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Abstract: Estimation of the regression parameters and variance components in a

longitudinal mixed model with measurement error in a time-varying covariate is

considered. The positive bias in variance estimators caused by covariate measure-

ment error in a normal linear mixed model has recently been identified and studied

(Tosteson, Buonaccorsi and Demidenko (1997)). The methods suggested there for

correction of the bias involve convenient adaptations of existing software for a par-

ticular model. In this paper, we study alternative methods of estimation which

achieve higher efficiencies and extend readily to a more general class of models.

Full and pseudo-maximum likelihood estimators under normality are considered as

is a pseudo-moment approach relying on initial estimation of nuisance parameters.

The latter lead to a “regression calibration” method for estimating the regression

parameters, in which a substitution is made for the unknown covariates, followed

by a correction for estimation of the variance parameters. It is shown that for some

cases this yields the pseudo-maximum likelihood estimates and, in these cases, the

resulting estimators are highly efficient relative to the full maximum likelihood

estimators. We first consider a model with no additional data, where identifia-

bility follows from assumptions about the longitudinal model for the unobserved

true covariates, and then describe some extensions to cases where either replicate

or validation data is available. We illustrate with an example investigating the

relationship between dietary and serum beta-carotene.

Key words and phrases: Longitudinal model, maximum likelihood, measurement

error, random effects.

1. Introduction

The linear mixed model (Laird and Ware (1982)) is a popular choice for
the treatment of longitudinal models with random effects. As in most regression
models, difficulties can arise when some of the predictors/covariates are subject
to measurement error. For example, in epidemiologic studies time-varying covari-
ates such as dietary intakes or other exposure variables are often mismeasured.
Fuller (1987) and Carroll, Stefanski and Ruppert (1995) provide a comprehensive
treatment of measurement error in standard linear and nonlinear regression mod-
els, where the main objective is inferences for the regression coefficients. Recent
work has begun investigating the role of measurement error in mixed models,
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both linear (Tosteson, Buonaccorsi and Demidenko (1998), hereafter referred to
as TBD, Paterno and Amemiya (1996), Wang, Lin, Gutierrez and Carroll (1998))
and nonlinear (Wang and Davidian (1996), Carroll, Lin and Wang (1997), Wang,
Lin, Gutierrez and Carroll (1998)) and Wang, Lin and Gutierrez (1999)). In this
paper we examine estimation of both regression coefficients and variance param-
eters for a class of linear mixed models with measurement error in a time-varying
covariate.

We begin with consideration of the model treated by Paterno and Amemiya
(1996) and TBD in which

Yi | (Xi,Di) = Xiβ + γDi + Zνi + εi, i = 1, . . . , n. (1)

Here for “subject” i, Yi is an t × 1 random vector of outcomes, Xi and Z are
known matrices of size t × p and t × q respectively, Di is a t × 1 vector of time-
varying covariates subject to measurement error, νi is a q × 1 vector of random
effects with mean 0 and covariance Ω, εi is a t×1 random vector with mean 0 and
covariance σ2

ε I, and β (t×1) and γ (scalar) are unknown parameters. The εi and
νi are assumed independent of each other and independent over subjects. Hence
the Yi are independent and Cov (Yi | Xi,Di) = Z′ΩZ + σ2

ε I. The fixed effects
part of the model has been split into two pieces to isolate the portion involving
the error-prone predictors, while the use of scalar γ implies that the effect of
the predictor D is the same for each repeated measure within a subject. The
assumption that Z is known prohibits the mismeasured D variable from entering
into the random effects part of the model. Typically Z will capture random
subject effects and random trends over time, as illustrated in the example in
Section 4.

The measurement error is assumed additive with

Wi = Di + δi, (2)

where Wi is the error-prone measure of Di, E(δi) = 0, and δ1, . . . , δn are as-
sumed independent. In the absence of any additional data, some restriction
must be made in order to account for measurement error. Paterno and Amemiya
(1996) allow a general Σδi for Cov (δi), but without additional data they impose
a restriction on the mean model, discussed in more detail in the next section.
TBD were motivated to consider this model by an application where Yi is a
6 × 1 vector of serum beta-carotene measurements, and Di is a 6 × 1 vector of
diet intakes of beta-carotene, measured by Wi, based on a food frequency ques-
tionnaire. In the absence of replicate food frequency measurements or validation
data, TBD used a restricted longitudinal model for the Di; see (7). Using this
model, the focus of TBD was the bias in certain naive estimators and the devel-
opment of a simple approach for correcting for measurement error to apply to



LONGITUDINAL MODELS WITH MEASUREMENT ERROR 887

the diet data. In addition to questions of efficiency, the methods used there do
not readily extend to more general settings.

Section 2 provides more detail on the models, and Section 3 develops estima-
tors using full and pseudo-maximum likelihood estimators under normality and
a pseudo-moment approach without normality. An analysis of the beta-carotene
example is presented in Section 4, followed by efficiency calculations in Section
5. Until Section 6, we limit ourselves to (1) in conjunction with (2) and (7) in
order to examine the main issues in a relatively simple setting. Section 6 outlines
extensions of the methodology to more complicated settings, including the use
of replicate measurements, the use of validation data under linear measurement
error and the treatment of more general longitudinal models.

2. Models

In addition to (1) and (2), a structural model is assumed in which the Di

are independent with E(Di) = µDi and Cov (Di) = ΣD. Both δi in (2) and Di

are independent of random quantities in (1). Thus,

E(Yi) = Xiβ + γµDi, E(Wi) = µDi, Cov (Yi) = ZΩZ′ + σ2
εI + γ2ΣD, (3)

Cov (Wi) = ΣW = ΣD + σ2
δI, and Cov (Yi,Wi) = ΣY W = γΣD. (4)

Under multivariate normality this induces the model

Yi | (Xi,Wi) = Xiβ + γQi + η∗i (5)

where Qi = (I − ΣDΣ−1
W )µDi + ΣDΣ−1

W Wi, and η∗i has covariance

Ψ = ZΩZ′ + σ2
ε I + γ2ΣD(I − Σ−1

W ΣD). (6)

Our methods of estimation are motivated by this conditional model but are
generally robust to normality in that they provide consistent estimators under
(3) and (4) only.

