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Abstract: High-dimensional classification is an important statistical problem with

applications in many areas. One widely used classifier is the linear discriminant

analysis (LDA). In recent years, many regularized LDA classifiers have been pro-

posed to solve the problem of high-dimensional classification. However, these meth-

ods rely on inverting a large matrix or solving large-scale optimization problems

in order to render classification rules, making them computationally prohibitive

when the dimension is ultrahigh. With the emergence of big data, it has become

increasingly important that we develop more efficient algorithms to solve high-

dimensional LDA problems. In this paper, we propose an efficient greedy search

algorithm that depends solely on closed-form formulae to learn a high-dimensional

LDA rule. We establish a theoretical guarantee of its statistical properties in terms

of variable selection and error rate consistency. In addition, we provide an ex-

plicit interpretation of the extra information brought by an additional feature in an

LDA problem under some mild distributional assumptions. We demonstrate that

the computational speed of the new algorithm is significantly better than that of

other high-dimensional LDA methods, while maintaining comparable or even better

classification performance.

Key words and phrases: Greedy search, high-dimensional classification, linear dis-

criminant analysis, Mahalanobis distance, variable selection.

1. Introduction

Classification–assigning a subject to one of several classes based on certain

features–is an important statistical problem. However, the recent emergence of

big data poses great challenges, for it requires the efficient use of many features for

classification. A simple classifier, namely, linear discriminant analysis (LDA) was

widely used before the big data era (Anderson (1962)). However, as Bickel and

Levina ((2004) have shown, when the number of features exceeds the sample size,

a traditional LDA is no longer applicable, owing to the accumulation of errors

when estimating the unknown parameters. To deal with the high-dimensional
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LDA problem, a number of regularization methods have been proposed (Clem-

mensen et al. (2011); Witten and Tibshirani (2011); Shao et al. (2011); Cai and

Liu (2011); Fan, Feng and Tong (2012); Mai, Zou and Yuan (2012); Han, Zhao and

Liu (2013)). Early works by Clemmensen et al. (2011) and Witten and Tibshi-

rani (2011) proposed solving the regularized Fisher’s discriminant problem using

sparsity-induced penalties. However, at that stage, there was little theory on the

statistical properties of such classifiers. These properties were subsequently stud-

ied in more detail after additional regularized LDA classifiers (Shao et al. (2011);

Cai and Liu (2011); Fan, Feng and Tong (2012); Mai, Zou and Yuan (2012); Han,

Zhao and Liu (2013)) had been proposed to deal with the high-dimensional LDA

problem.

In general, these methods showed that as long as the unknown population

parameters satisfy some sparsity assumptions, building a regularized LDA classi-

fier can yield a consistent classification rule, in the sense that its misclassification

error converges to the Bayes error. For example, Shao et al. (2011) showed that

if the difference between the population means and the covariance matrices are

sparse, using thresholding estimators (Bickel and Levina (2008a)) can still yield

a consistent rule. On the other hand, Cai and Liu (2011), Fan, Feng and Tong

(2012), and Mai, Zou and Yuan (2012) separately developed distinct consistent

rules while assuming that the slope of the Bayes rule is sparse. Han, Zhao and

Liu (2013) relaxed the normality assumption on these rules, extending them to

more general distributions using a Gaussian copula method.

Although these rules are guaranteed to be consistent, learning the rules is

computationally difficult: the rule proposed by Shao et al. (2011) must invert

a high-dimensional covariance matrix, and the other aforementioned rules must

solve large-scale optimization problems. In particular, it takes a long time to learn

these rules when the dimension is ultrahigh. Therefore, we propose a computa-

tionally efficient classifier that can be learned without needing to invert large

matrices or solve large-scale optimization problems. Our proposed classifier is

based solely on closed-form formulae.

Our method is motivated by a recent study (Li and Li (2018)) on the Bayes

error of the LDA problem. Li and Li (2018) showed that the Bayes error always

decreases when new features are added to the Bayes rule, and that this decrease

is fully characterized by the increment of the Mahalanobis distance between the

two classes. We therefore develop an efficient greedy search algorithm to learn

the increment of the Mahalanobis distance. Unlike many other methods, this

algorithm does not estimate all population parameters; instead, it selects dis-

criminative features in a sequential way, and computes the classification rule as it
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does so. Our method is therefore scalable for ultrahigh-dimensional LDA prob-

lems. We show that the proposed method admits both variable selection and

error rate consistency when the classes follow some general distributions.

To prove these theoretical properties, we first establish a concentration result

for the estimated increment of the Mahalanobis distance and the true increment.

This result characterizes the trade-off between the gains of using more features

for classification and the additional estimation error it produces. We also offer an

explicit interpretation of how much information a new feature adds to the LDA

problem; this interpretation holds for a general class of distributions, and is new

to the LDA literature. We then show that if the slope of the Bayes rule is exactly

sparse, our method can asymptotically recover its nonzero elements, and that our

method’s misclassification error converges to the Bayes error. These results also

hold under a general class of elliptical distributions. We demonstrate numerically

that our method achieves comparable or even better classification performance

with a much shorter training time than other LDA-based methods.

The rest of the paper is organized as follows. Section 2 presents our efficient

greedy search algorithm. Section 3 describes the statistical properties of the pro-

posed method in terms of its variable selection and error rate consistency. Section

4 relaxes the normality assumption, and shows that the statistical properties hold

for a general class of distributions. Section 5 presents extensive numerical studies

that compare the proposed method with other existing methods, demonstrat-

ing the proposed method’s superiority in terms of both computational efficiency

and classification performance under various scenarios. In Section 6, we apply

our method to microarray data to classify cancer subtypes, and show that our

method renders a more meaningful classification rule. All technical proofs are

given in the Supplementary Material.

2. An Efficient Greedy Search Algorithm

Consider a binary classification problem where the class label Y ∈ {0, 1} has

a prior distribution of P (Y = k) = πk, for k = 0, 1. Suppose xk ∈ Rp denotes

a p-dimensional vector of features from the kth class that follows the normal

distribution N(µk,Σ), where x0 and x1 are assumed to be independent. The

Bayes rule of this classification problem is given by DBayes(x) = I(δTΣ−1(x −
µ) ≤ log(π1/π0)), where δ = µ0 − µ1, µ = (1/2)(µ0 + µ1), and x is a new

observation. The corresponding Bayes error is given by RBayes = Φ(−
√

∆p/2),

where ∆p = δTΣ−1δ is the Mahalanobis distance between the centroids of the

two classes and Φ is the cumulative distribution function of the standard normal
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distribution.

