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Abstract: The paper considers the problem of design for prediction of a deterministic

response function x over a domain T . A Bayesian approach is used, where the random

function that represents prior uncertainty about x is a stationary Gaussian stochastic

process X. Here T = f�1; 1gk, the designs considered are fractional factorials, and

the objective is to optimize the choice of design with respect to some criterion. The

structure of stationary and of isotropic processes on T is discussed, along with the

conditioning of such a process based on observation at a fractional factorial design.

There are useful regularities in this, together with workable criteria on the prediction

of interactions and on the prediction of unobserved values of the process.
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1. Introduction

We consider computer experiments in which a numerical response is asso-

ciated with the setting of k inputs or factors. As would often be the situation

with physical experiments, we are concerned with cases in which the number of

observations may not be large relative to k, which may be very large. Our view

of inference here falls into the general framework of the review paper of Sacks,

Welch, Mitchell and Wynn (1989).

The analysis will be Bayesian in that uncertainty about the response is rep-

resented by a random process on T , the set of interesting k-vector inputs. The

analysis is straightforward: for a given prior one performs an updating after

sparse observation in T , and this results in predictions of, for example, responses

at unobserved sites and uncertainty assessments about these predictions. This

approach is outlined in Currin, Mitchell, Morris and Ylvisaker (1991) and, with-

out computer experiments in the foreground, one can look back to the work of

Kimeldorf and Wahba (1970).

In fact our primary interest lies in the Bayesian design problem. Given scarce

resources, where should one observe to obtain the highest e�ciency in prediction?

The general area of Bayesian design for prediction is surveyed in Ylvisaker (1987)
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when observation is made with or without error. (We make some connection in

Section 3 between these two contexts for our set-up.) O'Hagan (1978) is an early

Bayesian design paper that invokes \nonparametric" priors in the presence of

observational error.

Speci�c design issues have been addressed in recent literature, but real an-

swers are thus far incomplete. When T is scaled to the unit cube, Latin hy-

percube samples, introduced by McKay, Conover and Beckman (1979), have

the intuitively appealing property of uniform 1-dimensional projections. Tang

(1993) has suggested designs which combine Latin hypercube and orthogonal

array structures, resulting in interesting projections in small-dimensional sub-

spaces. Morris and Mitchell (1995) have constructed designs which, with respect

to a certain criterion, are optimal for prediction within the class of designs which

are constructed as Latin hypercubes.

On the other hand, it is not clear that having a large number of values rep-

resented for each factor is necessary or even useful in computer experimentation.

Sacks et al. (1989) used a predictive integrated mean square error criterion to

generate a 16 run design, for 6 factors, which very closely resembles an irregular

2-level fraction with center point. Easterling (1989), in his review of that article,

argued for geometrically simpler designs such as fractional factorials. Johnson,

Moore and Ylvisaker (1990) developed connections between geometric and statis-

tical properties of designs. In particular, the class of \maximin distance" designs,

which includes the two-level Plackett and Burman (1943) designs, was shown to

possess a Bayesian D-optimality property for locally weak correlations.

Here we shall restrict not only designs but also inferences to T = f�1; 1gk .

Particularly when the number of observations is not large relative to k, it may

often be too much to ask that a data set support good prediction across a contin-

uum of high dimension. Early experimental considerations are more often cen-

tered in determining which factors are most important and which combinations

of them may be associated with important interactions. Even in this restricted

framework, there are no universally optimum designs - matters do depend on the

prior selected and on the criteria of e�ciency adopted.

In Section 2 we look at functions over T and at the stationary and isotropic

processes that are supported there. The structure of such processes is neatly tied

to prior independence of interactions and to relationships between interaction

variances. Though the point is not explicitly pursued here, the material in this

section is useful in setting prior processes when uncertainty about factor interac-

tions is the information most naturally elicited. Fractional factorial designs are

brought forward in Section 3 and it turns out that observing a stationary process

at such a set of runs allows a simple updating mechanism. The �nal section
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then gets closer to the actual computational problems associated with choosing a

design; there, amongst other things, we examine e�ects of the prior and the inter-

action set of interest on design selection via D-optimality for a speci�c example

of �ve factors.