Naive estimation refers to fitting (1) using Wi in place of Di. It is clear
from (5) that naive estimators of either γ or Σ will usually be biased, but it is
not always possible to immediately identify the bias since the fixed effects part
of (5) is not always of the form Xiβ

∗ + γ∗Wi, nor does Ψ usually always have
the form Z′Ω∗Z + σ∗2

ε I. There are some special cases (see TBD and Wang, Lin,
Gutierrez and Carroll (1998)) where the induced model is of the same form as
(1) and the biases are easily established. The asymptotic biases can also be
examined through the estimating equations defining the naive estimators, an
approach taken by Wang, Lin, Gutierrez and Carroll (1998). Their Sections 3.1
and 4.1 provide a bias analysis for special cases of our linear model, with Xi = 1
and Z = 1. We will not pursue further details concerning bias here.
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In the absence of additional data, some assumption must be made in order
to allow a correction for measurement error. Until Section 6 we follow TBD, and
enforce identifiability by assuming the error-prone covariates follow the mixed
model

Di = Aiα+ Rφi, (7)

where Ai is a known t × r matrix, α is an r × 1 vector of parameters, R is a
known t × q matrix of rank q < t and φi is a q × 1 random effect with mean 0
and a nonsingular covariance ΩD. The Aiα captures the fixed effects part of the
model for dietary intake, while R models the random effects. Similar to Z in (1),
it allows for random subject effects and random time trends over subjects. Note
that ΣD = RΩDR′, which is singular.

Model (7), in combination with (2), results in the mixed model

Wi = Aiα+ Rφi + δi (8)

for the observed W’s. The lack of additional residual error in (7) therefore
allows for estimation of α, σ2

δ , and ΩD from the W data. The assumption in
(7) may seem quite strong, but see TBD for further discussion of this model, its
relationship to other work, and an assessment of the assumed model in relation
to the beta-carotene data. Models which relax this assumption are discussed in
Section 6.

Under (7), η∗i in (5) can be written as Zνi+Rτ i+εi, where τ i has covariance
Ωτ = γ2(ΩD − ΩDR′Σ−1

W RΩD) and so

Ψ = ZΩZ′ + RΩτR′ + σ2
ε I. (9)

A special case of interest is when Z = R, in which case Zνi + Rτ i = Zτ ∗
i where

τ ∗
i has covariance

Ω∗ = Ω + Ωτ , (10)

resulting in
Ψ = ZΩ∗Z′ + σ2

ε I. (11)

In this case the covariance structure is the same as in the original model (1) but
with Ω∗ in place of Ω. As noted in TBD, a naive approach leads to overestimation
of Ω.

In summary, until Section 6, the model under consideration is given by (1),
(2) and (7), in which case (5) reduces to

Yi | (Xi,Wi) = Xiβ + γQi + Zνi + Rτ i + εi (12)

with Ψ = Cov (Yi|Wi) modeled by (9) or, when Z = R, by (11).
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An alternative to (7) to ensure identifiability is to restrict the mean structure,
but this appears to be of limited practical value. Consider the case with Xi = X
and Ai = A. Since µD = Aα is identifiable from the W data, γ is identifiable
from the mean structure if the matrix [X µD] is of full column rank. This will
not hold if the columns of A are a subset of the columns of X. In particular
if one of the columns of X is 1 (a vector of 1’s), as is often the case, then µD

cannot be of the form c1 for some constant c. For the beta-carotene data, the
mean diet is fairly constant over time, so this is not a useful strategy for that
problem. Paterno and Amemiya (1996), treating a special case of our model with
Xi = 1, proceed under the assumption that [1,µD] is of full rank.

3. Estimation

3.1. Methods

Let ω = vech(Ω) and ωD = vech(ΩD) contain the distinct components
of Ω and ΩD respectively. See Fuller (1987, Appendix 4A) for a discussion
of matrix-vector operations. Let θ′ = (θ′1,θ

′
2), where θ′1 = (β′, γ,ω′, σ2

ε ) and
θ′2 = (α′,ω′

D, σ2
δ ), contain the parameters in the model for Y|D and the marginal

model for W respectively. The elements of θ1 are of primary interest.
Under normality (Yi,Wi) has density f(yi,wi;θ), the multivariate nor-

mal density with mean and covariance terms as given in (3). Equivalently
f(yi,wi;θ) = f(yi|wi;θ)f(wi;θ2) where f(yi|wi;θ) is a normal density based
on (12) and f(wi|θ2) is a normal density with mean µWi and covariance ΣW .
The full maximum likelihood estimator (MLE) maximizes L(θ1,θ2) =

∏
i f(yi |

wi;θ)f(wi;θ2) =
∏

i f(yi,wi;θ), as a function of θ. The full ML estimators are
denoted by a ML subscript, e.g., γ̂ML.