In practice, the Bayes rule is unknown. A classification rule is learned from

the training data X = {xki; k = 0, 1; i = 1, . . . , nk}, where xki are independent

and identically distributed (i.i.d) samples from the kth class and nk is the sample

size of the kth class, with n = n0 +n1. Then, the rule is applied to classify a new

observation x, which is assumed to be independent of the training data. For the

classical LDA method, the unknown parameters in the Bayes rule are replaced

with their maximum likelihood estimators; this LDA rule has the form

DLDA(x) = I

(
δ̂T Σ̂−1(x− µ̂) ≤ log

(
π̂1
π̂0

))
,

where

π̂k =
nk
n
, µ̂k =

1

nk

nk∑
i=1

xki, δ̂ = µ̂0 − µ̂1, (2.1)

µ̂ =
1

2
(µ̂0 + µ̂1), Σ̂ =

1

n

1∑
k=0

nk∑
i=1

(xki − µ̂k)(xki − µ̂k)T . (2.2)

However, in the high-dimensional setting, where p > n, the classical LDA

method is no longer feasible, because Σ̂ is not invertible. Even if we replace

Σ̂−1 with a generalized matrix inverse, Bickel and Levina ((2004) showed that

the resulting rule has an asymptotic misclassification error of 1/2, which is as

bad as random guessing. This is essentially due to the error accumulation when

estimating the high-dimensional parameters in the classifier. To avoid this issue

in the high-dimensional setting, many regularized methods have been proposed

(Clemmensen et al. (2011); Witten and Tibshirani (2011); Shao et al. (2011); Cai

and Liu (2011); Fan, Feng and Tong (2012); Mai, Zou and Yuan (2012); Han,

Zhao and Liu (2013)). In particular, Shao et al. (2011) proposed the sparse linear

discriminant analysis (SLDA) rule

DSLDA(x) = I

(
δ̃T Σ̃−1(x− µ̂) ≤ log

(
π̂1
π̂0

))
,

where δ̃ and Σ̃ are the thresholding estimators. Here, δ̃ = (δ̃j), with δ̃j =

δ̂jI(|δ̂j | > tδ) and δ̂j is the jth element of δ̂, and Σ̃ = (σ̃ij), with σ̃ii = σ̂ii,

σ̃ij = σ̂ijI(|σ̂ij | > tσ), for i 6= j, and σ̂ij is the (i, j)th element of Σ̂. They

showed that the SLDA’s misclassification error still converges to the Bayes error,

given that the thresholds tδ and tσ are chosen properly and given some sparsity

conditions on both δ and Σ. Instead of separately estimating δ and Σ, as the
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SLDA does, two other methods directly estimate the slope of the Bayes rule

β = Σ−1δ by solving convex optimization problems. For example, the linear

programming discriminant (LPD) method (Cai and Liu (2011)) estimates β by

solving

β̂LPD = argmin
β∈Rp

‖β‖1 subject to ‖Σ̂β − δ̂‖∞ ≤ λ,

where λ is a tuning parameter and (δ̂, Σ̂) is defined in (2.1) and (2.2). The

regularized optimal affine discriminant (ROAD) method (Fan, Feng and Tong

(2012)) estimates β by solving

β̂ROAD = argmin
β∈Rp

1

2
βT Σ̂β + λ‖β‖1 +

γ

2
(βT δ̂ − 1)2,

where λ and γ are tuning parameters and (δ̂, Σ̂) is defined in (2.1) and (2.2).

Then, replacing Σ̃−1δ̃ in the SLDA rule with β̂LPD or β̂ROAD gives the corre-

sponding LPD or ROAD rule. Both papers showed that the resulting misclas-

sification errors converge asymptotically to the Bayes error, given some sparsity

condition on β.

However, these methods all rely on evaluating and inverting a large matrix

or solving a large-scale optimization problem. When p is huge, it can become

computationally expensive to run these methods. Instead, we propose an efficient

greedy search algorithm that does not require inverting a matrix or solving an

optimization problem. Moreover, our method does not need to evaluate the

whole sample covariance matrix in advance, but rather computes its elements as

it goes, depending on which features enter the classification rule. We compare the

computational complexity of these methods with that of ours later in this section.

As shown in the numerical studies, our method has a much shorter learning time

than these methods do, and even better classification performance.

The Bayes error of the LDA problem is fully characterized by the Maha-

lanobis distance ∆p. Recently, Li and Li (2018) proved that ∆p is a monotonically

increasing function of p, which implies that the Bayes error always decreases when

more features are involved. Therefore, we propose a greedy search algorithm that

operates by learning the increment of the Mahalanobis distance. At each step of

our algorithm, we seek the variable that results in the largest increment of the

Mahalanobis distance. Such a variable can be regarded as the most informative,

given those selected in the previous steps. We terminate the iterations when the

increment is smaller than a predefined threshold. We show that the iterations

are based on closed-form formulae, and the algorithm does not need to compute
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the whole covariance matrix; therefore, it is computationally efficient.

Let S be an arbitrary subset of {1, . . . , p}, and s be the size of S. Let

∆s = δTSΣ−1SSδS be the Mahalanobis distance involving only variables in S, where

δS is a subvector of δ and ΣSS is a submatrix of Σ with indices in S. For an

arbitrary c 6∈ S, let

∆s+1 =
(
δTS δc

)(ΣSS ΣSc

ΣT
Sc σcc

)−1(
δS
δc

)

be the Mahalanobis distance by adding a new variable indexed by c, and let θSc =

∆s+1 − ∆s be the increment of the Mahalanobis distance. Using an argument

analogous to Proposition 1 of Li and Li (2018), we can show that

θSc =
(δc −ΣT

ScΩSSδS)2

σcc −ΣT
ScΩSSΣSc

≥ 0, (2.3)

where ΩSS = Σ−1SS . A proof of (2.3) is given in the Appendix. Moreover, under the

normality assumption, we find that θSc has a clear interpretation. Let z = x0−x1.

Using the conditional distribution of the multivariate normal distribution, we can

easily show that

θSc =
2{E(zc|zS = 0)}2

Var(zc|zS = 0)
,

where zc is the cth element of z and zS is the subvector of z with indices in S.