The paper is rather self-contained in its theoretical outline, and much of what

appears is not really unexpected. In particular, we carry out in some detail, and

on a very speci�c space, a program that is promised success in the work of Yaglom

(1961) dealing with stationary processes on groups. In defense of this posture, a

good deal of notation is needed and there is not much extra expense in putting in

some \well-known" facts. After these details are collected, computational issues

would allow us to go on at considerable length. Nonetheless Section 4 is more for

the sake of illustrating problems that can be handled, as concrete matters are to

be addressed more fully elsewhere.

2. Preliminaries and Priors

The set of experimental \runs" is T = f�1; 1gk and the generic element

of T is t, say, with coordinates ti, i = 1; : : : ; k. There are two mathematical

ways to view T that will be useful. First of all, T forms a group under the

direct multiplication operation: st denotes the k-vector with coordinates siti. In

particular the unit element of the group is 1 and every element is self-inverse.

Secondly T is a metric space under Hamming distance: d(s; t) is the number of

coordinates in which s and t di�er; variously, one can write d(s; t) = (1=2)
P
jsi�

tij.

We make use of the collection of all mappings from T to f�1; 1g. Our

notation here goes as follows: if A is a subset of f1; : : : ; kg, let A be de�ned on

T by A(s) =
Q

j2A sj.

Now let x be a real-valued function on T and consider its ANOVA expan-

sion. The interaction term associated with a subset A of f1; : : : ; kg is �A(x) =

2�k
P
s A(s)x(s), and the order of �A is the cardinality of A. It follows that x

can be written

x(t) =
X
s

x(s) f2�k
Y
j

(1 + sjtj)g = 2�k
X
s

x(s)
X
A

A(s)A(t) =
X
A

A(t)�A(x):

(2:1)

As far as priors over the space of functions on T are concerned, (2.1) makes

clear that one can provide the joint distribution of random variables X(t) for t in

T and the joint distribution of the �'s will follow, or vice versa. This will be made

more explicit below for the priors of interest. All of our joint distributions for the

X's (equivalently �'s) will be taken to be normal and, in consequence, posterior

predictions will be linear and residual covariance will be data-independent.
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Stationary priors

Suppose X is a Gaussian process on T with mean zero. Call X stationary

provided for any m in f�1; 1gk, fZ(t)g is distributed as fX(t)g where Z(t) =

X(mt).

Proposition 2.1. X is stationary if and only if the interactions f�Ag are

independent.

Proof. Let X be stationary. Consider distinct sets A and B and, in particular,

assume j is in B and not in A. Letm have coordinates 1 with the exception of the

jth which is �1. If Z(t) = X(mt), for all t in T , one �nds that 22kE�A(X)�B(X)

is given by

E
h X

A(s)=1

X(s)�
X

A(s)=�1

X(s)
i h X

B(t)=1

X(t)�
X

B(t)=�1

X(t)
i

=E
h X

A(s)=1

Z(s)�
X

A(s)=�1

Z(s)
i h X

B(t)=1

Z(t)�
X

B(t)=�1

Z(t)
i

=E
h X

A(s)=1

X(s)�
X

A(s)=�1

X(s)
i h X

B(t)=�1

X(t)�
X

B(t)=1

X(t)
i

which is the negative of 22kE �A(X)�B(X).

Conversely, let the �'s be independent mean zero normals with variances

designated by V , indexed appropriately. From (2.1) we compute

EX(s)X(t) =
X
A

VAA(s)A(t) =
X
A

VAA(ms)A(mt) = EX(ms)X(mt)

since m2 = 1.