We refer to pseudo methods as methods in which an estimate θ̂2 of θ2 is first
obtained from the Wi data, based on (8), and this is then used in estimating θ1.
From θ̂2, Σ̂D = RΩ̂DR′ and Σ̂W = RΩ̂DR′ + σ̂2

δI are obtained.
The pseudo-maximum likelihood estimator (PMLE), as defined by Gong and

Sammaniego (1981), maximizes L(θ1, θ̂2) as a function of θ1. Using (12), the
pseudo-likelihood is based on the use of

Yi | Wi ∼ N(Xiβ + Q̂iγ,Ψ(θ1, θ̂2)), (13)

where Q̂i = (I − Σ̂DΣ̂−1
W )Aiα̂ + Σ̂DΣ̂−1

W Wi and Ψ(θ1, θ̂2) = ZΩZ′ + σ2
ε I +

γ2Σ̂D(I − Σ̂−1
W Σ̂D). The pseudo-MLEs are denoted by a PML subscript, e.g.,

γ̂PML.
The form of Ψ(θ1, θ̂2) means the pseudo-MLE’s are not immediately fit using

standard software. One approach to alleviate this problem is to fit Yi = Xiβ +
Q̂iγ +η∗i using standard linear mixed software, with the covariance structure for
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η∗i assumed to be one of the structures allowed by the fitting routine. This leads
directly to estimators, say β̂C and γ̂C , for the regression coefficients. Estimation
of the variance terms depends on the form of Ψ. When Z = R, Ψ = Cov (η∗i ) =
ZΩ∗Z′+σ2

ε I, and the mixed model approach to fitting Yi given Q̂i, leads directly
to σ̂2

εC and Ω̂∗
C , where Ω̂∗

C estimates Ω∗ in (10). From this, Ω is estimated by
Ω̂C = Ω̂∗

C −Ω̂τC , where Ω̂τC = γ̂2
C(Ω̂D−Ω̂DR′Σ̂−1

W RΩ̂D). Under normality, β̂C

and γ̂C are regression calibration (RC) estimators, as defined by Carroll, Stefanski
and Ruppert (1995), since Q̂i is an estimate of E(Di|Wi) = (I−ΣDΣ−1

W )µDi +
ΣDΣ−1

W Wi. For convenience we also refer to the variance components estimators
as regression calibration estimators. This approach is readily extended to more
general models as seen in Section 6.

Proposition 1. Under (1), (2) and (7) with Z = R, the regression calibra-
tion estimators are equivalent to the pseudo-maximum likelihood estimators under
normality, so long as Ω̂C is nonnegative and ZΩ̂CZ′ + σ̂2

ε I is positive definite.

To show Proposition 1, define θ∗1 to be the same as θ1 but with ω∗ =
vech(Ω∗) in place of ω. Now ω=ω∗−γ2π, where π=vech(ΩD−ΩDR′Σ−1

W RΩD).
With θ2, and hence σ2

δ and π, known the transformation from θ∗1 to θ1 is one
to one. Hence as long as the estimates fall within the parameter space, these are
the pseudo-maximum likelihood estimators.

When Z �= R, the fitting for the variance components with this approach is
less straightforward since Ψ is no longer of the form ZΩ∗Z+σ2

ε I. One approach is
to fit the mixed model leaving Ψ unstructured and then use a linear least squares
approach based on treating Ψ̂−RΩ̂τCR′ = Ψ̂− γ̂2Σ̂D(I− Σ̂−1

W Σ̂D) as if it were
unbiased for ZΩZ′ + σ2

ε I. That is, let V = vec(Ψ̂ − γ̂2Σ̂D(I − Σ̂−1
W Σ̂D)) and

write vec(ZΩZ′ + σ2
ε I) = Bσ, where σ′ = (ω′, σ2

ε ) and B = [(Z ⊗ Z)D, vech(I)]
where D is a matrix of 0’s and 1’s for which vec(A) = Dvech(A). Using least
squares the variance components are estimated via

σ̂ = (B′B)−1B′V. (14)

Some type of weighting could also be used.
For the case with Z = R and constant Xi, TBD used a pseudo-approach

(referred to here as pseudo-method A or PMA), by fitting Yi = µ∗ + Γ∗Wi +
Zν∗i + εi where Γ∗ is a t × t matrix and ν∗i has covariance Ω∗ = Ω + Ωτ ,
leading to Γ̂∗

A, Ω̂∗
A, and σ̂2

εA. From (5), Γ∗ = γΣDΣW
−1, suggesting γ̂A =

1′Γ̂∗1/1′Σ̂DΣ̂−1
W 1 while (11) suggests Ω̂A = Ω̂∗

A − Ω̂τA, where Ω̂τA = γ̂2
A(Ω̂D −

Ω̂DR′Σ̂−1
W RΩ̂D).

One advantage of this approach is that Γ̂∗ can be used to explore other
structures if ΓDi replaces γDi, where Γ is a t × t matrix. Another advantage is
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that under normality (µ̂∗, Γ̂∗, Ω̂∗) is independent of (Σ̂D, Σ̂W ), which simplifies
calculation of some asymptotic variances.

When Xi = X and Ai = A, the method of moments approach in Section 4.2
of Fuller (1987), leading to nonlinear least squares, can be used. Let

χi =

[
Yi

Wi

]
and Σχ =

[
ZΩZ′ + σ2

ε I + γ2RΩDR′ γRΩDR′

γRΩDR′ RΩDR′ + σ2
δI

]
. (15)

If S denotes the sample variance-covariance matrix of the χi, then E(vech(S)) =
vech(Σχ) = m(θ) where m(θ) is a vector whose components are functions (some
of them nonlinear) of θ. Fuller provides details of a generalized weighted non-
linear least squares approach with accompanying asymptotic theory, but this
approach is not pursued further here due to the complexity of implementing the
approach.

3.2. Asymptotic properties

The following lemma provides the information matrix under normality, which
is used for both calculation of the full or pseudo-MLE and specification of their
asymptotic covariance matrix.

Lemma 1. (Magnus and Neudecker (1988, p.325)). Let χi, i = 1, . . . , n, be
independent N(µχi

(θ),Σχ(θ)), where θ is a k × 1 vector of parameters. Then
the information matrix for θ is

I(θ) =
∑

i

[(∂µχi

∂θ

)′
Σχ

−1
(∂µχi

∂θ

)]
+

1
2

(∂vec(Σχ)
∂θ

)′(
Σχ

−1⊗Σχ
−1

)(∂vec(Σχ)
∂θ

)
.