This result shows that the contribution of a new variable does not depend on its

marginal difference between the two classes (i.e., E(zc)), but rather on its effect

size, conditional on other variables (i.e., the standardized E(zc|zS = 0)). In the

extreme case in which there is no difference in the cth variable between the two

classes (i.e., E(zc) = 0), adding such a variable to those in S can still reduce the

Bayes error if E(zc|zS = 0) 6= 0. This interpretation seems to be new in the LDA

literature. In Section 4, we show that this interpretation not only holds for the

normal distribution, but also holds for all elliptical distributions.

In practice, θSc is unknown. We propose a greedy search algorithm based

on learning θSc from the training data. From (2.3), if we replace δ and Σ with

the corresponding estimators δ̂ and Σ̂ in (2.1) and (2.2), we can easily obtain

an estimator of θSc. However, this naive method requires the computation of all

elements of Σ̂ and the inversion of its submatrices. We show that there is a more

efficient method of computing θ̂Sc that computes elements of Σ̂ as it goes, with

no need to invert a matrix.

At the initial step, we set the selected set Ŝ0 = ∅. For all 1 ≤ c ≤ p, we
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calculate δ̂2c/σ̂cc, where δ̂c is the cth element of δ̂ and σ̂cc is the (c, c)th element

of Σ̂. We choose ŝ1 to be the index such that δ̂2c/σ̂cc is maximized, and set the

selected set Ŝ1 = {ŝ1} and the candidate set Ĉ1 = {1, . . . , p}\{ŝ1}. To simplify

the calculations in the subsequent steps, we compute and store Ω̂1 = σ̂−1ŝ1ŝ1 and

the submatrix Σ̂Ŝ1Ĉ1
, that is, the sample covariance of the selected and candidate

variables. At this step, Ω̂1 and Σ̂Ŝ1Ĉ1
are a scalar and a vector of p− 1 elements,

respectively. As shown below, storing these two matrices is the key to enabling

a fast computation. At the kth step, we compute

θ̂Ŝk−1c
= (δ̂c − Σ̂T

Ŝk−1c
Ω̂k−1δ̂Ŝk−1

)2(σ̂cc − Σ̂T
Ŝk−1c

Ω̂k−1Σ̂Ŝk−1c
)−1,

for all c ∈ Ĉk−1. Because δ̂c, σ̂cc, Σ̂Ŝk−1Ĉk−1
, and Ω̂k−1 have all been stored in

previous steps, computing θ̂Ŝk−1c
is fast. Then, we select ŝk to be the index that

maximizes θ̂Ŝk−1c
for all c ∈ Ĉk−1, and let Ŝk = Ŝk−1∪{ŝk} and Ĉk = Ĉk−1\{ŝk}.

Next, we update Ω̂k, the estimated precision matrix of all selected variables in

Ŝk. Using the Woodbury matrix identity, we have

Ω̂k = Σ̂−1
ŜkŜk

=

(
Ω̂k−1 + α̂kρ̂kρ̂

T
k −α̂kρ̂k

−α̂kρ̂Tk α̂k

)
,

where ρ̂k = Ω̂k−1Σ̂Ŝk−1ŝk
and α̂k = (σ̂ŝkŝk − Σ̂T

Ŝk−1ŝk
Ω̂k−1Σ̂Ŝk−1ŝk

)−1. Note that

σ̂ŝkŝk , Ω̂k−1, and Σ̂Ŝk−1,ŝk
can all be read directly from previously stored ob-

jects, allowing Ω̂k to be computed efficiently. Next, we update Σ̂ŜkĈk
by letting

Σ̂ŜkĈk
= (Σ̂ĈkŜk−1

Σ̂Ĉkŝk
)T . This quantity is needed to calculate θ̂Ŝkc

in the next

iteration. Note that Σ̂ĈkŜk−1
is the submatrix of Σ̂Ĉk−1Ŝk−1

without its ŝkth row,

which has been stored in the (k−1)th iteration. Therefore, we need only compute

Σ̂Ĉkŝk
∈ Rp−k, which is the sample covariance between the newly selected vari-

able ŝk and the candidate variables in Ĉk. We calculate the number of operations

computed at the kth iteration. First, it takes O(k2(p− k + 1)) = O(k2p) opera-

tions to calculate θ̂Ŝk−1c
. Then, we obtain Σ̂Ĉkŝk

at a cost of O(np) operations.

Finally, we update Ω̂k at a cost of O(k2) operations. Thus, at the kth iteration,

our algorithm costs O(np) operations. Therefore, up to the kth iteration, the

total computational cost is O(knp). As discussed in Section 3, the total number

of iterations is close to K, which is the number of nonzero elements in β and

is much smaller than n. Thus, the total computational cost of our algorithm is

O(Knp).



1350 YANG, LIN AND LI

On the other hand, both the SLDA and the LPD need to first compute Σ̂,

which requires O(np2) operations. For the SLDA, it requires additional oper-

ations to obtain the regularized estimators Σ̃ and δ̃. Futhermore, inverting Σ̃

costs another O(p2+ε) operations for some ε ∈ (0, 1], depending on the algo-

rithm used to invert the matrix. Finally, computing the product Σ̃−1δ̃ costs

O(p2) operations. Thus, the total computational cost of the SLDA is at least

max{O(np2), O(p2+ε)}, which is much slower than ours when p is big. For the

LPD, the optimization problem can be solved using the primal-dual interior-point

method (Candes and Tao (2007)). As shown by Candes and Tao (2007), when

p � n, each iteration requires solving an n × n linear system (O(n2)) and up-

dating the matrix for the system (O(np2)), which also requires evaluating Σ̂.

Such an evaluation already takes O(np2) operations. Therefore, let T be the

number of iterations for the interior-point method to converge. The total compu-

tational cost for the LPD is max{O(Tnp2), O(Tn2)}, which is clearly slower than

ours. For the ROAD, if one chooses to evaluate Σ̂ first and then solve the opti-

mization problem, the computational cost is at least O(np2). A computationally

more efficient solution is to use the fast iterative shrinkage-thresholding algorithm

(FISTA) proposed by Beck and Teboulle (2009). In each iteration of the FISTA,

the cost of computing the gradient is O(np) if we use a store-and-compute method

that is more efficient than evaluating Σ̂ before the iterations start. Furthermore,

Theorem 4.4 in Beck and Teboulle (2009) shows that the FISTA needs at least

O(n1/4) iterations to converge. Thus, the total computational cost for the FISTA

to solve the ROAD problem is at least O(n5/4p). Therefore, our method is still

faster than the FISTA, especially when K is small. One may also choose to use

the covariance-based method (Friedman, Hastie and Tibshirani (2010)) to cal-

culate the gradient. However, its efficiency depends on the choice of the tuning

parameters and the initial value, so that the total computational cost is difficult

to quantify, in general.

