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Before proving main results, we make the following assumptions.

1. The parameter space Θ is compact and the true parameter η0 is the

interior point of Θ.

2. Let || · || be Euclidean norm. The functions h(·, ·,η) and

u(·, ·,η, w) = sup
||τ−η||≤w

||h(·, ·, τ )− h(·, ·,η)||

are measurable functions of Vi1 and Vi2 for 1 ≤ i1 6= i2 ≤ n in some

open neighborhood of Θ.

3. Let λ(η) = E{n−1/2UFR
n (η)}. Then λ(η0) = 0 and λ(η) is differen-

tiable at η0 with nonsingular derivative at η0.

4. For 1 ≤ i1 6= i2 ≤ n, there exist positive constant a0, b0 and c0 such

that E{u(Vi1 ,Vi2 ,η, r)} ≤ a0r and E{u(Vi1 ,Vi2 ,η, r)
2} ≤ b0r for all

r ≤ c0 and all η in an open neighborhood of η0.

5. There exists K > 0 such that E(||Z||2) ≤ K.
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6. The error distribution has finite Fisher information.

7. The distribution of Z given ∆ = 1 is not concentrated on a proper

hyperplane on Rp.

8. The information bound (Bickel et al. (1993, Chapter 2, p23)) for

estimating η0 is finite and invertible.

9. We assume that error terms εi of model (1.1) and (2.6) in main paper

are i.i.d, so that Vi = (εi, Ci,Zi) are i.i.d.

The first assumption represents a standard regularity assumption. Assump-

tions 2-4 are necessary for proving results regarding the tightness results

regarding stochastic processes. These conditions also allow for an expansion

analogous to a Taylor series expansion for nonsmooth estimating functions.

The fifth assumption is a standard second moment condition for covariates

needed to guarantee finite information for regression parameters. Assump-

tions 6 and 8 are conditions needed to guarantee the existence of the in-

formation bound for the estimator of η0. Assumption 7 guarantees that

distribution of covariates is nondegenerate with respect to the censoring

mechanism. Assumption 9 is one from model assumptions (1.1) and (2.6).

Moreover, we assume regularity conditions C1-C4 in the Appendix of Peng

and Fine (2006).
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In this Appendix, we will prove the four theorems in the main paper.

Before proving them, we introduce several definitions, including Euclidean

class of functions, which are crucial to proving tightness. We will also use

linear functional notations in the proofs.

Definition 1 (Nolan and Pollard (1987)). Let S be the set equipped with a

pseudometric d. The covering number N(τ, d, S) is defined as the smallest

value of N for which there exist N closed balls of diameter τ , and centers

in S, whose union covers S.

Definition 2. Let F denote a class of functions defined from X to R. The

envelope function for F , F , is given by

F (x) = sup
f∈F
|f(x)|.

Definition 3. Let F be a class of functions and F be its envelope. Let Q

be a measure on a space X . For q > 0, we define Q(F q) as

Q(F q) =

∫
F qdQ.

Definition 4 (Nolan and Pollard (1987)). Let F be class of functions and

F be envelope of F . Define Q to be a measure on the space X . If 0 <

Q(F ) <∞ and there exist constants A and B such that

N1(τ,Q,F , F ) ≤ Aτ−B, for 0 < τ ≤ 1,
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then F is called Euclidean class, and A and B are called Euclidean constants

for F . If F is Euclidean, for each p > 1, if 0 < Q(F p) <∞

Np(τ,Q,F , F ) ≤ A2pV τ−pV , for 0 < τ ≤ 1,

Now we define a metric in the space and we focus on symmetric functions.