For the current setting, χi and Σχ are as given in (15), µ′
χi

= [(Xiβ +
γAiα)′, (Aiα)′], and the necessary derivatives are given in the Appendix. With
θ′ = [θ′1,θ

′
2], the information matrix is partitioned as

I(θ) =

[
I11 I12

I′12 I22

]
. (16)

Computing the pseudo-MLE involves only the use of I11.
A careful statement of asymptotic properties requires some assumptions

about the sequences of Xi’s and Ai’s. It is assumed that these conditions are met
in the following two propositions. The needed conditions are met for instance, if
the (Xi,Ai) are i.i.d. or, with fixed X and A, if the asymptotics are viewed in the
context of replicating the current design. Let Σ22 denote the asymptotic variance
of θ̂2, the estimator of θ2 from the W data only. It is also assumed that θ̂2 is ob-
tained from one of the usual methods of estimation for linear mixed models and
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so is asymptotically normal. Let ∼ AN denote “is distributed asymptotically
normal” and A() refer to asymptotic covariance matrix.

Proposition 2. Under (1), (2) and (7) and multivariate normality, θ̂1ML and
θ̂1PML are consistent with θ̂1ML ∼ AN(θ1,A(θ̂1ML)) and θ̂1PML ∼ AN(θ1,
A(θ̂1PML)). Here

A(θ̂1ML) = I−1
11 + I−1

11 I12(I22 − I21I−1
11 I12)−1I21I−1

11 , (17)

and
A(θ̂1PML) = I−1

11 + I−1
11 I12Σ22I21I−1

11 . (18)

Proposition 3. Under (1), (2) and (7) and with Z = R, θ̂1C (the RC estimator
of θ1) is consistent and θ̂1C ∼ AN(θ1,A(θ̂1C)) with A(θ̂1C) = Σ1|2 + PΣ22P′,
where Σ1|2 is the asymptotic covariance of θ̂1C if θ2 were known and P is defined
at (24).

With Xi = X and Ai = A, Proposition 2 follows from Parke (1986), while
the discussion in Lehmann (1983, Section 6.6) applies for more general settings.
Since θ̂2 is obtained by fitting a mixed model to the W data, under normality,
Σ22 is available from standard mixed model theory; see for example Jennrich
and Schluchter (1986). Notice that I−1

11 is the asymptotic covariance of the MLE
of θ1 under normality if θ2 were known. The proof of Proposition 3 is given in
the Appendix based on an estimating equation approach. The robust asymptotic
covariance matrix is reduced there to a highly simplified form, useful for both
analytical and computational purposes. We also sketch a proof of the extension
of Proposition 3 to the case where Z �= R and the variance parameters are
estimated via (14).

4. Example

We consider the beta-carotene example introduced in Section 1, where Yi is
a 6× 1 vector of serum beta-carotene measurements, Di is a 6× 1 vector of true
diet intakes of beta-carotene and Wi is a 6× 1 vector of measured intakes based
on a food frequency questionnaire. Our analysis assumes Xi = Ai = Z = R,
where

R′ =

[
1 1 1 1 1 1
0 1 2 3 4 5

]
.

Model (7) becomes Di = Rα + Rφi, implying a linear trend in true diet
values over time, with the line being random over subjects. With ν ′

i = (νi1,νi2)
and Z = R, (1) becomes Yit|Dit = β0 + νi1 + (β1 + νi2)(t− 1) + γDit + εit. This
allows a random trend over time in serum level after conditioning on dietary
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intake, with Ω containing the variances and covariance for the random intercept
and slope over subjects. This could capture, for example, changes in the effect
of diet on serum level as an individual ages. The validity of (7) for this problem
is discussed in TBD.

Fitting the longitudinal model Wi = Aα+ Rφi + δi using maximum likeli-
hood yields α̂′ = (1.2719, .0143), σ̂2

δ = .119, and

Ω̂D =

[
.217 −.011

−.011 .0044

]
.

Since Z = R, by Proposition 1 the pseudo-MLEs are equivalent to the re-
gression calibration estimators. The approximate variance matrix was estimated
under normality, using (18) with I(θ̂) in place of I(θ), and with Σ22 replaced by
Σ̂22, which is the estimated variance-covariance matrix of θ̂2 obtained from the
longitudinal fit using the Wi. The pseudo method A estimates and standard er-
rors were obtained as described in Section 3 and TBD. The estimates here differ
slightly from those in TBD since REML estimates, rather than ML estimates,
were used there at each stage. The naive results are obtained by fitting (1) with
Wi in place of Di. Table 1 displays estimates with estimated standard errors.

Table 1. Estimates and estimated standard errors (in parentheses) for the
beta-carotene data.

Parameter PML/RC PMA Naive

β̂0 4.73 (.11) 4.66 (.145) 5.10 (.062)
β̂1 .0049 (.007) .0113 (.022) .0091 (.007)
γ̂ .454 (.093) .491 (.106) .156 (.030)

ω̂11 .29 (.040) .29 (.039) .32 (.042)
ω̂12 −.0053 (.0046) −.0059 (.0045) −.0072 (.0046)
ω̂22 .0018 (.00096) .0019 (.0009) .0024 (.00091)
σ̂2

ε .097 (.0055) .091 (.0052) .095 (.0054)

The most dramatic effect of the correction for measurement error here is on
the estimate of γ which changes from .156 in the naive analysis to .454 when we
correct for measurement error. The corrected estimates of ω11 and ω22 are smaller
than the naive estimates (reductions of 9.4% and 25% respectively), indicative
of the fact that naive estimation of the variance components tend to produce
overestimates.

5. Efficiency Calculations and Simulations

We first examine the efficiency of the PML and PMA estimators for γ, ω11,
ω22 and σ2

ε under normality. Efficiency is measured by the ratio of the asymp-
totic variance of the estimator to the asymptotic variance of the MLE. Because
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the design matrices X and A are constant over i, this is the same as the ra-
tio of approximate variances at any n. Based on the example the case with
X = A = Z = R, as described in the preceding section, is used. Throughout
σ2

ε = 0.094, α′ = (1.25, .012), β′ = (4.64,−0.007),

ΩD =

[
.247 −.0158

−.0158 .0046

]
and Ω =

[
.324 −.01

−.01 .0021

]
.