In conclusion, the greedy search algorithm keeps track of the index sets of

selected variables Ŝk and candidate variables Ĉk, and iteratively updates Ω̂k and

Σ̂ŜkĈk
. It does not need to compute the whole Σ̂ in advance; instead, it computes

its elements as it goes based on selected and candidate variables. It relies solely

on closed-form formulae to learn the increments of the Mahalanobis distance,

without requiring a matrix inversion or solving an optimization problem. The

algorithm terminates when no candidate variable produces an increment of the

Mahalanobis distance of at least τ , which is a predefined stopping threshold that

can be regarded as a tuning parameter that must be tuned using cross-validation.

The greedy search algorithm is summarized in Algorithm 1.
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Denote M̂ and Ω̂M̂ as the last Ŝk and Ω̂k, respectively, when the greedy

search algorithm terminates. We let β̂M̂ = Ω̂M̂δ̂M̂ and propose the following

greedy search linear discriminant analysis (GS-LDA) rule:

DGS-LDA(x) = I

(
β̂TM̂(xM̂ − µ̂M̂) ≤ log

(
π̂1
π̂0

))
,

where xM̂ and µ̂M̂ are subvectors of x and µ̂, respectively, with indices in M̂.

Algorithm 1 The greedy search algorithm.

Initialization: Compute and store δ̂ and the diagonal elements of Σ̂
using (2.1) and (2.2).

Set ŝ1 = argmaxj≤p δ̂
2
j /σ̂jj , Ŝ1 = {ŝ1},

Ĉ1 = {1, . . . , p}\{ŝ1}, Ω̂1 = σ̂−1ŝ1ŝ1
.

Compute and store Σ̂Ŝ1Ĉ1
.

At the kth iteration:

Let θ̂Ŝk−1c
= (δ̂c − Σ̂T

Ŝk−1c
Ω̂k−1δ̂Ŝk−1

)2/(σ̂cc − Σ̂T
Ŝk−1c

Ω̂k−1Σ̂Ŝk−1c
) for all c ∈ Ĉk−1.

Set ŝk = argmaxc∈Ĉk−1
θ̂Ŝk−1c

, Ŝk = Ŝk−1 ∪ {ŝk}, Ĉk = Ĉk−1\{ŝk},
ρ̂k = Ω̂k−1Σ̂Ŝk−1ŝk

, α̂k = (σ̂ŝk ŝk − Σ̂T
Ŝk−1ŝk

Ω̂k−1Σ̂Ŝk−1ŝk
)−1,

Σ̂ŜkĈk
= (Σ̂ĈkŜk−1

Σ̂Ĉk ŝk
)T

and Ω̂k =

(
Ω̂k−1 + α̂kρ̂kρ̂

T
k −α̂kρ̂k

−α̂kρ̂
T
k α̂k

)
.

Iterate until θ̂Ŝkc
< τ for all c ∈ Ĉk, where τ is a predefined stopping threshold.

3. Theoretical Properties

Here, we give two theoretical results for the statistical properties of the GS-

LDA rule. First, we show that if β is exactly sparse, the greedy search algorithm

can correctly select its nonzero elements with high probability. Second, we show

that the misclassification rate of the GS-LDA rule converges asymptotically to

the Bayes error.

We begin by introducing some notation. For a matrix A, a set S, and an

index c, we denote ASc as the cth column of A with row indices in S. Denote

ASS as the submatrix of A with row and column indices in S. Denote λmin(A)

and λmax(A) as the minimum and maximum eigenvalues, respectively, of A. For

two sequences an and bn, we write an . bn if an ≤ Cbn for a generic positive

constant C, write an = o(bn) if an/bn → 0, and an � bn if bn = o(an). To simplify

the nonasymptotic statements, we assume throughout this paper that C0 is an



1352 YANG, LIN AND LI

arbitrarily large positive constant and C1 is some generic positive constant, which

may vary from line to line. In addition, we assume nk/n→ ` ∈ (0, 1) for k = 0, 1,

and we assume normality in this section.

We first give a concentration result of the estimated increment θ̂Sc for an

arbitrary set S with s elements and an arbitrary c 6∈ S. We introduce the

following regularity conditions.

Condition 1. maxj≤p |δj | ≤M <∞.

Condition 2. 0 < m ≤ λmin(Σ) ≤ λmax(Σ) ≤M <∞.

Condition 1 requires that the elements of δ be bounded, and condition 2

requires that the eigenvalues of Σ be bounded away from zero and ∞; these

two conditions are also used in other works (Shao et al. (2011); Cai and Liu

(2011)). These are mild boundedness conditions that simplify the nonasymptotic

statement of the concentration results. Next, we give the concentration result of

θ̂Sc − θSc.

Theorem 1. Under Conditions 1–2 and if s2
√

(log p)/n = o(1), it holds that

P

(
|θ̂Sc − θSc| . s2

√
log p

n
max

{
s2
√

log p

n
,
√
θSc, θSc

})
≥ 1− CAp−CB ,

where CA is a generic positive constant and CB is an arbitrary large positive

constant.

Theorem 1 shows that the concentration of θ̂Sc − θSc depends on s and

θSc. It implies that when θSc > 1, θ̂Sc − θSc = OP (s2θSc
√

(log p)/n), and when

s4(log p)/n < θSc < 1, θ̂Sc − θSc = OP (s2
√
θSc(log p)/n). When θSc = 0, it

implies that θ̂Sc − θSc = OP (s4(log p)/n). These results show that it is more

difficult to estimate a larger θSc. In addition, when s gets larger, so does the

estimation error, owing to the accumulation of estimation errors when estimating

the unknown parameters, because when s gets larger, more parameters need to

be estimated.

