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Abstract: We study the use of increments to estimate the fractal dimension of a two-

dimensional fractal Brownian surface observed on a regular grid. Linear filters are

used to describe differencing of two-dimensional surfaces and generalized variograms

are defined based on them. We examine the practical performance of ordinary and

generalized least squares estimators based on different filters by numerically calcu-

lating their asymptotic variance and also by simulation using an exact simulation

method for fractional Brownian surface proposed by Stein (2002). An extensive

numerical and simulation study of the practical performance of estimators based

on different collections of lags is presented for Gaussian and non-Gaussian random

fields, and a comparison to the much more computationally intensive restricted

maximum likelihood estimator is provided.
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1. Introduction

Fractional Brownian fields are a class of Gaussian random fields that can be
used to model many physical processes in space, see for example Peitgen and
Saupe (1988) and Wilson (2000). A fractional Brownian field in R

d is a Gaussian
random field with constant mean and covariance structure Var {Z(x) − Z(y)} =
2C‖x − y‖α, x, y∈ R

d, where α ∈ (0, 2). The quantity γ(x − y) = 1
2Var{Z(x)−

Z(y)} is known as the variogram (Cressie (1993, p.40)). The parameter C is a
scale parameter and α is a smoothness parameter with larger values correspond-
ing to smoother surfaces. There is a simple relation between α and the fractal
dimension D of a fractional Brownian surface: D = d + 1 − α/2 (Cressie (1993,
p.311)). A number of authors in recent years have investigated the statistical
properties of estimators of α using the empirical variogram based on a finite
number of observations of Z on a regular grid, see for example Constantine and
Hall (1994), Kent and Wood (1997), Davies and Hall (1999) and Chan and Wood
(2000). The key idea can be easily explained in the one-dimensional case, where
a fractional Brownian field is called fractional Brownian motion. Suppose we
observe a fractional Brownian motion at n equally spaced locations with spac-
ing n−1. Let Yk,n =

∑n−k
i=1 {Z ((i + k)/n) − Z (i/n)}2 /(n − k) be the empirical
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variogram at lag k, which has the property

log(nαYk,n) = log Yk,n + α log n
p−→ log C + α log k (1.1)

as n → ∞. We can calculate the empirical variogram at several different values
of k and use ordinary least squares (OLS) or generalized least squares (GLS) to
get an estimator of α.

In this paper we focus on estimators of α for fractional Brownian surfaces in
R

2 observed on a regular lattice, but we also discuss estimating C. We assume
the grid is square and spacing is equal in both directions. Because of the self-
similarity of fractional Brownian surface, without loss of generality we can assume
observations are made on an n × n regular lattice with spacing n−1 between
neighboring observations, so the sample size is N = n2.

Kent and Wood (1997) used the empirical variogram of increments to esti-
mate fractal dimension of one-dimensional locally self-similar Gaussian processes.
Chan and Wood (2000) applied this method to two-dimensional Gaussian sur-
faces and derived the rate of convergence for OLS and GLS estimators of α.
They also compared the performance of several estimators based on different
filters (increments) using simulation, but they used an approximate simulation
procedure for Gaussian random fields with α near 2. Our results show that
their approximation yields seriously erroneous conclusions about the properties
of some estimators when α is near 2.

We expand on the work of Chan and Wood (2000) on estimating α in three
ways. First, for two-dimensional surfaces there are far more ways of differencing
than for one-dimensional processes, and we consider a broader spectrum of filters
than Chan and Wood (2000). Furthermore, we use rotations of filters in our
estimators, whereas Chan and Wood (2000) only use estimators based on scale
transformations of a filter. Asymptotic theory and simulations demonstrate that
our estimators are substantially more efficient than those of Chan and Wood.
See Section 2.3 and 4.4 for more details. Second, in our study we take advantage
of a new exact simulation method for fractional Brownian surfaces proposed by
Stein (2002), yielding meaningful and accurate comparisons between estimators
for α near 2. Third, in those cases in which N1/2α̂ converges in distribution, we
calculate its asymptotic variance numerically. For fractional Brownian surfaces,
the variogram-based estimators of α are asymptotically unbiased. Thus, for
estimators that have the same convergence rate, we can compare them through
their asymptotic variances.

It is known that the performance of estimators of α depends on the collection
of lags on which the empirical variogram is calculated (we refer to this collection
of lags as the lag set). Constantine and Hall (1994) proved that, for the OLS
estimator, as n → ∞, the asymptotically optimal number of lags, i.e., the size of
the lag set, is bounded. Davies and Hall (1999) include one numerical example
showing that the mean-squared error (MSE) of the OLS estimator of α for a
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Gaussian process on the interval [0,1] is optimized at lag set size 2 and the MSE
increases as the lag set size increases. No systematic study has been done on this
matter, especially in two dimensions. We present rather extensive numerical and
simulation studies to compare the performance of OLS and GLS estimators of α
for fractional Brownian surfaces on different lag sets. We find that for the OLS
estimator, increasing the number of lags beyond 2 always yields poorer estima-
tors, which is consistent with Davies and Hall (1999). For the GLS estimator,
the best choice of lag set is sensitive to the sample size, with bigger sample sizes
corresponding to larger best lag sets.

Chan and Wood (2000) study theoretical properties of Gaussian processes
that behave only locally like a fractional Brownian surface, as well as processes
that are not isotropic and some that are not Gaussian. We consider only ex-
actly self-similar fractional Brownian surfaces, allowing a more focused simula-
tion study on the estimation of α without the need to consider the specific form
for the variogram of the random field or the spacing of the observations. Our
theoretical results are stated just for fractional Brownian surfaces, but these re-
sults can be extended to random fields whose behavior is sufficiently similar to a
fractional Brownian surface: to those stationary Gaussian fields with covariance
functions of the form (2.5) in Chan and Wood (2000) that satisfy certain regu-
larity conditions, and to certain non-Gaussian random fields. In the simulation
study we also apply our method to stationary Gaussian and non-Gaussian fields
in addition to fractional Brownian surface.

Section 2 defines linear filters and generalized variograms based on them.
Section 3 gives details of the estimation methodology and shows how to calcu-
late the asymptotic variance of N1/2α̂ when it converges in distribution. Results
for estimating C are given as well. In Section 4 we give our simulation results
for Gaussian and non-Gaussian random fields, including comparisons to the re-
stricted maximum likelihood estimator and the estimator defined in Chan and
Wood (2000).