Either γ or σ2
δ is then varied, with the other held fixed. When γ varies σ2

δ , is
held fixed at .118, while when σ2

δ varies, γ is held fixed at .49. The results are
presented in Figures 1 and 2. The PML estimators are highly efficient across
all parameterizations and for each of the estimators. It can be argued that the
estimator of σ2

ε is fully efficient. In this setting, little is sacrificed by the use of
the PML/RC estimators rather than the ML estimators. The PMA estimators
are in general rather inefficient compared to the PML/RC estimators. The loss
of efficiency, especially with respect to estimation of γ, is not surprising since, as
described in Section 3.1, these estimators fit a Γ∗Wi term in trying to allow for
a more general model than γD for the effect of D.
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Figure 1. Asymptotic relative efficiency of PML and PMA estimators as a
function of γ with σ2

δ = .118. (a) γ̂, (b) ω̂11, (c) σ̂2
ε , (d) ω̂22.
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Figure 2. Asymptotic relative efficiency of PML and PMA estimators as a
function of σ2

δ , with γ = .49. (a) γ̂, (b) ω̂11, (c) σ̂2
ε , (d) ω̂22.

Simulations were run under normality, for sample sizes 100, 200 and 1000,
with γ = 0.49 and σ2

δ = 0.118. The remaining values were as used in the
efficiency calculations. Table 2 provides standard errors for the PML and PMA
estimators of γ, ω11, ω12, ω22, and σ2

ε . These results serve as a double check on
the asymptotic variance expressions and also as a check as to what is lost by
use of the asymptotic expressions at “small” sample sizes. At n = 1000 there is
very close agreement between the theoretically calculated and simulated standard
errors, and even at n = 100 the simulated standard errors of the PML estimators
are still quite close to the asymptotic values.

For n = 100, some limited simulations were also run without normality
to evaluate the performance of the RC estimators which, based on theory, are
consistent. First a set of standard variables with mean 0 and variance 1 are
created using a normal, double exponential or squared normal; the latter using
(Z2 − 1)/21/2 where Z has a standard normal distribution. These are then lin-
early transformed to create univariate or bivariate random quantities with the
desired mean and covariance structure. Table 3 displays the simulated biases
and standard errors. At this sample size, modest for epidemiologic studies but
maybe large in other contexts, the biases are negligible. The standard errors for
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estimates of variance parameters can change substantially under non-normality.
This points out the need to utilize the asymptotic covariance matrix in Proposi-
tion 3 rather than the normal-based one in Proposition 2 for some situations. We
leave a fuller evaluation of the small sample performance of related confidence
intervals and tests for future work.

Table 2. Asymptotic (n = ∞) and simulated standard errors under γ = 0.49
and σ2

δ = 0.118, under normality. Based on 500 simulations.

Method n γ̂ ω̂11 ω̂12 ω̂22 σ̂2
ε

MLE ∞ 1.1529 0.5426 0.0622 0.0124 0.0665
PMA ∞ 1.3178 0.5490 0.0637 0.0136 0.0672

100 1.3893 0.5572 0.0655 0.0132 0.0683
200 1.3413 0.5432 0.06245 0.0126 0.0651
1000 1.3143 0.5426 0.0637 0.0136 0.0670

PMLE/RC ∞ 1.1600 0.5427 0.0622 0.0124 0.0665
100 1.1821 0.5372 0.0626 0.0125 0.0663
200 1.1161 0.5360 0.0609 0.0121 0.0637
1000 1.1634 0.5411 0.06216 0.0124 0.0669

Table 3. Simulated biases and standard errors with γ = 0.49, ω11 = .324,
ω12 = −.01, ω22 = .0021, σ2

ε = .094, σ2
δ = 0.118 and n = 100. Based on 500

simulations.

Model γ̂ ω̂11 ω̂12 ω̂22 σ̂2
ε

Normal Bias 0.0307 0.0112 −.0009 0.0003 −.0015
Squared Normal Bias 0.0095 −.0277 0.0014 0.0002 0.0026
Double Exp. Bias −.0096 0.0074 −.0001 0.0004 0.0033
Normal SE 1.2024 0.4561 0.0510 0.0120 0.0825
Squared Normal SE 1.1835 1.0031 0.0655 0.0169 0.1590
Double Exp. SE 1.1163 0.8039 0.0708 0.0137 0.0845

6. Extensions

6.1. Separate estimation of the measurement error variance

To this point (7) has been used to ensure that ΣD is identifiable without
additional data. Proceeding under (7), when it does not hold, actually fits a
model for Yi|µDi rather than for Yi|Di. If there is replicate data to provide an
estimate σ̂2

δ of the measurement error variance, then (7) can be generalized to
allow Cov (ξi) = ΣD to be of full rank. This could be unstructured or take some
particular form, such as ΣD = RΩDR′ + σ2

eI. Now ΣD can be estimated from
the W data. As before Σ̂W = Σ̂D + σ̂2

δI, while θ′2 = (α′,σ′
D, σ2

δ ), where σD

contains the unique parameters in ΣD.
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For likelihood approaches the conditional distribution of σ̂2
δ given the col-

lection of (Yi,Wi) values must be specified. It would usually be assumed to
depend on parameters only through σ2

δ . A typical assumption, which results
under normality and the use of replicate W values at some time points on some
individuals, is that dσ̂2

δ/σ
2
δ is distributed chi-square with d degrees of freedom

independent of the (Yi,Wi). Under normality, the information matrix is now
I(θ) = I1(θ)+I2(σ2

δ ), where I1(θ) is calculated using Lemma 1 with Σχ as in (15)
but now with ΣD replacing RΩDR′, while I2(σ2

δ ) has an entry only in the diag-
onal position corresponding to σ2

δ , that being the information for σ2
δ contained in

σ̂2
δ . The PMLE is still based on (13), with Σ̂D and Σ̂W appropriately modified

but, as was the case earlier, it usually cannot be computed using standard mixed
model software.