Let F be class of symmetric functions and F be its envelope. Let the metric

dQ,p,F which is defined on F be

dQ,p,F (f, g) =

[
Q|f − g|p

Q(Gp)

]1/p

f, g ∈ F

where Q is a measure on X ⊗ X that satisfies 0 < Q(F p) <∞. We define

Np(τ,Q,F , F ) to be covering number N(τ, dQ,p,F ,F). Let y1, . . . y2n be a

sample from Q. Define Tn to be the measure which assigns mass one at

each of the 4n(n− 1) pairs of yv, yw in function gij for u ∈ F , where

gij = u(y2i, y2j)− u(y2i, y2j−1)− u(y2i−1, y2j) + u(y2i−1, y2j−1),

This measure plays an important role in the construction of exponential

inequalities and the proofs of convergence theorems in U-processes (Nolan

and Pollard (1987); Nolan and Pollard (1988)). Finally, we define

Jn(s,Q,F , F ) =

∫ s

0

logN2(x,Q,F , F )dx,

where N2(x,Q,F , F ) is the covering number N(x, dQ,2,F ,F) (Nolan and
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Pollard (1987)). Then

sup
n
E{Jn(s,Q,F , F )} = sup

n
E

{∫ s

0

logN2(x,Q,F , F )dx

}
.

S1 Proof of tightness of UFR
n (t; η̂) and UP

n (t; γ̂)

The first step of our proof is to show tightness. Let N0 be an open neighbor-

hood of η0. We will obtain an expansion similar to Taylor series expansion

to prove tightness. However, since UFR
n (t; η̂) is nonsmooth, Taylor series

expansion is not directly applicable. Assumptions 2-4 allow for the appli-

cation of Lemma 2 from Honoré and Powell (1994), which yields

sup
η∈N0

||UFR
n (η)−UFR

n (η0)− n1/2λ(η)||
1 + n1/2||λ(η)||

= op(1). (S1.1)

Then by a Taylor series expansion for λ(η) and consistency of η̂ (Peng and

Fine (2006)),

UFR
n (t; η̂) = UFR

n (t;η0) + n1/2Γ0(t)(η̂ − η0) + op(1),

where Γ0(t) is the expectation of slope matrix of UFR
n (t;η0). Clearly,

n1/2(η̂ − η0) converges in distribution, so it is tight.

The next step is to show tightness of UFR
n (t;η0). Note that g(Vi,Vj,η0) =

ei(η0)∨ ej(η0). For each t, a class of functions gt{ei(η0), ej(η0)} = ei(η0)∨

ej(η0) − t is a polynomial class (Note that for each t, ei(η0) ∨ ej(η0) −

t is an element of a finite dimensional vector space of real functions).
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Then by the arguments in Nolan and Pollard (1987), the class of func-

tions gt{ei(η0), ej(η0)} is Euclidean with envelope 2. Let h(Vi,Vj,η0, t) =

1

2
(Zi−Zj)[∆iI{ej(η0) > ei(η0)}−∆jI{ei(η0) > ej(η0)}]I{ei(η0)∨ej(η0) ≤

t}. Since [∆iI{ej(η0) > ei(η0)} −∆jI{ei(η0) > ej(η0)}] are bounded and

(Zi − Zj) is a difference of two random variables, applying Lemma 22 in

Nolan and Pollard (1987) with arguments about Euclidean class in Pollard

(1986) implies that h(Vi,Vj,η0, t) is also Euclidean with some envelope

G = G(·, ·).

Let G be function space for h(Vi,Vj,η0, t). Note that G is a class of

functions in L2. The metric for G given measure Q is

dQ,2,G(f ∗, g∗) =

[
Q|f ∗ − g∗|2

Q(G2)

]1/2

f ∗, g∗ ∈ G.

Let P be the distribution of V1, . . . ,Vn. PG be a class of functions of

P{g(x, ·)}, where g ∈ G. Clearly, PG is the class of functions ofE{h(v,V,η0, t)}.

Since E(Z2) is bounded, E{h(v,V,η0, t)} and E{h2(v,V,η0, t)} are also

bounded for all v. By Corollary 21 in Nolan and Pollard (1987), PG is

also Euclidean with envelope PG = P [G(x, ·)]. Since Tn(G2) =
∫
G2dTn

takes value between 0 and ∞, by argument in Nolan and Pollard (1987)

about Euclidean class, there exists positive constant A1 and B1 such that
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N2(x, Tn,G, G) ≤ A14B1x−2B1 for 0 < x ≤ 1. Then

∫ 1

0

logN2(x, Tn,G, G)dx ≤
∫ 1

0

(logA1 +B1 log 4− 2B1 log x)dx

= logA1 +B1 log 4− 2B1(x log x− x)|10 = logA1 +B1 log 4 + 2B1 <∞.