Theorem 1 is critical in studying the statistical properties of the GS-LDA

rule. First, it indicates that as long as there is a large enough gap between θSc
and θSc′ for any c′ 6= c, the indicator functions I(θ̂Sc > θ̂Sc′) = I(θSc > θSc′) hold

with high probability. In other words, the order of θ̂Sc and θ̂Sc′ reflects the true

order of θSc and θSc′ . As shown below, this is the key to guaranteeing that the

greedy search algorithm reaches variable selection consistency. Theorem 1 also

gives guidance on how to choose the stopping threshold τ . When θ̂Sc is small,
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it indicates that θSc is small or equal to zero. At that stage, adding additional

variables does not improve the classification, and we should thus terminate the

greedy search. More details on how to choose τ are given in Theorem 2. Finally,

we give a corollary for the special case of S = ∅. This result is useful for proving

the property of the initial iteration of our algorithm. Its proof follows directly

from that of Theorem 1.

Corollary 1. Under the conditions of Theorem 1, when S = ∅, it holds that

P

(
|θ̂Sc − θSc| .

√
log p

n

)
≥ 1− CAp−CB ,

where CA is a generic positive constant and CB is an arbitrary large positive

constant.

Next, we prove that, if β is exactly sparse, in the sense that many of its

elements are zero, the greedy search method can recover the support of β with

high probability. LetM = {j : βj 6= 0} be the support of β, K be the number of

elements inM, and M̂ be as defined in Section 2. We have the following variable

selection consistency result.

Theorem 2. Under Conditions 1–2 and

Condition 3. 0 < m ≤ minS⊂Mmaxc∈M\S θSc ≤ maxS⊂Mmaxc∈M\S θSc ≤
M <∞;

Condition 4. minS⊂M(maxc∈M\S θSc −maxc 6∈M θSc)� K2
√

(log p)/n;

if K2
√

(log p)/n = o(1), and we choose τ � K4(log p)/n, it holds that

P
(
M̂ =M

)
≥ 1− CAKp−CB ,

where CA is a generic positive constant and CB is an arbitrary large positive

constant.

Condition 3 requires that for any S ⊂M, if we add another variable inM to

those in S, the true increment θSc should be bounded away from zero and infinity.

The lower bound is mild, because, as shown in (2.3), θSc is always nonnegative;

becauseM contains all discriminative features, the lower bound requires only that

at least one additional feature in M should produce a large enough increment

of θSc to pass the threshold. The upper bound is mainly introduced to simplify

the expression. As shown in Theorem 1, the concentration of θ̂Sc also depends

on the magnitude of θSc, requiring all θSc to be bounded away from infinity.
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This enables us to have a more succinct nonasymptotic statement in Theorem 2.

Condition 4 requires that for any S ⊂M, the maximum increment produced by

adding another feature in M should surpass the increment by adding a feature

outside ofM when the true θSc is known. Such a condition naturally requires that

adding a discriminative feature inM should bring more information than adding

a non-discriminative one outside M. As shown in Theorem 1, the component

K2
√

(log p)/n is the estimation error of θ̂Sc to θSc. Thus, once Condition 4 is

assumed, with high probability, we have maxc∈M\S θ̂Sc > maxc 6∈M θ̂Sc. This is

the key to ensuring that the greedy search algorithm chooses the informative

features inM. As reflected by the concentration result in Theorem 1, the choice

of τ is essentially the order of θ̂Sc when θSc = 0. This guarantees the exclusion

of non-informative features. Finally, the assumption of K2
√

(log p)/n = o(1) is a

sparsity assumption on β, which is similar to the condition needed for the LPD

and ROAD methods; see Cai and Liu (2011) and Fan, Feng and Tong (2012).

Given the variable selection consistency, we next establish the error rate

consistency of the GS-LDA rule. Without loss of generality, we assume that

π0 = π1 = 1/2. By definition, the misclassification error of the GS-LDA rule is

RGS-LDA(X) =
1

2
P (DGS-LDA(x) = 0|x comes from Class 1)

+
1

2
P (DGS-LDA(x) = 1|x comes from Class 0)

=
1

2

1∑
k=0

Φ

(−1)kβ̂T
M̂

(µ
kM̂ − x̄kM̂)− δ̂T

M̂
Ω̂M̂δ̂M̂/2√

δ̂T
M̂

Ω̂M̂ΣM̂M̂Ω̂M̂δ̂M̂

 .

(3.1)

The following theorem establishes the error rate consistency.

Theorem 3. Under Conditions 1–4, if K2
√

(log p)/n = o(1) and we choose

τ � K4(log p)/n, it holds that

(a) RGS-LDA(X) = Φ(−
√

∆p/2{1 +OP (K
√

(log p)/n)});

(b) RGS-LDA(X)/RBayes − 1 = OP (
√

(log p)/n), when ∆p <∞;

(c) RGS-LDA(X)/RBayes − 1 = OP (max{∆−1p ,K2
√

(log p)/n})
when ∆p →∞.

Theorem 3 proves that RGS-LDA(X)/RBayes converges to one in probabil-

ity. Statement (a) shows that the convergence rate of RGS-LDA(X) to RBayes
depends on K; for a larger K, the convergence is slower because more param-

eters need to be estimated. In statements (b) and (c), we show that the ratio
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of RGS-LDA(X)/RBayes converges to one in probability. Because ∆p itself can

diverge, RBayes can converge to zero. Thus, statements (b) and (c) are stronger

than showing RGS-LDA(X)−RBayes → 0 in probability. Our result indicates that

RGS-LDA(X) can converge to zero as fast as RBayes does, even when RBayes → 0.

Furthermore, we show that the convergence rates differ depending on whether ∆p

is bounded. Finally, similarly to the LPD and ROAD, our method relies on the

sparsity assumption on β to reach the error rate consistency, as shown in Theorem

3. This assumption is needed to avoid the accumulation of errors when estimat-

ing β that could ruin the error rate consistency (Bickel and Levina ((2004)). In

addition, Theorem 3 relies on the variable selection consistency established in

Theorem 2.

4. Relaxation of the Normality Assumption

Although we have proved the theoretical results under the normality as-

sumption, these results can still hold when the two classes follow more general

distributions. As discussed in Shao et al. (2011), the Bayes rule remains the

same, as long as there exists a unit vector γ such that, for any real number t and

k = 0, 1, it holds that

P (γ ′Σ−1/2(xk − µk) ≤ t) = Ψ(t),

where Ψ(t) is a cumulative distribution function with a density that is sym-

metric around zero and does not depend on γ. In this case, the Bayes error is

Ψ(−
√

∆p/2), which is still a decreasing function of the Mahalanobis distance ∆p.