2. Linear Filter and Empirical Variogram

2.1. Definition of linear filter

Suppose Z is a random field on R
d, and A = {a1, a2, . . . , aI} and ∆ =

{δ1, δ2, . . . , δI} are ordered sets, ai ∈ R and δi ∈ R
d. We define a linear filter

L = {A,∆} to be the operation on Z such that L (Z (x)) =
∑

aiZ (x + δi). A
filter is called finite if it is based on a finite number of observations. We are
mainly interested in linear filters on two dimensional regular lattices such that
δi ∈ Z

2 and either
∑

ai = 0 or∑
ai = 0 and

∑
aiδi = 0. (2.1)

For any c �= 0, the difference between {A,∆} and {cA,∆} is of no importance
for our purpose, so we identify those filters as one filter.
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2.2. Classification of linear filters on regular lattices

Figure 1. Transformations of the linear filter {A = {1, 1, 1,−3}, ∆ =
{(1, 0), (0, 1), (−1,−1), (0, 0)}}.

Unlike the one-dimensional case, different two-dimensional filters can have
the same basic geometric structure, as shown in Figure 1. As we shall see in
Section 3.1, by using filters having the same geometric structure, similar to (1.1),
we obtain a linear regression for estimating α. To represent filters having the
same geometric structure, we introduce the transformation of a linear filter T ,
defined on a linear filter L by T ◦ L = {A,T∆}, where T is a 2 × 2 matrix
and T∆ = {Tδ1,Tδ2, . . . ,TδI}. There is a trivial isomorphism between the
transformation T and the matrix T, so from now on we do not distinguish them.

Since we assume all the observations are on a regular grid, we are only inter-
ested in filters for which all δi ∈ Z

2. We restrict our attention to the semigroup G
of 2× 2 matrices T generated by the matrices R, S, D and kI, k ∈ R

+, through
matrix multiplication, where I is the 2 × 2 identity matrix and

R =
(

0 −1
1 0

)
, S =

(−1 0
0 1

)
, D =

(
1 −1
1 1

)
.

R corresponds to 90◦ rotation, S is reflection with respect to the vertical axis
and D is 45◦ rotation plus 21/2 scaling. We could consider other transformations
but we doubt there is much practical advantage to doing so.

The semigroup of transformations G partitions the space of all linear filters
into categories; within each category one filter can be mapped into another using
one of the transformations in G. Each category can be further partitioned into
subcategories using the subgroup of G generated by kI, k ∈ R

+. We use a filter
to represent a category or a subcategory in different situations, and the meaning
will be clear from the context.
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Figure 2. Representations of the four subcategories of {A = {1,−2, 1}, ∆ =
{(1, 0), (0, 0), (−1, 0)}}.

Figure 2 shows four filters that belong to the same category, {A = {1,−2, 1},
∆ = {(1, 0), (0, 0), (−1, 0)}}, each of which represents a subcategory. The ele-
ments in every subcategory are all scalings of the representative filter of the
subcategory.

We restrict our attention to categories of filters that have relatively simple
forms: all have no more than 5 points and two distinct values for the ai’s. The
categories of filters under study are as follows:

L(1) = {A = {1, 1,−2}, ∆ = {(1, 0), (−1, 0), (0, 0)}},
L(2) = {A = {1, 1, 1,−3}, ∆ = {(1, 0), (0, 1), (−1,−1), (0, 0)}},
L(3) = {A = {1, 1,−1,−1}, ∆ = {(1, 0), (0, 1), (1, 1), (0, 0)}},
L(4) = {A = {1, 1,−1,−1}, ∆ = {(1, 1), (0,−1), (1, 0), (0, 0)}},
L(5) = {A = {1, 1, 1, 1,−4}, ∆ = {(1, 0), (0, 1), (−1, 0), (0,−1), (0, 0)}},
L(6) = {A = {1, 1, 1, 1,−4}, ∆ = {(1, 0), (−1, 0), (1, 1), (−1,−1), (0, 0)}}.

These filters satisfy (2.1) and are increments of order 1 as defined in Chan and
Wood (2000). We also consider L(0) = {A = {1,−1},∆ = {(1, 0), (0, 0)}}, which
only satisfies

∑
ai = 0 and gives increments of order 0.
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Figure 3. Filters L(0),L(1), . . .,L(6)

Figure 3 illustrates the shape of the representing filters for each category. No-
tice that L(1) has four subcategories (self, 90◦ rotation, and 45◦ and 135◦ rotation
plus 21/2 scaling, see Figure 2), L(2) has eight subcategories (self, 90◦, 180◦, 270◦

rotations and 45◦, 135◦, 225◦, 315◦ rotations plus 21/2 scaling, see Figure (1).
Similarly there are two subcategories for L(3) and L(5), and eight for L(4) and
L(6).

Among the filters considered in Chan and Wood (2000), “horizontal”, “verti-
cal”, “diagonal with positive gradient” and “diagonal with negative gradient” cor-
respond to the four subcategories of L(1) (see Figure 2) and “square-increment”
corresponds to one subcategory of L(3).
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2.3. Definition of generalized variogram

The generalized variograms we consider are based on filters from a single
category. We only consider isotropic random fields, so we include all filters in a
particular category that have the same scale to form the generalized variogram.
Formally, define |T |, the norm of T , as the square root of the determinant of
the matrix T, and let M be the number of distinct linear filters T ◦ L such that
|T | = 1. As in Chan and Wood (2000), for notational convenience, we write our
estimators assuming that we can observe T ◦ L(Z(x)) on an n × n grid for all T

we are considering. This require observing Z on a slightly larger grid and then
not making use of some increments for smaller values of |T |. In our simulations,
we always use all available increments based on observations on an n × n grid,
so that the number of increments changes with T and is always smaller than n2.

Set N = n2. Define the generalized variogram for the filter L on an n × n

regular lattice at lag k to be

Yk,n =
1

2MN

∑
x∈Dn

∑
Tk,n

{Tj ◦ L (Z (x))}2 ,

where Dn = {1/n, 2/n, . . . , 1}2, Tk,n = {T ◦ L : |T | = k/n} for k ≤ n, and k ∈ N

or k/21/2 ∈ N, N the set of all natural numbers.
To give a specific example of a Yk,n, for Filter 1, M = 2 and the generalized

variogram is

Yk,n =
1

4N

∑
x∈Dn

{(
k

n
I
)
◦ L(1) (Z (x))2 +

(
k

n
R
)
◦ L(1) (Z (x))2

}
.

For k ∈ N, Yk,n is a combination of variograms of “vertical” and “horizontal” in-
crements, and for k/21/2 ∈ N, Yk,n is a combination of variograms of the “diagonal
with positive gradient” and the “diagonal with negative gradient” increments, as
defined in Chan and Wood (2000).

3. Theoretical Results

We first give asymptotic results for estimators of α and C and details of
the estimation methodology. Then we show how to calculate the asymptotic
variance of N1/2α̂ when it converges in distribution. We numerically calculate
the asymptotic variance of N1/2α̂ for a group of estimators of α and find some
interesting trends.