(S1.2)

Let µ be a measure defined on X ⊗ X . Define

J(t, µ,G, G) =

∫ t

0

logN2(x, µ,G, G)dx

Then by (S1.2),

sup
n
E{J(1, Tn,G, G)}2 <∞. (S1.3)

Let Pn be the empirical measure on sample V1, . . . ,Vn. SinceE{h2(v,V,η0, t)}

is bounded, 0 < Pn(P (G2)) =
∫

(
∫
G2dP )dPn < ∞. Since PG is also Eu-

clidean, by using similar arguments as for (S1.2),

sup
n
E{J(1, Pn, PG, PG)}2 <∞. (S1.4)

Since (P ⊗ P )(G2) =
∫ ∫

G2d(P ⊗ P ) is also positive and finite, we have,

J(1, P ⊗ P,G, G) <∞. (S1.5)

Thus it is enough to show that for every ζ > 0 and δ > 0, we can find ν > 0

such that

lim sup
n→∞

E{J(ν, Pn, PG, PG) > ζ} < δ. (S1.6)
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Since PG is also Euclidean and 0 < Pn(P (G2)) <∞ is satisfied, by similar

calculation of (S1.2), there exists a constant w such that

J(t, Pn, PG, PG) =

∫ t

0

logN2(x, Pn, PG, PG)dx = w.

For ζ > 0, by taking t to be the solution of∫ t

0

logN2(x, Pn, PG, PG)dx = ζ.

Thus (S1.6) holds. Hence by Theorem 5 of Nolan and Pollard (1988),

UFR
n (t;η0) is tight. Hence UFR

n (t; η̂) is also tight. For the dependent cen-

soring case, combining the above argument with those in Lin, Wei, and

Ying (1993), the process Wn(t, s; γ̂) is tight.

S2 Proof of Theorem 1 and Theorem 2

S2.1 Proof of Theorem 1

Let h(Vi,Vj,η0) =
1

2
(Zi − Zj)[∆iI{ej(η0) > ei(η0)} − ∆jI{ei(η0) >

ej(η0)}]. Define

2h1(v,η0, t) = 2E{h(v,V2,η0, t)}

where h(v,V2,η0, t) = h(v,V2,η0)I{g(v,V2,η0) ≤ t} and 2h1(v,η0) =

2E{h(v,V2,η0)}. Let

Hi(t) = 2h1(Vi,η0, t) Hi = 2h1(Vi,η0).
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By the arguments in the appendices of Lin, Robins, and Wei (1996) and

Peng and Fine (2006),

UFR
n (t; η̂) = UFR

n (t;η0)− Γ0(t)Γ−1
0 UFR

n (η0) + op(1)

= n−1/2

n∑
i=1

Hi(t)− Γ0(t)Γ−1
0 n−1/2

n∑
i=1

Hi + op(1), (S2.1)

When (1.1) is true, by the multivariate central limit theorem, UFR
n (t; η̂)

converges in finite dimensional distribution to a mean-zero Gaussian process

with covariance matrix

E[{H1(t)− Γ0(t)Γ−1
0 H1}{H1(t)− Γ0(t)Γ−1

0 H1}T ]. (S2.2)

By uniform strong law of large numbers by Pollard (1990, Section 8, p.

41) and strong consistency of η̂, covariance matrix of UFR
n (t; η̂) converged

to (S2.2) uniformly t almost surely. By the tightness of UFR
n (t; η̂) and the

arguments in the Appendix of Lin et al. (2000), UFR
n (t; η̂) converges weakly

to a Gaussian process.

For the dependent censoring case, we assume regularity conditions C1-C4
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in the Appendix of Peng and Fine (2006). Let

Z̄(1)(u;η) =

∑n
j=1 I{D̃∗i (η) ≥ u}Zj∑n
j=1 I{D̃∗i (η) ≥ u}

M1i(t;η0) = N1i(t;η0)−
∫ t

−∞
I{D̃∗i (η0) ≥ u}λ10(u)du

h∗(Vi,Vj,γ) = (Zi − Zj)ψij(γ)

h∗(Vi,Vj,γ, t) = (Zi − Zj)ψij(γ)I{X̃∗i(j)(γ) ∨ X̃∗j(i)(γ) ≤ t}.

where z̄(1)(u) = limn→∞ Z̄1(u;η0) and λ10 is true common hazard func-

tion for {D̃∗i (η0)}ni=1 (Lin, Robins, and Wei (1996)). Let h∗1(v,γ0, t) =

E{h∗(v,V2,γ0, t)} and h∗1(v,γ0) = E{h∗(v,V2,γ0)}.