Two key conditions for such a result are that the density function is symmetric

around zero and the two classes have an equal covariance. Distributions satisfying

this condition include the class of elliptical distributions with a density function

of cp|Σ|−1/2f((x − µ)TΣ−1(x − µ)), where f is a monotone function in [0,∞)

and cp is a normalization constant. Examples of elliptical distributions include

the multivariate normal, t, and double exponential distributions. Given such a

general distributional assumption, the increment of Mahalanobis distance still

quantifies how much a new variable can reduce the Bayes error. Interestingly, for

all elliptical distributions, θSc still has the form

θSc =
C{E(zc|zS = 0)}2

Var(zc|zS = 0)
,

where the positive constant C depends on the type of the distribution, and is

equal to two if it is normal. The proof uses the conditional distribution of the
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elliptical distributions, which is similar to what the multivariate normal distri-

bution admits; see Theorem 2.18 of Fang, Kotz and Ng (2018). Thus, for all

elliptical distributions, the contribution of a new variable to the classification

depends on its effect size, conditional on other variables (i.e., the standardized

E(zc|zS = 0)).

However, under the more general distributional assumption, the convergence

rates established in Theorems 1–3 may change. A closer look at the proofs reveals

that the convergence rates depend on the tail probability, which is characterized

by Ψ(−x). The tail probability is the key to establishing the critical concentra-

tion results of δ̂ and Σ̂, upon which the proofs are built; see Lemma 1 in the

Supplementary Material. In general, we assume that

0 < lim
x→∞

x−ω exp(−cxϕ)

Ψ(−x)
<∞, (4.1)

where ϕ ∈ [0, 2], c ∈ (0,∞), and ω ∈ (0,∞) are some constants. In particular,

when Ψ is standard normal, (4.1) holds with ω = 1, c = 1/2, and ϕ = 2. Then,

if Ψ satisfies (4.1) with ϕ = 2, the same exponential-type concentration can be

established so that all results in Theorem 1–3 remain the same. When Ψ satisfies

(4.1) with ϕ < 2, the tail of the distribution is heavier. In that case, if we assume

the moment condition that

max
k,j≤p

E|xk,j |2ν <∞, for some ν > 0, and k = 0, 1, (4.2)

where xk,j is the jth element of xk, a polynomial-type concentration can be

established so that Theorems 1–3 hold with all (log p)/n terms being replaced

by p4/ν/n. In this case, p is only allowed to grow polynomially with n. These

results are analogous to the discussions in Section 4 of Shao et al. (2011). To

improve the convergence rates, one can replace δ̂ and Σ̂ with robust estimators,

such as the Huber estimator or the median-of-means estimator; see Avella et al.

(2018). Correspondingly, the greedy search algorithm can be built upon these

robust estimators. Once such robust estimators are used in the algorithm, even

under the moment assumption in (4.2), Theorems 1–3 can still hold with the

same exponential rate of convergence, using the concentration results established

in Avella et al. (2018).

5. Simulation Studies

We investigate the numerical performance of our proposed method under

four different scenarios. In the first two scenarios, we compare the classification
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performance and the execution time of the proposed GS-LDA method with those

of other LDA-based methods. These include the sparse discriminant analysis

by Clemmensen et al. (2011) (SDA), the SLDA, LPD, and ROAD, and some

other well-known classifiers in machine learning, such as the support vector ma-

chine (SVM) with a linear kernel and the logistic regression with an L1-penalty

(Logistic-L1). In the other two scenarios, we investigate the performance of the

GS-LDA method for some ultrahigh-dimensional settings that involve tens of

thousands of features. In these two scenarios, most existing methods cannot

handle such high dimensions, and we only aim at testing the viability of GS-

LDA. We implement the SDA using the sparseLDA package. We implement

the SLDA using our own coding of the algorithm given in Shao et al. (2011).

We implement the LPD using the linprogPD function from the clime package

(https://github.com/rluo/clime). The implementation for the ROAD comes

from the publicly available package developed by the authors. We implement the

SVM using the e1071 package, and implement the Logistic-L1 using the glmnet

package. The optimal tuning parameters for each method are chosen using a grid

search with five-fold cross-validation. The execution time is recorded as the time

taken by each algorithm on a computing cluster with an Intel Xeon 3.4GHz CPU,

with the tuning parameters fixed at their optimal values.

In the first two scenarios, we consider the following two choices of µk and Σ:

Scenario 1: µ0 = 0 and µ1 = (1, . . . , 1, 0, . . . , 0)T , where the first 10 elements

are ones, and the rest are zeros. Σ = (σij)p×p, where σij = 0.8|i−j|, for

1 ≤ i, j ≤ p.

Scenario 2: µ0 = 0 and µ1 = Σβ, where β = (0.25, . . . , 0.25, 0, . . . , 0)T , with the

first 10 elements of β equal to 0.25 and the rest zeros; Σ = (σij)p×p, where

σij = 0.8|i−j|, for 1 ≤ i, j ≤ p.

For each scenario, we generate 200 training samples for each of the two classes

from N(µk,Σ); we let the dimension p vary from 500 to 2,000, with an incre-

ment of 500. We independently generate another 800 samples from each of these

distributions as the test set. In Scenario 1, we set δ = µ0 − µ1 to be exactly

sparse. This scenario is the same as Model 3 considered in Cai and Liu (2011).

In Scenario 2, we set β to be exactly sparse because such a condition is imposed

for the proposed GS-LDA method. We use five-fold cross-validation to choose

the optimal tuning parameters in all seven methods. For each scenario, we run

100 replicates. We report the average misclassification rates and the execution

time for each classifier in Figures 1 and 2. For Scenario 2, we also report the vari-

able selection performance on β by the GS-LDA, ROAD, and Logistic-L1. We

https://github.com/rluo/clime
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measure the variable selection performance by sensitivity and specificity. Sensi-

tivity is defined as the proportion of nonzero elements of β that are estimated as

nonzero, and specificity is defined as the proportion of zero elements of β that

are estimated as zero.