3.1. Asymptotic results

For a filter L = (A,∆), define fL(α) = −∑ asat‖δs − δt‖α/2, which we
write as f(α) when the filter L is apparent from context. Setting C ′ = Cf(α),
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for Zk,n = nαYk,n, it follows that

µk = E (Zk,n) = −nα

2

∑
s,t

asatγ

(∥∥∥∥k

n
(δs − δt)

∥∥∥∥
)

= C ′kα. (3.1)

Let σk,l,n = Cov (Zk,n, Zl,n). We have

σk,l,n =
n2α

4M2n4

∑
j,j′

∑
x,y

Cov
(
{Tj ◦ L (Z (x))}2 ,

{
Tj′ ◦ L (Z (y))

}2
)

=
n2α

4M2n4

∑
j,j′

∑
x,y

2[E
{
Tj ◦ L (Z (x)) Tj′ ◦ L (Z (y))

}
]2

=
n2α

2M2n4

∑
j,j′

∑
x,y

{∑
asatE

(
Z (x + Tjδs)Z

(
y + Tj′δt

))}2

=
Cn2α

2M2n4

∑
j,j′

∑
x,y

{∑
asat‖x − y + Tjδs − Tj′δt‖α

}2
,

where x,y are summed over Dn, j is summed over |Tj| = k/n, and j′ over
|Tj′ | = l/n.

If we can show Zk,n
p−→ Cf(α)kα or, equivalently,

log Zk,n
p−→ log C + log f(α) + α log k, (3.2)

then for any subset Kp = {k1, k2, . . . , kp} ⊂ K where K = {k : k < n, k ∈
N or k =

√
2k′, k′ ∈ N} and p ≥ 2, we can use (3.2) to get a regression estimator

of α and C.

Theorem 1. For any finite filter L = (A,∆) satisfying (2.1),

Nσk,l,n −→ σk,l =
C

2M2

∑
j,j′

∑
x

{∑
asat‖x + T ∗

j δs − T ∗
j′δt‖α

}2
, (3.3)

where x∈Z2 and |T ∗
j |= |T ∗

j′ |=1. Moreover, letting Zn =(Zk1,n, Zk2,n, . . . , Zkp,n)T,

N1/2 {Zn − E (Zn)} L−→ N (0,Σ) (3.4)

where Σ = (σk,l). If α < 1, then (3.3) and (3.4) hold for any filter L satisfying∑
ai = 0.

Theorem 1 combined with (3.1) implies (3.2), which is the foundation of the
variogram method for estimating α.

We next consider the estimator of α of the form

α̂ =
∑

l

gl log Zkl,n, (3.5)
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where gl, l = 1, . . . , p, is a set of numbers such that∑
l

gl = 0,
∑

l

gl log(kl) = 1. (3.6)

Theorem 2. For any finite filter L which satisfies (2.1) and α̂ defined as in
(3.5),

N1/2 {α̂ − α} L−→ N
(
0, σ2

α

)
, (3.7)

σ2
α =

∑
s,t

gsgt

µksµkt

σs,t. (3.8)

If α < 1, then (3.7) holds for any filter L satisfying
∑

ai = 0.

Notice that although Zk,n = nαYk,n is not observable, for gls satisfying (3.6),
α̂ is a statistic that only depends on the observable part Yk,n and does not depend
on C or α.

Theorem 2 covers the OLS estimator and GLS estimator with nonstochastic
weight matrix. However, when using GLS in practice, the weight matrix also
has to be estimated from the data. The following theorem gives the asymptotic
behavior for the GLS estimator with estimated weight matrix.

Theorem 3. For any finite filter L = (A,∆) satisfying (2.1), consider α̂ =∑
l ĝl,n log Zkl,n, where ĝl,n

p−→ gl and the gls are nonstochastic constants. If
both ĝl,n and gl satisfy (3.6), then

N1/2 {α̂ − α} L−→ N
(
0, σ2

α

)
, (3.9)

where σ2
α is as defined in (3.8). If α < 1, then (3.9) holds for any filter L

satisfying
∑

ai = 0.

In practice, estimating the scale parameter C may also be of interest, for
example, to obtain standard errors for kriging predictors. Consider the estimator
of C ′ = Cf(α) of the form

Ĉ ′ = nα̂−α exp

{∑
l

hl log Zkl,n

}
, (3.10)

where α̂ is the same as (3.5) and hl, l = 1, . . . , p, is a set of numbers such that∑
l

hl = 1,
∑

l

hl log(kl) = 0. (3.11)

Theorem 4. For any finite filter L = (A,∆) that satisfies (2.1) and Ĉ ′ defined
as in (3.10),

N1/2

log N

{
Ĉ ′ − C ′

} L−→ N

(
0,

1
4
σ2

α

)
, (3.12)
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where σ2
α is as defined in (3.8). If α < 1, then (3.12) holds if

∑
ai = 0.

The following corollary of Theorem 4 is immediate.

Corollary 1. For any finite filter L = (A,∆) that satisfies (2.1), Ĉ ′ defined as
in (3.10), and Ĉ = Ĉ ′/f(α̂),

N1/2

log N

{
Ĉ − C

} L−→ N

(
0,

σ2
α

4f(α)2

)
, (3.13)

where σ2
α is as defined in (3.8). If α < 1, then (3.13) holds if

∑
ai = 0.

Theorem 1 follows directly from Theorem 3.2 in Chan and Wood (2000).
The proofs of Theorems 2–4 can be found in Zhu and Stein (2001).

Notice that, because of (3.11), the estimators in Theorem 4 and Corollary
1 are statistics that only depend on Ykl,n and do not depend on C or α. Both
estimators defined by (3.17) and (3.18) satisfy (3.11). Thus, Theorem 4 and
Corollary 1 can be applied to both the “OLS” and “GLS” estimators of C. The
asymptotic results for the “GLS” estimators of C with estimated weight matrix
can be obtained in a similar way as when estimating α (see Theorem 3). These
are omitted.