H∗i (t, s) =


∫ t

−∞
{Zi − z̄(1)(u)}dM1i(u;η0)

2h∗1(Vi,γ0, s)

 H∗i =


∫ ∞
−∞
{Zi − z̄(1)(u)}dM1i(u;η0)

2h∗1(Vi,γ0)


By replacing Hi(t) and Hi to H∗i (t, s) and H∗i , respectively with substitut-

ing Γ0(t) and Γ0 with Υ0(t, s) and Υ0, respectively, where Υ0(t, s) is the

expectation of the slope matrix of Wn(t, s;γ0), (S2.1) still holds. Using

arguments from UFR
n (t; η̂) and Appendix A.2 of Lin et al. (2000), we can

show that when (2.6) is true, Wn(t, s; γ̂) converges in finite dimensional

distribution to Gaussian process with zero mean and covariance matrix

E[{H∗1(t, s)−Υ0(t, s)Υ−1
0 H∗1}{H∗1(t, s)−Υ0(t, s)Υ−1

0 H∗1}T ]. (S2.3)

Similar to proof of convergence for covariance matrix of Un(t; η̂), the covari-

ance matrix of Wn(t, s; γ̂) converges almost surely uniformly (t, s) to (S2.3).
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This and the tightness of Wn(t, s; γ̂) shows that the process Wn(t, s; γ̂)

converges weakly to a Gaussian process. Thus Theorem 1 is proved.

S2.2 Proof of Theorem 2

By Appendix of Lin, Robins, and Wei (1996) ,

UFR
n (η∗) = UFR

n (η̂) + n1/2Γ0(η∗ − η̂) + op(1) = n1/2Γ0(η∗ − η̂) + op(1)

(S2.4)

Combining (2.5) and (S2.4) provides

ÛFR
n (t;η∗) =

n1/2

n(n− 1)

∑
i 6=j

h(Vi,Vj, η̂)I{g(Vi,Vj, η̂) ≤ t}Qi

− Γ0(t)n1/2(η∗ − η̂) + op(1)

=
n1/2

n(n− 1)

∑
i 6=j

h(Vi,Vj, η̂)I{g(Vi,Vj, η̂) ≤ t}Qi

− Γ0(t)Γ−1
0

n1/2

n(n− 1)

∑
i 6=j

h(Vi,Vj, η̂)Qi + op(1).

We need to show that when (2.1) is true, conditional on the observed data

(Yi,∆i,Zi), i = 1, . . . , n, the limiting distribution of ÛFR
n (t;η∗) converges

weakly to a Gaussian process and that the limiting covariance matrix of

ÛFR
n (t;η∗) is same as that of UFR

n (t; η̂). From now, our statements for

ÛFR
n (t;η∗) are always ones which condition on the observed data. By ar-

guments in Appendix of Peng and Fine (2006) and the strong consistency
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of η̂, we have expansion

Ûn(t;η∗) = n−1/2

n∑
i=1

2h1(Vi,η0, t)Qi − Γ−1
0 Γ(t)n−1/2

n∑
i=1

2h1(Vi,η0)Qi + op(1)

(S2.5)

Given the observed data, the only random term isQis, so by the multivariate

central limit theorem, the first term of (S2.5) and the second term of (S2.5)

converge to Gaussian process in finite dimension. Since 2h1(Vi,η0, t) is

increasing function of t, Vi and Qi are i.i.d, the first term of expansion

(S2.5) is manageable and satisfies the conditions for functional central limit

theorem (Pollard (1990, Section 7, p38 and Section 9, p53); Lin et al.