Regression calibration can still be used as in Section 3 for estimation of β
and γ, but estimation of the variance parameters is more complicated. As before
Ψ = ZΩZ′ + σ2

ε I + γ2ΣD(I − Σ−1
W ΣD). When ΣD is not of the form RΩDR′,

Ψ is not of the form ZΩ∗Z′ + σ2
ε I, even for the case with Z = R, nor does it

take on any of the typical structures usually allowed by mixed model programs.
One suggestion is to regress Yi on Xi and Q̂i with an unstructured covariance
matrix Ψ, estimated by Ψ̂, and then use least squares as in (14). This approach
usually yields consistent and asymptotically normal estimators without normality
assumptions, as is sketched in the appendix.

In related work, Takeuchi and Ware (1990) and Takeuchi (1992) consider
a model which in our notation has E(Yi|Di) = γDi, Cov (Yi|Di) = Σ (either
unstructured or compound symmetric), and Cov (δi) = Σδ is known. The com-
pound symmetry case corresponds to our model with Z = 1. They addressed
estimation of γ but not of the variance components.

6.2. More general structure for the D effects

Equation (1) can be generalized to Yi | Di = Xiβ + ΓDi + Zνi + εi, where
Γ is now a t × t matrix of parameters, perhaps with some simplifying structure.
To this point Γ = γI has been assumed. Retaining the additive measurement
error assumption in (2), Yi | Wi = µ∗

i +Γ∗Wi +η∗i , where µ∗
i = Xiβ+Γ(µDi −

ΣDΣ−1
W µDi), Γ∗ = ΓΣDΣ−1

W , and η∗i has covariance Ψ = ZΩZ′+σ2
ε I+ΓΣDΓ′−

ΓΣDΣ−1
W ΣDΓ′.

If there are no additional data and we incorporate (7), Γ∗Wi can be rewritten
as Γ2Bi where Γ2 = ΓR and Bi = ΩDR′(ΣD + σ2

δI)
−1Wi. Since Γ enters

the conditional mean and covariance of Y | W only via Γ2, it is the unique
components of Γ2, and functions of them, which are identifiable. If Γ is an
arbitrary t by t matrix, it is not identifiable since ΣD = RΩDR′ is not of
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full rank. However, with some structure to Γ, it’s distinct components may be
identifiable, as happens when Γ is diagonal.

If there are additional data for estimation of σ2
δ , then a nonsingular ΣD can

be allowed and a general Γ, as well as the variance components, can be estimated.
This is closely related to the multivariate “errors in variables’ problem (see Fuller
(1987, Chapter 4) and Gleser (1992)) which allows general Γ, no structure on
Σ = Cov (Y|D) and Cov (δi) = Σδ, assumed known or estimated.

6.3. Alternate measurement error models with validation data

In many cases, the measurement error model (2) needs to be modified to
allow the mean of W to depend on D. Such models can be handled as long as
there is some validation data (called internal or external, depending on whether
the units are part of the main study or not) with both W and D values. This
allows estimation of the measurement error parameters and the restricted model
in (7) can be dropped. The likelihood based methods under normality are readily
extended in principle, with the details depending on the nature of the additional
data. As before though, computational implementation may be difficult and the
distributional assumptions questionable. For some cases, the regression calibra-
tion approach is easily extended to handle these more complex models.

To illustrate, consider a common linear measurement error model at each
time point (e.g., Carroll, Stefanski and Ruppert (1995, p.8) and Buonaccorsi
(1989, 1990)) for which Wi = λ01+λ1Di +δi, where λ0 and λ1 are scalars. This
leads to E(Wi) = λ01+λ1µDi, ΣW = λ2

1ΣD+σ2
δI, and ΣY W = γλ1ΣY D. Under

normality, Yi|Wi = Xiβ+γQi +η∗i but now Qi = µDi +λ1ΣDΣ−1
W (Wi −λ01−

λ1µDi) and η∗i has variance Ψ = ZΩZ′ + σ2
ε I + γ2ΣD(I − λ2

1Σ
−1
W ΣD). In the

regression calibration approach Q̂i is obtained based on estimated parameters
from the validation data and we proceed as before. When the validation data
is internal and a particular Dit is available, it makes sense to replace the tth

element of Q̂i with it. As with our earlier results, this will usually give consistent
estimators without normality. The development of the asymptotic covariance
matrix depends on the type of validation data. For external data, asymptotic
properties would be established in a manner similar to that used in the Appendix.
With internal data, some of the main study data is also used in estimating the
measurement error parameters and this needs to be accounted for; similar to
what is done in Buonaccorsi (1990) in a related problem. This setting needs
further study.

6.4. Extensions involving Z

Two important and related assumptions that have been made are that i)
Zi is constant over i, and ii) that no components of Z are measured with error.
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Allowing a changing Zi is readily absorbed into the likelihood approaches and
into the regression calibration approach for estimating β and γ. The approach to
estimating the variance parameters after fitting the model using Q̂i assumed that
Ψi = Cov (Yi|Wi,Xi) was constant in i, so these methods need modification
for varying Zi. The presence of measurement error in some parts of Zi raises
new methodological issues due to the product of the random effects and the
measurement errors. These two problems arise together with random coefficients,
for which Yi|Di = β1+ γDi +Ziνi + εi, where Zi = [1,Di], so the mismeasured
covariates enter into Zi. These problems are currently under investigation.
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Appendix

Derivatives for the Information Matrix

Let θ′ = (β′, γ,ω′, σ2
ε ,α

′,ω′
D, σ2

δ ). Then,

∂µχi

∂θ
=

[
Xi Aiα 0 0 γAi 0 0
0 0 0 0 Ai 0 0

]
.