3.2. Numerical calculation

Theorems 2 and 3 give us a way to compare estimators of α by numerically
calculating their asymptotic variances. We proceed as follows. Suppose we use
Kp = {k1, k2, . . . , kp} as the lag set to estimate α, and let α̂O and α̂G be the
OLS and GLS estimators of α using filter L. We write α̂ to indicate either α̂O

or α̂G. Let W be the weight matrix of filter L used in GLS, dj = log kj , d =
(d1, d2, . . . , dp)

T and let d̄ be the mean of d. It follows that for α̂O,

gl =
dl − d̄∑
(dj − d̄)2

, (3.14)

and for α̂G,

gl =
(1T W1)(dT W)l − (1T Wd)(1T W)l

(1T W1)(dT Wd) − (1TWd)2
, (3.15)

where 1 is a vector of ones and (V)l is the lth component of a vector V. It is easy
to show that in both cases the gls satisfy (3.6), so Theorem 2 can be applied to
OLS estimators and to GLS estimators with nonstochastic weight matrix. When
the weight matrix is estimated by replacing α by α̂O in the expressions for the
weights, since α̂O is a consistent estimator of α by Theorem 2, Theorem 3 applies
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as long as the weight matrix is a continuous function of α. All weight matrices
used here are continuous functions of α.

In order to calculate the asymptotic variance for the GLS estimator of α, we
define the asymptotic weight matrix as

Ws,t = lim
n→∞

NCov (Zks,n, Zkt,n)
E (Zks,n) E (Zkt,n)

=
σks,kt

µksµkt

. (3.16)

This formula is obtained by using the first-order Taylor expansion to approximate
NCov (log Zks,n, log Zkt,n) and then taking the limit as n → ∞. Thus, using
(3.8) and (3.14)—(3.16), we can numerically calculate the asymptotic variance
of estimators of α based on different filters L and lag sets Kp for both OLS and
GLS estimators.

Once we have the estimator of α, it is easy to get an estimator of C using
OLS or GLS. We can estimate C ′ by

Ĉ ′
O =

nα̂

nα
exp

{
p−1

p∑
l=1

log Zkl,n−α̂d̄

}
=nα̂O exp

{
p−1

p∑
l=1

log Ykl,n−α̂d̄

}
, (3.17)

where p is the number of lags in the lag set. Or, using GLS we have

Ĉ ′
G =

nα̂G

nα
exp

{
(dT Wd)(1T W log Zn) − (1T Wd)(dT W log Zn)

(1T W1)(dT Wd) − (1TWd)2

}

= nα̂G exp

{
(dT Wd)(1T W log Yn) − (1TWd)(dT W log Yn)

(1T W1)(dT Wd) − (1T Wd)2

}
, (3.18)

where Yn = (Yk1,n, Yk2,n, . . . , Ykp,n)T and log of a vector just means the vector
of logarithms of its components. For Filter 0, f(α) = 1, so we can estimate C

by (3.17) or (3.18) directly. For Filter 1, f(α) = 4 − 2α, so we can estimate C

by (3.17) or (3.18) divided by 4 − 2α̂. It is easy to check that Theorem 4 and
Corollary 1 can be applied to both the OLS and GLS estimators of C, and the
asymptotic variance can be obtained.

From Theorems 2–4, the OLS and GLS estimators of α and C satistfy α̂−α =
Op(N−1/2) and Ĉ −C = Op(N−1/2 log N) for appropriately chosen filters. Using
a Taylor expansion argument we can also show that α̂ and Ĉ have asymptotic
correlation 1. Theorem 1 in Section 6.7 of Stein (1999) suggests that the same
rates of convergence hold for the restricted maximum likelihood estimators of C

and α.
We calculate the asymptotic variance of estimators of α for each combination

of the lag sets K2 = {1, 2} , K4 = {1, 2, 3, 4} and K8 = {1, 2, 3, 4, 5, 6, 7, 8}, with
filters L(0) through L(6) and α ∈ {0.1, 0.7, 1, 1.3, 1.9}. The results are listed on
the left side of Table 1. From the table we can see several interesting trends:
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Table 1. Asymptotic variance and simulation results of the first study.

Asymp. var. limn→∞ Var(nα̂) Simulation results of n2Var(α̂)

Method: OLS α α

Lag Set Filter 0.1 0.7 1.0 1.3 1.9 0.1 0.7 1.0 1.3 1.9

K2 0 2.09 3.8 ∞ ∞ ∞ 2.5 3.8 6.3 15.2 38.1
1 4.86 5.4 5.8 6.1 6.9 6.1 6.5 6.9 7.2 7.4
2 2.63 4.4 5.3 6.1 7.6 3.1 5.1 6.1 7.1 (1)8.9
3 10.17 9.3 9.0 8.7 8.4 (1)11.8 10.6 10.1 9.6 (1)8.6
4 3.14 5.5 6.6 7.5 9.0 3.1 5.8 7.1 8.3 10.1
5 6.31 6.2 6.2 6.2 6.5 8.0 7.7 7.7 7.7 7.4
6 2.70 5.0 6.2 7.2 9.2 2.9 5.6 7.0 8.4 (1)10.8

K4 0 0.74 6.0 ∞ ∞ ∞ 0.79 5.3 10.6 24.4 44.5
1 1.18 4.4 6.0 7.5 10.7 1.27 4.7 6.5 8.3 11.6
2 0.88 4.6 6.6 8.5 12.5 1.07 5.5 8.0 10.4 (3)14.8
3 2.65 6.0 7.6 9.0 11.6 2.87 5.9 7.6 9.2 (2)12.3
4 1.02 5.6 8.0 10.2 14.6 1.18 6.6 9.4 12.0 (3)16.0
5 1.58 4.5 5.9 7.2 9.6 1.89 5.1 6.7 8.4 (2)11.7
6 0.85 5.4 7.9 10.3 15.4 1.05 6.6 9.7 12.7 (2)17.7

K8 0 0.66 13.2 ∞ ∞ ∞ 0.71 11.3 22.3 44.0 55.5
1 0.72 7.7 11.5 15.1 23.1 0.82 8.7 12.8 16.6 (11)25.9
2 0.67 8.6 13.2 17.6 27.5 1.01 11.2 16.8 22.1 (23)35.3
3 1.31 9.3 13.4 17.0 24.3 1.45 11.1 16.3 21.2 (14)25.0
4 0.78 10.6 16.0 21.2 32.0 1.03 11.9 17.5 22.3 (27)36.7
5 0.87 7.6 11.0 14.1 20.7 1.22 10.2 14.9 19.3 (10)27.4
6 0.71 10.5 16.0 21.5 33.9 1.08 13.0 19.5 25.5 (31)43.3

Method: GLS α α

K4 0 0.74 3.6 ∞ ∞ ∞ 0.79 3.8 4.9 6.1 (47)30.4
1 1.18 3.8 4.8 5.5 6.5 1.27 4.3 5.6 6.5 7.0
2 0.87 3.7 4.8 5.6 6.9 1.06 4.4 5.7 6.8 8.1
3 2.65 5.6 6.6 7.3 8.0 2.86 5.7 6.8 7.7 (1)8.6
4 1.01 4.5 5.9 6.9 8.4 1.17 5.1 6.6 7.9 9.3
5 1.58 4.1 5.0 5.5 6.2 1.89 4.7 5.9 6.7 7.3
6 0.85 4.3 5.6 6.6 8.3 1.04 4.9 6.5 7.8 9.8