(2000)). Hence the first term of (S2.5) is tight and the second term is clearly

tight. Thus ÛFR
n (t;η∗) is tight. Using the finite-distributional convergence

results, we can show that ÛFR
n (t;η∗) converges weakly to Gaussian process

and its asymptotic covariance function is E(L1L
T
1 ), where

L = 2h1(V1,η0, t)− Γ0(t)Γ−1
0 2h1(V1,η0). (S2.6)

Moreover, conditional on the observed data covariance function of ÛFR
n (t;η∗)

converges almost surely uniformly t to (S2.6) by uniform strong law of

large numbers (Pollard (1990, Section 8, p41)). In addition, the compo-

nents of ÛFR
n (t;η represent manageable processes in the sense of Pollard

(1990, Section 7, page 38). As can be seen, the limiting covariance ma-
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trix of ÛFR
n (t;η∗), conditional on the observed data is the same as that of

UFR
n (t; η̂). For the dependent censoring case, let

Ĥi

∗
(t, s) =


∫ t

−∞
{Zi − Z̄(1)(u)}M̂1i(u; η̂)

2
n−1

∑n
j=1 h∗(Vi,Vj, γ̂, t)

 Ĥi

∗
=


∫ ∞
−∞
{Zi − Z̄(1)}(u; η̂)M̂1i(u; η̂)

2
n−1

∑n
j=1 h∗(Vi,Vj, γ̂)


By strong consistency of γ̂, Ŵn(t, s) has expansion

Ŵn(t, s) = n−1/2

n∑
i=1

Ĥ∗i (t, s)Qi −Υ−1
0 Υ0(t, s)n−1/2

n∑
i=1

Ĥ∗iQi + op(1)

= n−1/2

n∑
i=1

H∗i (t, s)Qi −Υ−1
0 Υ0(t, s)n−1/2

n∑
i=1

H∗iQi + op(1) (S2.7)

We can argue similarly for Ŵn(t, s; γ̂) as we did for Ŵn(t, s; γ̂). By the

multivariate central limit theorem, Ŵn(t, s) converges in finite-dimensional

distribution to a mean zero Gaussian process with covariance function

E(L2L
T
2 ), where

L2 =


∫ t

−∞
{Z1 − z̄(1)(u)}dM11(u;η0)

2h∗1(V1,γ0, s)

−Υ−1
0 Υ0(t, s)


∫ ∞
−∞
{Z1 − z̄(1)(u)}dM11(u;η0)

2h∗1(V1,γ0),


(S2.8)

which is equivalent to (S2.3). Applying arguments similar to ÛFR
n (t;η∗)

for ÛP
n (s;γ∗) with arguments of Lin, Robins, and Wei (1996) and Lin et

al. (2000) for Ŝ(t;η∗) leads that the first term in (S2.7) is manageable and

hence they are tight by the functional central limit theorem. Moreover, the

second term of (S2.7) converges to normal distribution. Hence Ŵn(t, s;γ∗)
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is tight conditional on the observed data and when (2.6) is true, it converges

weakly to a Gaussian process as Wn(t, s; γ̂∗) converges unconditionally.

By using arguments similar to Lin, Wei, and Ying (1993) and convergence

results of the covariance function for ÛFR
n (t;η∗), covariance function of

Ŵn(t, s;γ∗) conditional on the observed data converges almost surely to

(S2.8) uniformly in (t, s). This concludes the proof.

S3 Proof of Theorem 3

In this section, we will prove consistency of the estimator under model

misspecification. Let the full covariate vector be W = {ZT , (Z∗)T}T . Let

η0 and θ0 be true parameter values corresponding to Z and Z∗, respectively.

Assume that the true model is

T = WTτ 0 + ε

where τ 0 = (ηT0 ,θ
T
0 )T . Let e∗i (η) = Yi−ZT

i η. Then the estimating equation

is

UFRmis
n (η) =

n1/2

2n(n− 1)

∑
i 6=j

(Zi − Zj)[∆iI{e∗j(η) > e∗i (η)} −∆jI{e∗i (η) > e∗j(η)}] = 0.

(S3.1)

By Theorem 2.1(i) in Fygenson and Ritov (1994), the solution of equation

(S3.1) exists. Denote this solution by η̂mis. By the strong law of large
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numbers,

n−1/2UFRmis
n (η) = λ∗(η) + o(1).