Let ∆ = K ⊗ I, where K is the commutation matrix, defined such that
vec(A′) = Kvec(A) . Also, let D and DD be the matrices of 0’s and 1’s such
that ω̃ = vec(Ω) = Dvech(Ω) = ω and ω̃D = vec(ΩD) = DDvech(ΩD) =
ωD, and define SR = (R ⊗ R)DD, SZ = (Z ⊗ Z)D, and i = vec(I). Since
vec(RΩDR′) = (R ⊗ R)ω̃D and vec(ZΩDZ′) = (Z ⊗ Z)ω̃,

vec(Σχ) =

[
∆ 0
0 ∆

] 
vec(ZΩZ′ + σ2

ε I + γ2RΩDR′)
vec(γRΩDR′)
vec(γRΩDR′)

vec(RΩDR′ + σ2
δI)



= ∆+


SZω + iσ2

ε + γ2SRωD

γSRωD

γSRωD

SRωD + iσ2
δ


where ∆+ = BlockDiagonal(∆,∆). Hence,

∂vec(Σχi)
∂θ

= ∆+


0 2γSRωD SZ i 0 γ2SR 0
0 SrωD 0 0 0 γSR 0
0 SrωD 0 0 0 γSR 0
0 0 0 0 0 SR i

 .
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Proof of Proposition 3

Recall that θ̂2 is fit with the W data only. Let θ̂
∗′
1C = (β̂

′
C , γ̂C , ω̂∗′

C , σ̂2
εC)

denote the estimates obtained by fitting Yi = Xiβ + Q̂iγ + Zτ ∗
i + εi, where τ ∗

i

has mean 0 and covariance Ω∗. The vector ω̂∗
C estimates vech(Ω∗). Simplifying

the estimating equations in normal mixed models (e.g., Section 5.3 of Crowder
and Hand (1990) or Jennrich and Schluchter (1986)), the estimate of θ∗1 solves[ ∑

i X
′
iΨ

−1Xi
∑

i X
′
iΨ

−1Q̂i

(
∑

i X
′
iΨ

−1Q̂i)′
∑

i Q̂
′
iΨ

−1Q̂i

] [
β

γ

]
−

[∑
i X

′
iΨ

−1Yi∑
i Q̂

′
iΨ

−1Yi

]
= 0, (19)

Z′Ψ−1
∑

i

(rir′i − Ψ)Ψ−1Z = 0 and
∑

i

r′iΨ
−2ri − ntr(Ψ−1) = 0, (20)

where ri = Yi − Xiβ − Q̂iγ. Vectorizing, this can be written as S1(θ∗1, θ̂2) = 0,
where

S1(θ∗1,θ2) =


∑

i X
′
iΨ

−1Xiβ +
∑

i X
′
iΨ

−1Qiγ − ∑
i X

′
iΨ

−1Yi

(
∑

i X
′
iΨ

−1Qi)′β +
∑

i Q
′
iΨ

−1Qiγ − ∑
i Q

′
iΨ

−1Yi

D(M ⊗ M)vec(
∑

i(ρiρ
′
i)) −D(Z′ ⊗ Z′)vec(Ψ−1)∑

i ρ
′
iΨ

−2ρi − ntr(Ψ−1)

 (21)

with M = Z′Ψ−1 and ρi = Yi − Xiβ − Qiγ. Similarly θ̂2 is the solution to a
set of equations S2(θ2) = 0 so together θ̂2 and θ̂

∗
1C solve S1(θ∗1,θ2) = 0 and

S2(θ2) = 0. Note that S1 depends on the Y and W values while S2 depends just
on the W values, but this has been suppressed in the notation.

Under (1), (2) and (7), E(S1(θ∗1,θ2)) = 0. From the theory of estimating
equations (see Appendix A.3 of Carroll, Stefanski and Ruppert (1995)) under
suitable conditions, θ̂

∗
C is consistent for θ∗ and θ̂

∗
C is AN(θ∗,H−1CH−1′), where

AN stands for asymptotically normal and

H =

[
H11 H12

H21 H22

]
, C =

[
C11 C12

C′
12 C22

]
with H11 = E(∂S1(θ∗1,θ2)/∂θ∗1), H12 = E(∂S1(θ∗1,θ2)/∂θ2), H21 = E(∂S2(θ2)
/∂θ∗1) = 0, H22 = E(∂S2(θ2)/∂θ2), C11 = E(S1S′

1), C12 = E(S1S′
2), and

C22 = E(S2S′
2). Since S2 does not involve θ∗1, H21 = 0. It is easy to show that

E(S1|W1, . . . ,Wn) = 0 and hence C12 = E(S1S′
2) = E(E(S1S′

2|W1, . . . ,Wn))
= E(E(S1|W1, . . . ,Wn)S′

2) = 0. Using partitioned matrix results,

H−1 =

[
H−1

11 −H−1
11 H12H−1

22

0 H−1
22

]
and so

A(θ̂
∗
) = H−1CH−1′ =

[
Σ∗

11 Σ∗
12

Σ∗′
12 Σ22

]
, (22)
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where A(θ̂
∗
1C) = Σ∗

11 = H−1
11 C11H−1′

11 + H−1
11 H12Σ22H′

12H
−1′
11 , A(θ̂2) = Σ22 =

H−1
22 C22H−1′

22 , and A(θ̂
∗
1C, θ̂2)=Σ∗

12 =−H−1
11 H12Σ22, where A() denotes asymp-

totic covariance matrix. A similar estimating equation argument implies that
Σ∗

1|2 =H−1
11 C11H−1′

11 is the asymptotic covariance of θ̂
∗
1C if θ2 were known, and

so
A(θ̂

∗
1C) = Σ∗

1|2 + H−1
11 H12Σ22H′

12H
−1′
11 . (23)

Let E = (σ2
δΩ

−1
D + R′R)−1 and let Ėj denote the derivative of E with

respect to the jth element of ωD, Ėδ the derivative of E with respect to σ2
δ .