K8 0 0.57 3.5 ∞ ∞ ∞ 0.62 3.7 4.8 5.9 (49)35.6
1 0.66 3.6 4.6 5.31 6.4 0.75 4.2 5.4 6.3 7.0
2 0.59 3.5 4.6 5.46 6.8 0.84 4.3 5.6 6.7 8.0
3 1.26 5.0 6.1 6.93 7.9 1.38 5.4 6.7 7.6 (1)8.5
4 0.68 4.3 5.6 6.67 8.3 0.88 4.9 6.4 7.6 9.3
5 0.81 3.8 4.7 5.29 6.1 1.12 4.6 5.8 6.6 7.3
6 0.60 4.1 5.4 6.45 8.1 0.86 4.9 6.4 7.7 9.6

Notes: OLS and GLS estimator are defined by (3.14) and (3.15). The asymptotic variance
is computed using (3.8) and the weight matrix in the GLS estimators are the asymptotic
weight matrix defined in (3.16). The simulation results are based on 500 simulated
fractional Brownian surfaces on a 90 × 90 grid. When using GLS estimators, we use
the weight matrix defined in (4.1) evaluated at the true value of α. Lag sets are K2 =
{1, 2} , K4 = {1, 2, 3, 4} and K8 = {1, 2, 3, 4, 5, 6, 7, 8}. If any estimates fall outside (0,2],
the number of times this happens is given in brackets (·).
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1. The GLS estimator for K4 and K8 is much better than the OLS estimator
with the same lag set except for α = 0.1, for which there is little improvement.
In contrast, the OLS estimator for K2 is only moderately worse than the GLS
estimator for K4 and K8 when α > 1.

2. For α > 1, increasing the size of the lag set makes the OLS estimator
much worse. Although the GLS estimators get better for larger lag sets, the
improvement is very limited from K4 to K8.

3. Filter 0 is often best for α < 1; Filter 2 does well for α ≤ 1 and Filter 5
for α > 1; Filter 1 performs well for all α and Filter 3 poorly for all α.

These results are confirmed by the simulation results listed on the right side
of Table 1. The details of the simulation study are explained in the next section.

4. Simulation Studies

4.1. Weight matrix

In Section 3 we used the asymptotic weight matrix and evaluated it at the
true α value when using GLS estimates. In the simulation study we use the
weight matrix calculated as

Ws,t,n =
Cov (Zks,n, Zkt,n)
E (Zks,n) E (Zkt,n)

=
σks,kt,n

µksµkt

. (4.1)

This formula is obtained by using first order Taylor expansion on Cov(log Zks,n,

log Zkt,n). In the first study we compared the performance of seven filters and,
to reduce the computational burden, we evaluated (4.1) at the true α value. The
resulting α̂G is then not a statistic (it depends on the unknown α); however, for
large sample sizes it should have similar behavior to a GLS estimator using an
estimated value for α in the weight matrix.

The second study considers only two filters and uses the OLS estimator
α̂O to calculate the estimated weight matrix Ŵs,t,n and hence corresponds to
an estimator that can be used in practice. Since it is time-intensive to cal-
culate the weight matrix, we pre-calculated and stored the weight matrix for
α ∈ {0.02, 0.04, . . . , 1.98} and used linear interpolation to get the estimated
weight matrix for any α ∈ (0, 2). The weight matrix itself is of independent
interest. Figure 4 shows the variances and correlations of the logarithm of the
empirical variogram, from which the weight matrix was obtained, for Filters 0, 1
and 2 with lag set K4 and observations on a 362×362 grid. For Filter 0, the plot
shows that for α ∈ (0, 1) the variance of the logarithm of the empirical variogram
of each lag increases as α increases and as the length of the lag increases. The
correlation of lags that are close in length to each other (i.e., lags 2 and 3, lags 3
and 4) generally increases monotonically as α increases while the correlation of
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lags that are not close in length (i.e., lags 1 and 4, lags 1 and 3) is decreasing for
α ∈ (0, 0.5) and increasing for α ∈ (0.5, 1). For α ∈ (1, 2) the variances at all lags
increase dramatically because of under-differencing. In addition, the correlations
are near 1, which indicates that variograms based on longer lags do not offer
much new information about α.
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Figure 4. The variance and correlation of the logarithm of the empirical
variogram of lag set K4. Solid line: Filter 0; dotted line: Filter 1; broken
line: Filter 2. The variance of lag 1 empirical variogram is plotted in log
scale. The standardized variance of lag i is the ratio between the variance of
the empirical variogram on that lag and the variance of lag 1. The variogram
is based on observations on a 362× 362 grid.

For Filter 1, the variance of the logarithm of the empirical variogram of each
lag changes much less with α than for Filter 0, and the variance itself is much
smaller for larger α. The variance increases as the length of the lag increases in
a similar manner as Filter 0 for α ∈ (0, 1). The correlation of lags also follows a
pattern similar to Filter 0 for α ∈ (0, 1). If we take |l1− l2|/(l1 + l2) as the relative
distance between lag l1 and lag l2 then, as the relative distance decreases, the
correlation curves change from convex to concave. The plots for Filter 2 are very
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similar to those for Filter 1 except that the variances and correlations are slightly
higher. Intuitively, as Filter 1 is more geographically compact than Filters 2−6,
we would expect the empirical variograms at different lags to be less correlated
with each other and have smaller variance as well, which in turn would give a
better estimator of α. This is confirmed by Figure 4 and simulation results in
Section 4.2. The general patterns for Filter 1 and 2 are also observed in plots for
Filters 3−6 and other lag sets, which we omit.

4.2. Simulation procedure and results

We use the embedding procedure described in Stein (2002) to get exact sim-
ulations of fractional Brownian surfaces. Surfaces with fractal dimension ranging
from 2.05 to 2.95 are considered, with corresponding α ranging from 0.1 to 1.9.

In the first study, we simulated the fractional Brownian surfaces on a 90×90
regular lattice for α ∈ {0.1, 0.7, 1, 1.3, 1.9} and used all combinations of the seven
filters and the three lag sets used in Section 3 to estimate α. For the GLS
estimates, as noted in Section 4.1, we used the weight matrix defined in (4.1)
and evaluated it at the true value of α. The results are listed on the right
side of Table 1. From this table we can see that the simulation results match
the numerically calculated asymptotic constants closely and preserve every trend
we found from the numerical calculation. Both the asymptotic and simulation
results show that the OLS estimators using more than two lags are much worse
than using just K2. Thus, from now on we only consider OLS estimators using
two lags, in which case OLS and GLS are identical. In addition, we only consider
the zeroth order increment filter L(0), which works well for α < 1, and Filter 1,
which is the best overall performer among the six filters that are increments of
order 1.