Assume that λ∗(η) has a unique solution ηmis. Let us consider the an-

tiderivative of UFRmis
n (η), say GFRmis

n (η),

GFRmis
n (η) =

n1/2

2n(n− 1)

∑
i 6=j

{e∗i (η)− e∗j(η)}[∆iI{e∗j(η) > e∗i (η)} −∆jI{e∗i (η) > e∗j(η)}]

Since GFRmis
n (η) is convex (Jin et al. (2003)), then η̂mis is minimizer of

GFRmis
n (η). The kernel function of GFRmis

n (η) is Euclidean and hence we

have

sup
η∈Θ
||GFRmis

n (η)− E[GFRmis
n (η)]|| → 0

almost surely. Moreover, GFRmis
n (η) satisfies conditions in Proposition A1

of Jin, Ying, and Wei (2001). Since ηmis is unique solution of GFRmis
n (η),

so η̂mis converges almost surely to ηmis (Jin, Ying, and Wei (2001)). In

the presence of dependent censoring, one can show the consistency for the

least-false parameter for time to dependent censoring using arguments from

Struthers and Kalbfleisch (1986) and Lin and Wei (1989). For the event of

interest, we can apply the argument in Appendix of Peng and Fine (2006)

for misspecified model.
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S4 Proof of Theorem 4

In this section, we will prove consistency of the proposed test. Suppose that

the alternative hypothesis is that η in the AFT model depends on time,

i.e.,

T = ZTη(s) + ε. (S4.1)

Let η̂mt be estimator of η assuming AFT model that has time independent

parameters while in the true model parameters actually depend on time.

Then by applying similar arguments for the misspecified AFT model, η̂mt

converges almost surely to constant vector, say ηmt. To show consistency

of test, it suffices to show that n−1/2UFR
n (t; η̂mt) converges to nonzero limit

(Lin, Wei, and Ying (1993); Arbogast and Lin (2004)) against the alter-

native hypothesis. Under the alternative hypothesis, by the strong law of

large number of U-statistics, n−1/2UFR
n (t; η̂mt) converges almost surely to

1
2
E[(Z1 − Z2)×

E[I{e1(ηmt) ∨ e2(ηmt) ≤ t}(∆1I{e2(ηmt) > e1(ηmt)} −∆2I{e1(ηmt) > e2(ηmt)})|Z1,Z2].

(S4.2)
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Then given e1(ηmt)∨e2(ηmt) ≤ t, the inner expectation of (5.12) is P [∆1I{e2(ηmt) >

e1(ηmt)} −∆2I{e1(ηmt) > e2(ηmt)}]. Then,

P [∆1I{e2(ηmt) > e1(ηmt)} −∆2I{e1(ηmt) > e2(ηmt)}]

= P{(T1 − ZT
1 η

mt) ≤ (T2 − ZT
2 η

mt) ∧ (C1 − ZT
1 η

mt) ∧ (C2 − ZT
2 η

mt)}

−P{(T2 − ZT
2 η

mt) ≤ (T1 − ZT
1 η

mt) ∧ (C1 − ZT
1 η

mt) ∧ (C2 − ZT
2 η

mt)}

= P [{ε1 + ZT
1 (η(s1)− ηmt)} ≤ [ε2 + ZT

2 (η(s2)− ηmt)] ∧ (C1 − ZT
1 η

mt) ∧ (C2 − ZT
2 η

mt)]

−P [{ε2 + ZT
2 (η(s2)− ηmt)} ≤ {ε1 + ZT

1 (η(s1)− ηmt)} ∧ (C1 − ZT
1 η

mt) ∧ (C2 − ZT
2 η

mt)].

(S4.3)

Since η(·) depends on time and there are covariates, ε1+ZT
1 (η(s1)−ηmt) and

ε2 +ZT
2 (η(s2)−ηmt) do not have the same distribution, thus the probability

in expression (S4.3) is not 0. For the expression in (S4.3) to be 0, the

distribution of ε1 + ZT
1 (η(s1) − ηmt) and ε2 + ZT

2 (η(s2) − ηmt) should be

same. Thus for the function in (S4.3) to be 0, η(s1) = η(s2) = ηmt. Under

the presence of the dependent censoring, one can apply the argument of

Lin, Wei, and Ying (1993), and for the event of interest, we can apply the

arguments similar to those in this section.
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