Here is a particular collection of stationary processes that is computation-

ally pleasant. Return to the representation at (2.1) and endow independent

�'s with variances V that depend on the particular index set as follows. Start

with a sequence of positive correlations �1, �2; : : : ; �k. Take VA = 2�k
Q

i62A(1 +

�i)
Q

i2A(1� �i) and �nd

EX(s)X(t) =
X
A

h
2�k

Y
i62A

(1 + �i)
Y
i2A

(1� �i)A(s)A(t)
i

= 2�k
Y

[(1 + �i) + (1� �i)siti] =
Y
s6=t

�i =

1

2
jsi�tijY
�i

: (2:2)

Note the nested property of the variances in this construction: since the �i
are all positive, A � B implies VB � VA. That is, higher order interaction terms

are assigned less variability by such priors.
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The correlation functions in question have a weak sense decreasing character

as well. Say that t is between s and u provided d(s;u) = d(s; t) + d(t;u). Now

with positive �'s it is easy to see that for t between s and u, Corr (X(s);X(u)) 5

Corr (X(s);X(t)).

Isotropic priors

Suppose again that X is a Gaussian process on T with mean value zero and

covariance function R. Call X isotropic provided R(s; t) = r(d(s; t)) for some

function r de�ned on f0; 1; : : : ; kg.

Proposition 2.2. The following are equivalent.

(a) X is isotropic on T with some covariance function r.

(b) (i) X is stationary.

(ii) fX(t); t in Tg is distributed as fX(�(t)); t in Tg for any permutation �

of 1; : : : ; k.

(c) The �'s are independent and VA = VjAj.

Proof. The implication from (a) to (b) is straightforward. To go from (b) to

(c), use the independence of the �'s from Proposition 2.1. According to (b) (ii),

it follows further that the variance of an interaction term depends only on the

order of that interaction.

Finally, to go from (c) to (a), represent an X as at (2.1) where the �'s are

independent normals with rth order variance Vr, say. X is then a Gaussian

process and

EX(s)X(t) = V0 + V1
X

siti + V2
X
i<j

sitisjtj + � � � + Vks1t1s2t2 � � � sktk: (2:3)

That (2.3) depends only on d(s; t) follows by �rst noting that

X
siti = n�

X
jsi � tij = n� 2d(s; t):

Successive multiplication on both sides of this last expression by
P
siti, followed

by a rearrangement of terms, will then show that each item on the right side of

(2.3) is again a function of d(s; t).

It is not so hard to characterize those functions r which can serve as covari-

ance functions of isotropic processes on f�1; 1gk . Indeed, let X be isotropic and

have covariance function r. Take A = f1; : : : ; hg, h = 0; 1; : : : ; k, and compute

that

0 � 2kVh = 2kVar(�A) = 2�k
X
s

X

t

EX(s)X(t)A(s)A(t)

= 2�k
X
s

X

t

EX(1)X(t)A(1)A(t) =
X

t

r(d(1; t))A(t)
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=
X
q�0

r(q)
X
m�0

h!=[m!(h �m)!](�1)m(k � h)!=[(q �m)!(k � h� q +m)!]: (2:4)

Clearly the conditions on r given at (2.4) are necessary for it to qualify as an

isotropic correlation function. (They can be rephrased in di�erent forms and one

of the more interesting of these makes connection with Kravchuk polynomials

(MacWilliams and Sloane (1977)). We will not trouble to spell this out further

here.) Going further, these conditions turn out to be su�cient as well, (see Letac

(1981) for example).

Proposition 2.3. A necessary and su�cient condition that there exist an

isotropic process X on f�1; 1gk with covariance function r is that (2:4) holds

for h = 0; 1; : : : ; k.