We also calculated the sample bias and sample MSE for each filter and lag
set combination. It turns out that the sample bias was never large compared
to the simulation error and the sample MSE was almost identical to the sample
variance, so we do not list these results here.

In the second study we simulated the fractional Brownian surfaces on a 362×
362 regular lattice for α ∈ {0.1, 0.4, 0.7, 1, 1.3, 1.6, 1.9} and studied the estimator
based on all twelve combinations of filters L(0) and L(1) and six different lag sets.
To compare asymptotic and finite-sample results, we used every other point in
each coordinate on the 362 × 362 grid to get samples of fractional Brownian
surfaces on a 181 × 181 grid, and applied the same procedure to get fractional
Brownian surfaces on 90×90 and 45×45 grids. Using the same set of simulations
for the different samples sizes made comparisons across sample sizes more precise.

The first simulation study showed that increasing the size of lag sets from
four to eight only improves the GLS estimator by a small amount, so we in-
cluded six relatively small lag sets, Kd

2 = {1, 21/2}, Kd
3 = {1, 21/2, 2}, Kd

4 =
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{1, 21/2, 2, 2(2)1/2}, K2, K4 and K6 = {1, 2, 3, 4, 5, 6}, in the second study to
draw a more detailed picture about the performance of different lag sets. Unlike
the first study, we evaluated the weight matrix at α̂O based on K2 instead of the
true value of α. For purposes of comparison, we also calculated the asymptotic
variance for the corresponding filters and lag sets. The results are listed in Table
2. We listed variances and not biases for the same reason as in the first study.

From Table 2 we can draw the following conclusions.
1. For α > 1, Filter 1 is almost always better than Filter 0, and the difference

increases as the sample size increases. These simulation results are consistent
with the asymptotic result that estimators based on Filter 1 have a higher rate
of convergence than those based on Filter 0 for α ≥ 1. We see that for sufficiently
large sample size, it is essential to use Filter 1 rather than Filter 0.

2. For α = 1, the estimators based on both filters have very similar per-
formance for the sample sizes we considered, and for α < 1 the estimator from
Filter 0 is always better than the corresponding estimator using Filter 1. This is
consistent with the asymptotic results in Table 2 since for α < 1 the estimators
based on Filters 0 and 1 have the same convergence rate. Part of the problem
can also be attributed to the fact that while Filter 0 estimators are based on
order 0 differencing of the original data, Filter 1 estimators are based on order 1
differencing of the original data, yielding a smaller number of increments for each
Yk,n. When the sample size is finite and relatively small, this loss of information
from over-differencing may not be negligible and can be part of the reason that
Filter 1 estimators are inferior.

3. For α near 2, increasing the lag size may not necessarily improve the
performance of the GLS estimator. In fact, for α = 1.6 or 1.9, the best lag set at
sample size 362 × 362 is Kd

4, at sample size 181 × 181 both Kd
3 and Kd

4 have the
best performance, but at sample size 90 × 90 and 45 × 45 the best lag set is Kd

3.
We can observe a similar pattern between K4 and K6, with K6 performing better
at sample size 362 × 362 and K4 better at sample size 45 × 45. Apparently one
may need fairly large sample sizes for α̂O to yield a sufficiently accurate estimator
for the weight matrix to justify using a large lag set.

4. For α ≤ 1.3, increasing the lag size does improve the performance of the
estimator and the improvement is most dramatic for α = 0.1. K6 almost always
yields the best estimator for α ≤ 1.3, which suggests that even larger lag sets are
justified in these cases.

5. For α near 2, Kd
4 is substantially better than K4, and the difference is

larger for smaller sample sizes. The opposite is true for α small. These results
suggest that if we know α is likely to be large, we should include subcategories
of 45◦ rotation in our estimation.
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Table 2. Asymptotic variance and simulation result of the second study.

Filter 0 Filter 1
α α

Lag Set 0.1 0.4 0.7 1.0 1.3 1.6 1.9 0.1 0.4 0.7 1.0 1.3 1.6 1.9

Asymptotic variance limn→∞ Var(nα̂)

Kd
2 7.59 5.9 5.2 ∞ ∞ ∞ ∞ 14.86 12.6 10.8 9.5 8.5 8.1 8.2

Kd
3 2.09 2.5 3.7 ∞ ∞ ∞ ∞ 4.87 5.1 5.4 5.7 6.0 6.2 6.4

Kd
4 1.04 2.2 3.7 ∞ ∞ ∞ ∞ 1.98 3.0 4.0 4.9 5.5 6.0 6.4

K2 2.09 2.5 3.8 ∞ ∞ ∞ ∞ 4.87 5.1 5.4 5.8 6.1 6.5 6.9
K4 0.74 2.2 3.6 ∞ ∞ ∞ ∞ 1.19 2.6 3.8 4.8 5.5 6.0 6.5
K6 0.60 2.2 3.5 ∞ ∞ ∞ ∞ 0.77 2.3 3.7 4.6 5.4 5.9 6.4

Simulation results of n2Var(α̂), Sample size: 362 × 362

Kd
2 6.46 5.0 4.3 7.0 44.9 325.2 378.7 13.33 11.6 10.0 8.8 7.9 8.9 8.4

Kd
3 2.29 2.2 3.0 7.1 20.5 157.1 325.3 5.71 5.7 5.7 5.7 5.6 5.0 5.0

Kd
4 1.10 1.9 3.0 4.7 6.1 14.4 107.6 2.30 3.2 4.1 4.8 5.4 4.8 5.0

K2 2.29 2.2 3.1 8.6 57.7 361.1 397.2 5.71 5.7 5.7 5.7 5.7 5.0 5.3
K4 0.71 1.8 2.9 4.0 5.2 8.0 114.5 1.17 2.4 3.6 4.4 5.1 5.0 5.4
K6 0.58 1.8 2.9 4.0 5.0 7.7 113.3 0.81 2.2 3.3 4.0 4.6 4.8 5.2

Simulation results of n2Var(α̂), Sample size: 181 × 181

Kd
2 7.23 5.8 5.0 7.5 30.4 125.6 117.3 13.21 11.7 10.8 10.5 10.5 7.0 7.0

Kd
3 2.09 3.0 4.2 7.8 20.5 89.9 106.4 4.88 5.6 6.5 7.2 7.8 5.8 6.1

Kd
4 1.08 2.5 4.3 6.4 8.7 9.4 29.7 1.90 3.5 5.0 6.3 7.3 5.8 6.1

K2 2.09 3.0 4.5 9.5 37.8 139.1 123.1 4.88 5.6 6.5 7.3 7.9 6.5 7.1
K4 0.87 2.7 4.5 6.1 7.5 11.3 31.5 1.29 3.1 4.7 5.9 6.7 6.2 6.8
K6 0.73 2.7 4.3 5.6 6.9 11.0 32.1 0.97 3.0 4.6 5.7 6.5 6.2 6.8