Figures 1 and 2 show that the GS-LDA has the best classification perfor-

mance for all choices of p and under both scenarios. Its computational speed is

also much faster than that of the other LDA-based classifiers, especially when

the dimension p is high. It is also faster than the SVM and Logistic-L1, im-

plemented by the e1071 and glmnet packages, respectively, which are known

to be computationally efficient. In both scenarios, when p = 2000, the average

execution time is around 190 seconds for the SDA, 100 seconds for the ROAD,

20 seconds for the LPD, 3 seconds for the SVM, and 1 second for the SLDA,

but only 0.05 second for the GS-LDA. The execution time for the Logistic-L1 de-

pends on the Hessian matrix of the likelihood and the sparsity of β. In Scenario

1, when β is weakly sparse, the GS-LDA is still faster than the Logistic-L1. In

Scenario 2, when β is exactly sparse, their computational time is comparable.

This is mainly because the glmnet package only updates nonzero components of

β along its iterations. The proposed GS-LDA method thus offers a substantial

boost in computational speed over most its competitors, while rendering an ex-

cellent classification rule. In terms of variable selection performance, in Scenario

2, the GS-LDA has similar specificity to that of the ROAD and Logistic-L1, and

better sensitivity than the ROAD. However, owing to its lower sensitivity than

the Logistic-L1, the GS-LDA has slightly higher misclassification error than that

of the Logstic-L1 in this secnario. Finally, note that because the GS-LDA adds

one variable at a time, the variation of its errors can be smaller than that of other

optimization based methods, where the numbers of variables are determined by

some tuning parameters, and small changes can result in multiple new variables

being included in the classification rule. This can be seen from Figures 1 and 2.

To further investigate how many dimensions the GS-LDA method can effi-

ciently handle, we simulate two additional scenarios, where we choose µk and Σ

as follows:

Scenario 3: µ0 = 0 and µ1 = (1, . . . , 1, 0, . . . , 0)T , where the first 10 elements

are ones and the rest are zeros; Σ = Ω−1, where Ω = (ωij)p×p and ωij =√
ij{2I(i = j 6= p) + I(i = j = p)− I(|i− j| = 1)}.

Scenario 4: µ0 = 0 and µ1 = Σβ, where β = (1, . . . , 1, 0, . . . , 0)T , with the first

10 elements of β being ones and the rest being zeros; Σ is the same as in

Scenario 3.
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Figure 1. Numerical performance of the four classifiers in Scenario 1. Panel (c) is a
zoomed plot of panel (b) for the GS-LDA , SLDA, SVM, and Logistic-L1.

For each of these two scenarios, we generate 100 training samples for each of the

two classes from N(µk,Σ) and set the dimension p = 1 × 104, 3 × 104, 5 × 104,

and 1× 105. We independently generate another 400 samples for each of the two

classes as the test set. Scenarios 3 and 4 are analogues to scenarios 1 and 2: δ

is exactly sparse in Scenario 3, and β is exactly sparse in Scenario 4. Again,

we use five-fold cross-validation to choose the optimal stopping threshold for

the GS-LDA. For each scenario, we run 100 replicates. We report the average

misclassification rates and the execution time for the GS-LDA in Figures 3 and

4.

Figures 3 and 4 show that in both scenarios the GS-LDA method still per-

forms well when the dimension is ultrahigh. When the dimension p grows, the

misclassification error remains stable, and the execution time grows only moder-

ately with p. Even when p is as big as 1×105, the execution time of the GS-LDA

is only tens of seconds. In contrast, the SLDA, LPD, and ROAD cannot solve

such a problem within tens of hours. As a result, they are excluded from the

comparison in these two scenarios.
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Figure 2. Numerical performance of the four classifiers in Scenario 2. Panel (d) is a
zoomed plot of panel (c) for the GS-LDA , SLDA, SVM, and Logistic-L1.
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Figure 3. Numerical performance of the GS-LDA in Scenario 3.

6. An Application to Cancer Subtype Classification

To further illustrate the advantage of the GS-LDA method, we apply it to

microarray data for classifying cancer subtypes. This data set contains 82 breast

cancer subjects, with 41 ER-positive and 41 ER-negative. These subjects are

sequenced using the Affymetrix Human Genome U133A Array, which measures

the gene expression using 22283 probes. The raw data are available in the Gene

Expression Omnibus database with the accession name GSE22093.
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Figure 4. Numerical performance of the GS-LDA in Scenario 4.

We randomly split the data set into a training set of 60 samples and a test

set of 22 samples, repeating the random split 100 times. Each time, we learn

the GS-LDA, SLDA, ROAD, SVM, and Logistic-L1 from the training set, and

obtain their misclassification errors by applying them to the test set. The LPD

and SDA methods are excluded from this study because they cannot finish the

training within 24 hours. The tuning parameters in these methods are chosen

using five-fold cross-validation. The misclassification errors and the execution

times of these methods are summarized in Table 1.

The GS-LDA method performs well for this data set, with a mean misclas-

sification error of only 2.4%. On average, this is less than one error among the

22 samples in a testing set. This misclassification error is 47% better than that

of the SVM, 56% better than that of the ROAD, 72% better than that of the

SLDA, and equals to that of the Logistic-L1. In term of computational speed, the

GS-LDA runs for only 0.3 seconds on average, which is over 5,000 times faster

than the ROAD, over 1,000 times faster than the SLDA, over 10 times faster

than the SVM, and close to that of the Logistic-L1 on this data set.

Interestingly, we found that in the 100 splits of the data set, the GS-LDA

method frequently selected one particular variable: the expression of the ESR1

gene measured by probe “205225 at.” This variable was selected 95 times by
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Table 1. Numerical performance of the five classifiers in classifying cancer subtypes.

Methods
Misclassification Error (%)

Execution Time (s)
Lower Quartile Median Upper Quartile

GS-LDA 0 0 4.55 0.30
SLDA 4.55 9.09 13.64 355
ROAD 4.55 4.55 9.09 1576
SVM 0 4.55 5.68 3.08

Logistic-L1 0 0 4.55 0.10

the GS-LDA. It was selected first 84 times, and was the only variable selected

56 times. Iwamoto et al. (2010) defined the ER status by whether the subject’s

measured ESR1 expression using probe “205225 at” was higher than 10.18. In

other words, the true decision rule is Dtrue(x) = I(x205225 at > 10.18). We

compare the selection frequency of the GS-LDA, ROAD and Logistic-L1 over the

100 random splits; see Figure S1 in the Supplementary Material. Here, we find

that the GS-LDA selects the true “205225 at” probe much more often with fewer

false positives than the other two methods.