There are isotropic covariance functions r that are not decreasing on f1; : : :,

kg and so the corresponding correlations do not decrease in the weak sense de-

scribed earlier under stationary processes. This holds even if higher order inter-

actions are assigned less variability. As an example, take k = 3 with V0 = 1=2,

V1 = 1=12, V2 = 1=15 and V3 = 1=20. It follows by calculation that r(0) = 1,

r(1) = 7=15, r(2) = 2=5 and r(3) = 13=30. A decreasing r would obtain through

k = 3 if the V 's were not only decreasing but convex as well. But then with

k = 4,

r(3)� r(4) = 2V1 � 6V2 + 6V3 � 2V4 = 2(V1 � 2V2 + V3)� 2(V2 � 2V3 + V4)

and convexity is not su�cient to make this di�erence nonnegative.

It seems desirable in an isotropic prior both that correlations be decreasing

in distance and that interaction variances be decreasing as order increases. Here,

then, are conditions under which these properties obtain.

De�ne di�erence operators Dm as follows. For a sequence aj , j = 1; 2; : : : ; k,

let

Dmah =
X
j�0

ah+j(�1)
j m!=j!(m � j)! for h+m � k:

We call the sequence aj , j = 1; 2; : : : ; k, completely monotone to order q provided

Dmah � 0 for m = 0; 1; : : : ;min(q; k � h):

With this notation, we have the following proposition.

Proposition 2.4. If the interaction variances Vj, j = 0; : : : ; k, are completely

monotone to order k, then the associated isotropic process has a covariance

function that is decreasing in distance.

The proof of the proposition is rather straightforward and so is not included.
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The generic isotropic correlation function is r(d) = �d for some positive cor-

relation � (that the corresponding interaction variances are completely monotone

of all orders can be checked starting from (2.2)). The relevant class is broader for

�nite k but a family of correlations which quali�es for all k is generated by the

particular one through integration, as in r(d) =
R
�d dF (�) for some distribution

function F on [0; 1]. Henceforth, we implicitly consider only those isotropic priors

with covariance function that decrease with distance.

3. Fractional Factorials and Conditioning

We �rst bring in fractional factorials. John (1971), for example, treats these

matters more thoroughly; here we introduce only ideas and notation necessary

to support our results. We subsequently look at the problem of conditioning on

the observation of a stationary process on a fractional factorial design.

First allow that runs m1; : : : ;mq are independent if
Q

jm
ej
j = 1, ej is 0 or 1

for each j, implies ej = 0 for all j. Let W1; : : : ;Wp be p subsets of f1; 2; : : : ; kg,

called words, and let �j be the indicator function of the jth word. Words

W1; : : : ;Wp are said to be independent if the runs 2�j � 1 are independent,

j = 1; : : : ; p.

We �x p independent words and specify the fractional factorial design by the

\de�ning relation" I = W1 = � � � = Wp. This is to mean that the set of runs of

the fractional factorial is

F = fmjWv(m) = 1 for v = 1; : : : ; pg: (3:1)

Observe here that 1 is necessarily in the fraction and that F is closed with

respect to pointwise multiplication. In other words, F is a subgroup of T under

the group operation of direct multiplication. The next result provides us with

the essential information about fractional factorials { it speci�es a natural order

for the runs that will facilitate dealing with F .

Proposition 3.1. If W1; : : : ;Wp are independent words, then there are inde-

pendent runs m1; : : : ;mk�p so that

F = fmjm =
Y
j

m
ej
j ; ej(1� ej) = 0 all jg: (3:2)

A proof is not hard, and an entertaining one is available from the authors.

Throughout the rest of the section X is to be stationary on T , it has mean

zero and a covariance R. Observations on X are taken at the runs speci�ed by a

fractional factorial F .
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Begin by ordering the 2k�p runs of F according to the representation at (3.2):

m =m(q) =
Y
j

m
ej
j

is the qth run if q, written in binary notation in the usual way, is ek�pek�p�1 � � � e1,

q = 0; 1; : : : ; 2k�p � 1. Thus the ordering begins 1, m1, m2, m1m2, m3, and so

on. As things proceed, we blur over any distinction between eq as the binary

expansion of the integer q and the corresponding k � p vector with coordinates

e1; : : : ; ek�p.