Simulation results of n2Var(α̂), Sample size: 90 × 90

Kd
2 7.77 6.2 5.3 6.9 18.6 48.6 37.8 15.91 13.8 11.9 10.4 9.3 8.3 8.3

Kd
3 2.14 2.7 3.9 6.9 16.2 46.2 37.2 4.91 5.3 5.8 6.2 6.5 5.8 6.0

Kd
4 1.10 2.3 3.8 5.6 7.2 10.1 10.2 2.20 3.2 4.3 5.2 6.0 5.9 6.0

K2 2.14 2.7 4.0 7.7 22.5 52.9 39.2 4.91 5.3 5.8 6.4 6.9 6.0 6.4
K4 0.93 2.4 3.9 5.3 6.7 10.8 11.3 1.56 2.9 4.3 5.5 6.2 5.9 6.5
K6 0.64 2.4 3.8 5.1 6.5 10.8 11.8 0.81 2.5 4.0 5.1 6.0 5.9 6.5

Simulation results of n2Var(α̂), Sample size: 45 × 45

Kd
2 6.98 5.1 4.2 5.1 10.6 19.6 13.3 14.09 12.3 11.0 10.2 10.1 8.2 8.3

Kd
3 1.52 1.7 2.4 4.6 10.3 20.2 13.4 3.63 4.0 4.7 5.4 6.0 4.9 5.1

Kd
4 0.77 1.4 2.4 3.9 5.6 7.7 4.1 1.75 2.8 4.0 5.0 5.7 5.2 5.3

K2 1.52 1.7 2.5 5.0 11.9 20.9 13.4 3.62 4.0 4.7 5.4 5.9 5.2 5.6
K4 0.59 1.4 2.5 3.6 5.0 9.4 5.2 1.10 2.0 3.0 4.0 4.8 5.6 6.0
K6 0.43 1.4 2.4 3.4 4.8 9.3 5.6 0.64 1.8 2.8 3.7 4.6 5.6 6.1

Notes: α̂s are GLS estimators defined by (3.15). For Kd
2 and K2 the GLS and OLS

estimators are identical. The asymptotic variances are computed using (3.8) and the
weight matrices in the GLS estimators are the asymptotic weight matrices defined in
(3.16). The simulation results are based on 100 simulated fractional Brownian surfaces
on a 362×362 grid. For the GLS estimators, we use the weight matrix in (4.1) evaluated
at α = α̂O. Lag sets are Kd

2 =
{
1,
√

2
}
, Kd

3 =
{
1,
√

2, 2
}
, Kd

4 =
{
1,
√

2, 2, 2
√

2
}
,

K2 = {1, 2}, K4 = {1, 2, 3, 4} and K6 = {1, 2, 3, 4, 5, 6}. For sample size larger than
45×45 almost all estimators are within (0,2]. The number of estimates outside (0,2] can
be found in Zhu and Stein (2001).



ESTIMATION FOR FRACTIONAL BROWNIAN SURFACES 879

6. The asymptotic results give less accurate approximations than in the first
study for α near 2. This is expected because we estimated the weight matrix in
the GLS estimator instead of using the true value of α. The difference between
the asymptotic results and the simulation results for the smaller sample sizes
can be substantial, which shows the limitations of asymptotic theory and the
necessity of doing simulation studies for this problem.

Table 2 can be used to choose the best lag set for the GLS in practice if
the sample size is similar to the one considered there. Otherwise, an iterative
procedure can be used as follows. First use OLS to get an estimate α̂(1) based on
K2. Then simulate the random field at α̂(1) and use all lag sets being considered
to estimate α. The lag set that has the best performance for the simulated data
is then used to get an estimate α̂(2). Repeat the above procedure until the best
lag set for the data is found. Since the number of lag sets one needs to consider
is usually small, one iteration would be enough to find the best lag set on most
occasions. In our simulation study, it took 642 seconds to simulate 100 fractional
Brownian surfaces on a 362× 362 grid for α ≤ 1.5, and 2717 seconds for α > 1.5
on a PIII 866. Computing the weight matrix for different lag sets took 165 to
574 seconds. The time it took to compute the estimator after the weight matrix
was obtained was negligible. So the whole procedure can be implemented in a
few hours for a data set with 131,044 observations on a 362 × 362 regular grid.

4.3. Comparison to Likelihood Method

An alternative approach to the estimation of α is to maximize the likelihood
function of the contrasts, which is commonly known as restricted maximum like-
lihood (REML) estimation. See, for example, Stein (1999). In the settings
considered here, the contrasts are all zeroth order differences of the observations.
Theorem 1 in Section 6.7 of Stein (1999) suggests that the REML estimator of
α has the same rate of convergence as the OLS/GLS estimators defined in this
paper. The REML estimator should be more efficient than the OLS/GLS esti-
mator when the sample size is large. We calculated the REML estimator of α

for simulated data on a 45× 45 grid, and the result is in Table 3. By comparing
Table 2 with Table 3 we can see that the REML estimators outperform the GLS
estimators by a large margin when α ≥ 1.6, but the difference is fairly small for
smaller α. However, it is computationally difficult to compute the exact REML
estimator when the sample size is moderately large, as the computation time is
O(N3) and the memory required is O(N2), N being the sample size. On PIII
866, it took about 98 seconds to evaluate the likelihood once for observations on a
45×45 grid. It would take about 1.74 hours for observations on a 90×90 grid and
307 days for observations on a 362 × 362 grid. One could consider using various
approximations to the restricted likelihood function such as a spectral method
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(Stein 1995), but these are beyond the scope of this paper. On the other hand,
the GLS can offer an estimator with the same convergence rate as the REML
estimator in much shorter time, and thus can be recommended in practice for
large data sets.

Table 3. Simulation results for REML estimators.

α 0.1 0.4 0.7 1.0 1.3 1.6 1.9
nBias -0.09 -0.2 -0.3 -0.3 -0.3 0.1 -0.2

Var(nα̂) 0.43 1.7 2.7 3.5 4.0 4.7 3.6
n2MSE 0.44 1.8 2.8 3.6 4.1 4.7 3.7
Notes: The simulation results are based on 100 simulated
fractional Brownian surfaces on a 45 × 45 grid.