To further illustrate the merit of the GS-LDA method, we use all subjects,

including both the positive and the negative groups, for training; the resulting

GS-LDA rule is DGS-LDA(x) = I(x205225 at > 10.50), which is very close to how

the ER status is defined in the original study. When we train the ROAD, SLDA,

and Logistic-L1 rules using the full data, we find that they also include probe

“205225 at,” but the ROAD includes another 15 probes, the Logistic-L1 includes

another 28 probes, and the SLDA includes all probes. It is obvious that the

GS-LDA gives a rule that is much closer to the truth.

7. Discussion

We have developed an efficient greedy search algorithm for performing an

LDA with high-dimensional data. Motivated by the monotonicity property of the

Mahalanobis distance, which characterizes the Bayes error of the LDA problem,

our algorithm sequentially selects the features that produce the largest increments

of Mahalanobis distance. In other words, it sequentially selects the most infor-

mative features until no additional feature can bring enough extra information

to improve the classification. Our algorithm is computationally much more effi-

cient than existing optimization-based or thresholding methods, because it does

not need to solve an optimization problem or invert a large matrix. Indeed, it

does not even need to compute the whole covariance matrix in advance; rather,

it computes matrix elements as it goes in order to update the classification rule.
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All calculations are based on some closed-form formulae. We proved that such

an algorithm results in a GS-LDA rule that is both variable selection and error

rate consistent, under a mild distributional assumption.

In practice, our method can also be modified to yield a nonlinear classification

boundary by using nonlinear kernels or Gaussian copulas (Han, Zhao and Liu

(2013)). Our method may also be extended to a multicategory discriminant

analysis. Using similar ideas to those in Pan, Wang and Li (2016) and Mai,

Yang and Zou (2019), we can translate a multicategory problem into multiple

binary classification problems, to which our method is applicable. Finally, note

that our method requires the key assumption that the two classes have the same

covariance. If this is not the case, it becomes a quadratic discriminant analysis

(QDA) problem. The Bayes error of such a problem has a much more completed

form (Li and Shao (2015)). We leave developing an efficient algorithm to solve

the high-dimensional QDA problem as a topic for future research.

Supplementary Material

The proofs of Theorems 1–3, equation (2.3), and the supporting lemmas are

provided in the accompanying online Supplementary Material.

Acknowledgments

The authors gratefully acknowledge NIH grants R01-AG073259, R01-HL149

683, and R01-HG009974.

References

Anderson, T. W. (1962). An Introduction to Multivariate Statistical Analysis. Wiley, New York.

Avella, M., Battey, H., Fan, J. and Li, Q. (2018). Robust estimation of high dimensional covari-

ance and precision matrices. Biometrika 105, 271–284.

Beck, A. and Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear

inverse problems SIAM Journal on Imaging Sciences 2, 183–202.

Bickel, P. J. and Levina, E. (2004). Some theory for Fisher’s linear discriminant function,

naive Bayes, and some alternatives when there are many more variables than observations.

Bernoulli 10, 989–1010.

Bickel, P. J. and Levina, E. (2008a). Covariance regularization by thresholding. The Annals of

Statistics 36, 2577–2604.

Cai, T. and Liu, W. (2011). A direct estimation approach to sparse linear discriminant analysis.

Journal of the American Statistical Association 106, 1566–1577.

Candes, E. and Tao, T. (2007). The Dantzig selector: Statistical estimation when p is much

larger than n. The Annals of Statistics 35, 2313–2351.



1364 YANG, LIN AND LI

Clemmensen, L., Hastie, T., Witten, D. and Ersboll, B. (2011). Sparse discriminant analysis.

Technometrics 53, 406–413.

Fan, J., Feng, Y. and Tong, X. (2012). A ROAD to classification in high dimensional space: The

regularized optimal affine discriminant. Journal of the Royal Statistical Society: Series B

(Statistical Methodology) 74, 745–771.

Fang, K. W., Kotz, S. and Ng, K. W. (2018). Symmetric Multivariate and Related Distributions.

Chapman and Hall/CRC.

Friedman, J., Hastie, T. and Tibshirani, R. (2010). Regularization paths for generalized linear

models via coordinate descent. Journal of Statistical Software 33, 1–22.

Han, F., Zhao, T. and Liu, H. (2013). CODA: High dimensional copula discriminant analysis.

Journal of Machine Learning Research 14, 629–671.

Iwamoto, T., Bianchini, G., Booser, D., Qi, Y., Coutant, C., Shiang, C. Y.-H. et al. (2010). Gene

pathways associated with prognosis and chemotherapy sensitivity in molecular subtypes of

breast cancer. Journal of the National Cancer Institute 103, 264–272.

Li, Q. and Li, L. (2018). Integrative linear discriminant analysis with guaranteed error rate

improvement. Biometrika 105, 917–930.

Li, Q. and Shao, J. (2015). Sparse quadratic discriminant analysis for high dimensional data.

Statistica Sinica 25, 457–473.

Mai, Q., Yang, Y. and Zou, H. (2019). Multiclass sparse discriminant analysis. Statistica Sinica

29, 97–111.

Mai, Q., Zou, H. and Yuan, M. (2012). A direct approach to sparse discriminant analysis in

ultra-high dimensions. Biometrika 99, 29–42.

Pan, R., Wang, H. and Li, R. (2016). Ultrahigh-dimensional multiclass linear discriminant analy-

sis by pairwise sure independence screening. Journal of the American Statistical Association

111, 169–179.

Shao, J., Wang, Y., Deng, X. and Wang, S. (2011). Sparse linear discriminant analysis by

thresholding for high dimensional data. The Annals of Statistics 39, 1241–1265.

Witten, D. M. and Tibshirani, R. (2011). Penalized classification using Fisher’s linear discrimi-

nant. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 73, 753–

772.

Hannan Yang

Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599,

USA.

E-mail: hnyang@live.unc.edu

Danyu Lin

Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599,

USA.

E-mail: lin@bios.unc.edu

Quefeng Li

Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599,

USA.

E-mail: quefeng@email.unc.edu

(Received January 2021; accepted December 2021)

mailto:hnyang@live.unc.edu
mailto:lin@bios.unc.edu
mailto:quefeng@email.unc.edu

	Introduction
	An Efficient Greedy Search Algorithm
	Theoretical Properties
	Relaxation of the Normality Assumption
	Simulation Studies
	An Application to Cancer Subtype Classification
	Discussion