Our interest lies in the 2k�p � 2k�p covariance matrix R of X at the runs in

the order now speci�ed. It has as its (i+ 1; j + 1)st entry EX(m(i))X(m(j)) =

R(ei; ej) = R(1; ei�ej), where � denotes binary addition and we are exercising

the stationarity assumption. For extra clarity,

R(ei; ej) = R

�Y
h

m
ei;h
h ;

Y
h

m
ej;h
h

�
= R

�
1;
Y
h

m
ei;h+ej;h
h

�
= R(1; ei�ej): (3:3)

In fact R has a simple spectral decomposition: we exhibit a symmetric ma-

trix E with orthogonal columns and a diagonal matrix � so that R = E�E.

Speci�cally, let E have the (i+ 1; j + 1)st entry

Ei;j = (�1)(ei;ej); (3:4)

where (ei; ej) is the ordinary inner product. Observe that E2 has (i+ 1; j + 1)st

entry X
q

(�1)(ei;eq)(�1)(ej ;eq) =
X
q

(�1)(ei�ej ;eq)

and that this sum vanishes unless ei = ej , when it is 2k�p. Thus E is symmetric

and has orthogonal columns. Next let � be the diagonal matrix with �q+1;q+1

given by

�q =
X
v

R(1; ev)(�1)
(ev;eq); q = 0; 1 : : : ; 2k�p � 1: (3:5)

After these remarks the result we want follows quickly.

Proposition 3.2. If R, E and � are given by (3:3)-(3:5), then R = E�E.

Proof. Calculate the proposed (i+ 1; j + 1)st entry of R to be

X
q

�q(�1)
(ei;eq)(�1)(eq;ej) =

X
q

hX
v

R(1; ev)(�1)
(ev;eq)

i
(�1)(ei�ej ;eq)

=
X
v

R(1; ev)
X
q

(�1)(ei�ej�ev;eq) =
X
v

R(1; ev)�i;j;v ; (3:6)
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where �i;j;v = 1 if ei�ej�ev = 0, and is 0 otherwise. But then the right side of

(3.6) is R(1; ei � ej) = R(ei; ej), the required result.

Remark 3.1. There is no harm done to the previous proposition if we take

p = 0. Thus the covariance matrices of stationary X over f�1; 1gk are simulta-

neously diagonalized. We have come at this from an unusual direction in order

to have matters set for the process restricted to F . Variously, without deliberate

construction, one resorts to the general results of Yaglom (1961) about stationary

processes on (sub)groups.

Equipped with the decomposition (note that the columns of E are not of

unit length so that � is merely proportional to the eigenvalues of the covariance

matrix) one can look, for example, at the generalized variance of the process at

sites left unobserved through a speci�c fractional factorial design. That is, one

can investigate such questions as the D- or G-optimality of fractional factorials

under various stationary priors. Set aside these direct problems for now and

consider the bene�t of the special structure evident in Proposition 3.2 when one

concentrates on the prediction of interactions, as opposed to the prediction of

unobserved values.

To see that one meets special features when contemplating interaction terms,

return to (2.1) { one has X(t) =
P

A �A(X)A(s). If X is stationary, the covari-

ance of �B(X) with the values observed at the fractional factorial F , as indexed

at (3.2), might be written as VB �B
�(ej), j = 0; 1 : : : ; 2k�p � 1, where

B
�(ej) = B

�Y
v

m
ej ;v
v

�
=
Y
v

[B(mv)]
ej ;v:

Meanwhile the (j + 1)st coordinate of the (i+ 1)st row of E is

Ei;j = (�1)(ei;ej) = (�1)�vei;vej;v =
Y
v

[(�1)ei;v ]ej;v :

Thus, the row vector of covariances of �B(X) with the observations at the 2k�p

runs of F is the ith row of E, up to the factor VB , provided

B(mv) = (�1)ei;v for v = 1; 2; : : : ; k � p: (3:7)

Moreover, (3.7) holds for some i since there are 2k�p ei's available.