Applying 4.A.9 in Fuller (1987, p.390) twice, Ėj = −σ2
δE

−1Ω−1
D Ω̇DjΩ−1

D E−1 and
Ėδ = −E−1Ω−1

D E−1, where Ω̇Dj has a 1 in positions containing ωDj (the jth
component of ωD) and 0’s elsewhere. We transform to θ̂

′
1C = (β̂

′
C , γ̂C , ω̂′

C , σ̂2
εC),

where ω̂C = vech(Ω̂C) = ω̂∗
C − γ̂2

Cσ̂2
δq, with q = vech((σ̂2

δ Ω̂
−1
D +R′R)−1) and we

have used the equality Ω̂D − Ω̂DR′Σ̂−1
W RΩ̂D = (Ω̂−1

D + σ̂−2
δ R′R)−1. Applying

the delta method, A(θ̂) = GA(θ̂
∗
)G′, where G = [G1,G2], with

G1 =


Im 0 0 0
0 1 0 0
0 −2γσ2

δq Ik 0
0 0 0 1

 and G2 =


0 0 0
0 0 0
0 Gω Gδ

0 0 1

 .

Here Ia denotes an a×a identity matrix, k = p(p+1)/2, Gω=−γ2σ2
δ [vech(Ė1),

. . . , vech(Ėnω )] and Gδ = −γ2(σ2
δ Ėδ+q). Now using (22), (23) and the structure

of G yields A( ˆθ1C) = G1Σ∗
1|2G

′
1 + PΣ22P′, where

P = G1H−1
11 H12 − G2. (24)

Since the G1 matrix is what would be used if transforming with known θ2,
G1Σ∗

1|2G
′
1 must equal Σ1|2, the asymptotic covariance of θ̂1C if θ2 is known.

This yields Proposition 3.
Under normality, Σ22 = H−1

22 = I−1
22 , Σ∗

1|2 = H−1
11 and Σ1|2 = I−1

11 are
available from normal linear mixed models theory; see for example equations
(11)- (13) in Jennrich and Schluchter (1986).

A more explicit expression for H12 is still needed. Recall that Qi and ρi

depend on θ2. Since Υ = ΣDΣ−1
W = RΩDR′(RΩDR′ + σ2

δI)
−1 = RER′, Υ̇j =

RĖjR′ is the derivative of Υ with respect to the jth element of ωD, Υ̇δ = RĖδR′
is derivative of Υ with respect to σ2

δ and Q̇i = ∂Qi/∂θ2 = [(I − Υ)Ai, Υ̇1(Wi −
Aiα), . . . , Υ̇nω(Wi − Aiα), Υ̇δ(Wi − Aiα)]. Differentiating and simplifying,

H12 = E(∂S1(θ∗1,θ2)/∂θ2) = E


γ

∑
i X

′
iΨ

−1Q̇i∑
i((Ψ

−1Xiβ)′ + 2γQ′
iΨ

−1 − Y′
iΨ

−1)Q̇i

D(M ⊗ M)
∑

i Ui)
−2γ

∑
i ρ

′
iΨ

−2Q̇i

 ,

(25)
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where Ui = [ui(1), . . . ,ui(n2)], ui(m) = vec(−γQ̇i(m)∆′
i−∆iQ̇′

i(m) +γ2[QiQ̇′
i(m) +

Q̇i(m)Q′
i]), Q̇i(m) = the mth column of Q̇i, and ∆i = Yi − Xiβ. This leads to

H12 =


γ

∑
i X

′
iΨ

−1(I − Υ)Ai 0 . . . 0 0
γα′ ∑

i Ai(I − Υ)Ai nγF1 . . . nγFnω nγFδ

0 0 . . . 0 0
0 0 . . . 0 0

 ,

where Fj = tr(Ψ−1ΣDΥ̇′
j) and Fδ = tr(Ψ−1ΣDΥ̇′

δ),

Extending Proposition 3

Under (7) with Z �= R, or under the model of Section 6.1, one suggestion
was to estimate the variance components using (14). Let θ∗1 = (β′, γ,ψ′) where
ψ = vec(Ψ). The estimating equations for β, γ and ψ consist of (19) along with∑

i(riri
′−Ψ) = 0, since Ψ̂C =

∑
i riri

′/n. Now S1(θ∗1,θ2) will have the first two
lines of (21) while the last two lines are replaced by vec(

∑
i(ρiρ

′
i)) − vec(Ψ−1).

The form of S2 will depend on which model is being used. The asymptotic covari-
ance of θ̂

∗
will be of the same form as given in (22) with the new definitions of S1

and S2. This immediately yields the asymptotic covariance for β̂C and γ̂C . The
asymptotic covariance matrix of σ̂C is (B′B)−1B′A(V)B(B′B)−1 where A(V)
is the asymptotic covariance of V = ψ̂ − vec(γ̂2Σ̂D(I − Σ̂−1

W Σ̂D)). Since Σ̂W =
Σ̂D + σ̂2

δI, it is easy to show that Σ̂−1
W Σ̂D = I − σ̂2

δΣ̂
−1
W , so Σ̂D(I − Σ̂−1

W Σ̂D) =
Σ̂Dσ̂2

δ Σ̂
−1
W = σ̂2

δ (I + σ̂2
δΣ̂

−1
D )−1. Hence V = ψ̂ − γ̂2σ̂2

δvec((I + σ̂2
δ Σ̂

−1
D )−1) and

A(V) can be derived in a relatively straightforward fashion from A(θ̂
∗
). The

matrix H12 in this case is

H12 =

γ
∑

i X
′
iΨ

−1E(Q̇i)
(
∑

i Ψ
−1Xiβ)′E(Q̇i) + 2γ

∑
i E(Q′

iΨ
−1Q̇i) − ∑

i E(Y′
iΨ

−1Q̇i)
0

 ,

where Q̇i is as earlier but with Υ = ΣDΣ−1
W = I− σ2

δ (σ
2
δI + ΣD)−1.
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