patients had zero (IgG, IgM) antibody titer mea-
sures throughout the course of vaccine treatment and, of course, most patients
had zero (IgG, IgM) antibody titer measures at baseline. This was an ELISA
assay, and the zero (IgG, IgM) measures are “exact” in the sense that they are
not values representing truncation or censoring due to lower detection limits in
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the assay. Moreover, it is well established fact that, in this patient population,
approximately 3−5% of all patients have naturally occurring antibodies, that is,
their baseline IgG and IgM measures will not be 0. Thus, in our data this phe-
nomenon did in fact occur, and it has nothing to do with detection limits of the
assay. Those patients that had IgG or IgM titers greater than 0 at baseline are
those with naturally occurring antibodies.

To further examine robustness of the model, we carried out an analysis omit-
ting the four cases with RFS values beyond twelve months. The resulting pos-
terior estimates for most of the parameters are quite similar to those of Table 2,
and thus, those four cases do not appear to be influential. The only noticeable
change in the estimates is in β1, where the posterior mean, the standard deviation,
and the 95% HPD interval for β1 change to −0.404, 0.290 and (−0.979, 0.149),
respectively. Still the 95% HPD interval contains 0 and we conclude that the
omission of these four cases does not affect the interpretations of the results and
the conclusions of this analysis.

In the computations, 50,000 Gibbs samples were used to compute all poste-
rior estimates using a burn-in of 1,000 samples. The convergence of the Gibbs
sampler was checked using several diagnostic procedures as recommended by
Cowles and Carlin (1996), and we found that the Gibbs sampler converged
before 1,000 iterations. To ease the computations, the L measure was com-
puted by averaging the antibody titer measurements over the five time points.
The computations of all posterior quantities and the multivariate L measure
took about 30 minutes on a COMPAQ XP1000 unix workstation. The com-
puter code was written in FORTRAN 77 using double precision accuracy. Soft-
ware for fitting this model is readily available on the second authors website at
http://merlot.stat.uconn.edu/∼mhchen.

6. Discussion

The results here suggest that vaccines such as GMK or treatment combi-
nations involving GMK, may be as (or perhaps more) efficacious as standard
chemotherapies in improving relapse free survival and survival, and have much
less toxicity. However, since the sample size for this study was not large (n = 70),
one has to interpret these results with great caution. One other important issue
is whether the (IgG, IgM) measures are associated with overall survival (i.e., time
from randomization to death). Since a cancer treatment is ultimately judged on
its efficacy for overall survival, this is a critical issue that still needs a detailed
investigation. There were only seven deaths on the combined treatment arms at
the time of this E2696 analysis, and therefore not enough events had occurred
for any meaningful analyses relating (IgG, IGM) to overall survival. This is a
topic of current investigation. The results presented here for RFS, however, are
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encouraging enough to at least warrant the investigation of a larger phase III
trial in order to more accurately assess the efficacy of GMK and other related
vaccines in this patient population. Such studies are currently being investigated
in ECOG.
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Appendix: Computational Development

Although, the joint posterior distribution of θ does not have a closed form,
the conditional posteriors do, and thus implementation of the Gibbs sampler
is straightforward. Let D denote the data, and “rest” denote the remaining
parameters.

We have the following.
(1) [λj |D, rest] ∼ gamma(dj + aj , B+j + bj), where B+j =

∑n
i=1 Bij.

(2) [Σ−1|D, rest] ∼ W2(n0 +
∑n

i=1 mi, [Q−1
0 +

∑n
i=1

∑mi
l=1 (yil1 − gγi

(Ail), yil2 −
α0 − α1gγi

(Ail))′ (yil1−gγi
(Ail), yil2 − α0 − α1gγi

(Ail))]−1).
(3) [α0|D, rest] ∼ N(µα0 , σ

2
α0

), where µα0 = ((m3/v
2
3)+(σ2

2(1 − ρ2))−1∑n
i=1

∑mi
l=1

(yil2 − α1gγi
(Ail)− (ρσ2/σ1)(yil1 − gγi

(Ail))))σ2
α0

and σ2
α0

= ((v2
3)

−1 +
∑n

i=1

(mi/σ
2
2(1 − ρ2)))−1.

(4) [α1|D, rest] ∼ N(µα1 , σ
2
α1

), where µα1 = σ2
α1

((m4/v
2
4) + (σ2

2(1 − ρ2))−1∑n
i=1∑mi

l=1 gγi
(Ail)(yil2 − α0 − ((ρσ2)/σ1)(yil1 − gγi

(Ail)))) and σ2
α1

= ((v2
4)−1 +

(σ2
2(1 − ρ2))−1∑n

i=1

∑mi
l=1[gγi

(Ail)]2)−1.
(5) [µ0|D, rest] is a multivariate normal for the polynomial trajectory gγi

(Ail),
and the derivation of mean and variance-covariance matrix depends on the
form of the trajectory.

(6) [Σ0|D, rest] is an inverse Wishart distribution for the polynomial trajectory
gγi

(Ail).
(7) The conditional posterior density of β1 and β2 is log-concave in each compo-

nent of β1 and β2.
(8) The conditional posterior density of γ is log-concave in each component of γ

for the polynomial trajectory gγi
(Ail).

Thus, for (1)−(6), the generation is straightforward, while for (7) and (8)
we can use an adaptive rejection algorithm, since the corresponding conditional
posterior densities are log-concave.
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