4.4. Comparison to Chan and Wood (2000)

The simulation studies done in Chan and Wood (2000) showed a sharp in-
crease of bias as α increases for all the estimators they considered except for the
one based on square-increment, and they attributed this bias to the use of an
approximate procedure when simulating smoother processes (i.e., processes with
α close to 2). In our simulation studies we employed the exact simulation proce-
dure by Stein (2002) and we see no evidence of this bias problem, confirming that
the biases in Wood and Chan (2000) are due to the simulation method. In fact,
in all our simulation studies the squared biases are much less than the variances,
and in most cases are negligible.

The square-increment estimators in Chan and Wood (2000) correspond to
the estimators based on Filter 3 in our paper, and the other four estimators they
considered each corresponds to an estimator based on one of the four subcate-
gories of Filter 1. For the purpose of comparison we list the asymptotic variance
and simulation results for the Filter 1 estimators, the Square/Filter 3 estimators,
and the Horizontal estimators in Table 4. Using vertical increments gives the
same statistical properties as using horizontal increments, so we only list one of
them.

Table 4 shows that if we only compare the Square estimator with the Hori-
zontal estimator, the Square estimator is better except for α = 0.1. These results
are consistent with Chan and Wood (2000). However, the Horizontal estimators
are worse than the Filter 1 estimators by a substantial margin. This is because
the Horizontal estimators are based on single subcategory of Filter 1 without
averaging the same filter over different directions. Let α̂, α̂H and α̂V be the
estimators of α defined by (3.5) and based on Filter 1, horizontal increment and
vertical increment respectively, then it can be shown that
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Table 4. Comparing Filter 1 estimator with estimators defined in Chan and
Wood (2000): Asymptotic variance and simulation results.

Asymp. var. limn→∞ Var(nα̂) Simulation results of n2Var(α̂)

α α

Type of estimator 0.1 0.7 1.0 1.3 1.9 0.1 0.7 1.0 1.3 1.9

Filter 1 4.9 5.4 5.8 6.1 6.9 6.1 6.5 6.9 7.2 7.4

Square/Filter 3 10.2 9.3 9.0 8.7 8.4 (1)11.8 10.6 10.1 9.6 (1)8.6

Horizontal 9.5 9.6 10.1 10.6 12.2 (1)11.2 10.8 11.3 12.2 (1)12.8

Notes: All estimators are based on the lag set K2 = {1, 2}. The asymptotic
variance is computed using (3.8). The simulation results are based on 500
simulated fractional Brownian surfaces on a 90 × 90 grid. If any estimates
fall outside (0,2], the number of times this happens is given in brackets (.).

N1/2 {α̂ − α} =
1
2
N1/2 {α̂H − α} +

1
2
N1/2 {α̂V − α} + Op(N−1/2).

Since N1/2 {α̂H − α} and N1/2 {α̂V − α} have the same distribution, the asymp-
totic variance of Filter 1 estimators will be strictly smaller than that of horizon-
tal/vertical estimators as long as the asymptotic correlations between horizontal
and vertical estimators are less than 1. In our simulation study the variance of
those estimators are 50% to 85% larger than that of estimators based on Filter
1, and the calculation of asymptotic variance confirms those results. Our study
also found that estimators based on Filter 1 are better than estimates based on
Filter 3 in both the asymptotic variance and the simulation study, so there is
no evidence that Filter 3 should ever be preferred. Table 4 only includes the
results of estimators based on lag set K2. Similar results hold for larger lag sets,
which we omit. Although our theoretical results are stated just for fractional
Brownian surfaces, they can be extended to the random fields Chan and Wood
(2000) considered using essentially the same arguments. Chan and Wood (2000)
considered a particular non-Gaussian case, the stationary χ2

1 field, and proved
that their estimator of α has the same rate of convergence as in the Gaussian
case. Similar results also hold for the estimators we defined.

In this section we apply our method to the stationary Gaussian field with
power exponential covariance function and the stationary χ2

1 field and compare
our estimators with Chan and Wood (2000). By adding a quadratic term to the
covariance function as suggested in Stein (2002) we can simulate the increments
of those random fields exactly, and simulation results are given in Table 5. From
the table we can see that the Filter 1 estimator outperforms the other two for
both Gaussian and χ2

1 fields, and the estimator is generally less efficient for χ2
1

fields than for Gaussian fields.
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Table 5. Simulation results for stationary Gaussian process and stationary χ2
1 processes.

Filter 1 Square/Filter 3 Horizontal

α nBias Var(nα̂) n2MSE nBias Var(nα̂) n2MSE nBias Var(nα̂) n2MSE

Stationary Gaussian Random Field

0.1 -2.5 4.9 (1)11.0 -2.5 9.6 (12)15.7 -2.6 9.2 (11)16.2

0.7 -0.8 5.4 6.0 -0.7 8.9 9.4 -0.9 8.8 9.6

1.0 0.0 5.7 5.7 -0.0 8.6 8.6 -0.1 9.2 9.3

1.3 0.2 6.1 6.1 0.1 8.3 8.3 0.1 9.9 9.9

1.9 0.6 7.2 7.6 0.4 8.8 (3)8.9 0.5 11.6 (2)11.9

Stationary χ2
1 Random Field

0.1 -6.4 7.0 (82)47.5 -6.4 13.2 (117)54.2 -6.5 13.4 (113)55.3

0.7 -2.7 15.1 22.4 -2.6 22.1 28.7 -2.9 24.1 32.6

1.0 -0.6 14.4 14.8 -0.7 20.0 20.5 -0.8 23.5 24.1

1.3 0.1 14.4 14.4 -0.2 18.9 18.9 -0.2 23.3 23.3

1.9 1.3 16.0 (16)17.7 0.8 18.2 (15)18.8 1.4 25.5 (36)27.5

Notes: All estimators are based on the lag set K2 = {1, 2}. The simulation results
are based on 500 simulated Gaussian random field with power exponential covariance
function on a 90 × 90 grid. If any estimates fall outside (0,2], the number of times this
happens is given in brackets (.).

4.5. Estimating C

Figure 5 shows examples of the relationship between α̂ and Ĉ for Gaussian
random fields. The simulations are on a 90 × 90 grid for α = 1.6 or 1.9 and
C = 1, and the estimators are based on Filter 1 and K4, using GLS. From Figure
5 we can see that α̂ and Ĉ have high correlation, and the variation of Ĉ is much
larger than that of α̂, both consistent with the asymptotic theory.
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Figure 5. α̂ vs Ĉ based on 100 simulations on a 90× 90 grid, with (α, C) =

(1.6, 1) on the left and (α, C) = (1.9, 1) on the right (indicated by ×). The

estimators are based on Filter 1 and lag set K4.
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