We will say the subset B of f1; : : : ; kg maps to i, 0 � i � 2k�p � 1, provided

(3.7) obtains. In particular one sees that the set of 2p words generating F map to

i = 0. Going further, an argument dual to that required for Proposition 3.1 will

show that there are 2p subsets which map to i for each i. Then, using classical

language, we say interactions �A(X) and �B(X) are aliased provided A and B
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map to the same i. The e�ect of aliasing on the posterior distribution comes out

in the next result.

Proposition 3.3. If A maps to i, the posterior variance of �A(X) given obser-

vation of X on F is VA � V 2
A�

�1
i , i = 0; 1; : : : ; 2k�p � 1. If A maps to i and B

maps to j, the posterior covariance of �A(X) and �B(X) given observation of

X on F is ��i;jVAVB�
�1
i .

Proof. The result follows directly from Proposition 2.1, Proposition 3.2 and the

nature of the mapping at (3.7).

Remark 3.2. Suppose instead that one can observe a stationary process on a

fractional factorial design, but only up to an error of constant variance. The

addition of a multiple of the identity to the covariance R of the process will leave

the eigenvectors unchanged so that Propositions 3.2 and 3.3 still apply following

minor changes.

4. Fractional Factorials and Bayesian Prediction

The present section is a brief exploration of the computational problems

which are met in the choice of fractional factorial beginning from a stationary

prior, and with an eye on the posterior variability of interaction terms or process

values at unobserved sites. When one focuses attention on interaction terms,

the design criteria utilize Proposition 3.3 quite directly. They di�er from criteria

now standardly associated with the posterior prediction of unobserved values.

On the other hand, they have the advantage of connection with classical ways of

thinking about the unknown x and there can be fewer computational di�culties.

We limit the present discussion to illustrating what we have in mind rather

than aiming for any kind of completeness. A more systematic study will appear

elsewhere.

Start with an X having the simplest isotropic correlation �(d) = �d, � posi-

tive, and profess an interest in low order interactions. From (2.2), the mean (0th

order) e�ect has variance V = V0 = 2�k(1 + �)k, the main (�rst order) e�ects

have variance V1 = 2�k(1+�)k�1(1��) = �V , while the second order interactions

have variance V2 = �2V , � = (1� �)=(1 + �).

Suppose k = 5 and that the fractional factorial is to be generated by the

relation I = fA;B;Cg = fC;D;Eg, but with the freedom to determine the

assignment of numbers 1-5 to letters A-E. In particular, this design is the only

(within factor relabelings) 25�2 fractional factorial of resolution III. Let m1 =

(�1;�1; 1; 1; 1), m2 = (1; 1; 1;�1;�1), m3 = (�1; 1;�1; 1;�1) be the basic runs

of (3.2). The design matrix (with runs across rows and rows properly ordered),
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the �rst column of the covariance matrix R, the matrix E of (3.4), and the

corresponding eigenvalues (up to a factor of 32) are displayed in Table 1 (we use

� rather than constantly adjoining a 1).

Table 1

Design (A-E) R(1; �) E diag (�)

+ + + + + 1 + + + + + + + + (1 + �2)2 + 4�3

� � + + + �2 + � + � + � + � 1� �4

+ + + � � �2 + + � � + + � � 1� �4

� � + � � �4 + � � + + � � + (1� �2)2

� + � + � �3 + + + + � � � � (1 + �2)2 � 4�3

+ � � + � �3 + � + � � + � + 1� �4

� + � � + �3 + + � � � � + + 1� �4

+ � � � + �3 + � � + � + + � (1� �2)2

Consider the mean e�ect and the �ve main e�ects: A maps to 5 (the levels

down the �rst column are found in the sixth column of E), B maps to 1, C to 4,

D to 2 and E to 6, the 0th order e�ect always maps to 0. From Proposition 3.3

one �nds that posterior covariances are zero while the posterior variances are as

follows:

Var(�0jX(t); t in F ) = V � V 2=[(1 + �2)2 + 4�3];

Var(�figjX(t); t in F ) = �V � �2V 2=(1 � �4) if i is assigned to A; B; D or E;

Var(�figjX(t); t in F ) = �V � �2V 2=[(1 + �2)2 � 4�3] if i is assigned to C:

Since �4 > �1 = �2 = �5 = �6, the �nal posterior variancer is larger than the

four preceding it and any one factor thought to be of secondary interest would

be assigned to this label. However if one sets up criteria such as minimizing

the generalized variance of the �'s or minimizing the largest of the posterior

variances (perhaps weighted according to order), it is clear that factor assignment

is unimportant.

Going further with the same situation, suppose that we have equal interest

in the main e�ects but that �f1;2g also warrants attention. Without loss we can

consider the three cases of assigment: factor 1 to label A and factor 2 to label

B, C or D. In the �rst of these cases, f1; 2g and C agree with the 5th column

of E (equivalently, map to the integer 4 in our notation); in the second, f1; 2g

and B map to 1 (the second column of E); in the third, f1; 2g (alone) maps to

7. Since �7 corresponds to the smallest of the distinct eigenvalues for any � in

(0; 1), an assignment of factor 2 to labelD (equivalently E) results in the smallest
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posterior variance of �f1;2g while retaining the same set of remaining posterior

variances. The way we have structured things, the least important of the factors

3, 4 and 5 could then be assigned to C.

Retaining the context, one could formally consider D-optimality with respect

to �f1g, �f2g, �f3g, �f4g, �f5g and �f1;2g, (unnormalized by interaction order, say)

of the various assignments. This reduces to another comparison of the choices:

factors 1 to A and 2 to B; factors 1 to A and 2 to C; factors 1 to A and 2 to D. In

the �rst case f1; 2g is aliased with the factor, say 3, assigned to C; in the second

of the f1; 2g is aliased with the factor assigned to B. Calculation of determinants

then shows that the last of these assignments is preferred to the second when

� > :1552, and it is preferred to the �rst if � > :1086. Thus minimizing the

posterior variance of �f1;2g also gives the D-optimum design, but only when � is

large enough.

Bringing in a \less interesting" factor might also be accomplished at the

prior speci�cation stage. Consider assigning labels to the 25�2 design of Table

1 when the �fth factor plays the special role, and keep open the possibility that

the interaction between factors 1 and 2 might also be emphasized. Let a non-

isotropic correlation be given by R(s; t) = (�=�)(1=2)js5�t5j�d(s;t), where � > �.

Here the correlation, �, between sites which di�er only in the �fth factor is

higher than that �, gotten by changing only the jth, j 6= 5. If the �fth factor

is labelled C, the �rst column of R and the column of the �'s corresponding to

those in Table 1 are given in Table 2a; if the �fth factor is labelled E, the same

entries are in Table 2b (note that if the �fth factor is labelled A, B or D, one

merely permutes the �'s in Table 2b).

Table 2

2a: 5 as C 2b: 5 as E

R(1; �) diag (�) R(1; �) diag (�)

1 (1 + �2)2 + 4��2 1 (1 + ��)(1 + �2) + 2�2(� + �)

�2 1� �4 �2 (1 + ��)(1� �2)

�2 1� �4 �� (1� ��)(1 + �2) + 2�2(� � �)

�4 (1� �2)2 ��2 (1� ��)(1� �2)

��2 (1 + �2)2 � 4��2 ��2 (1 + ��)(1 + �2)� 2�2(� + �)

��2 1� �4 ��2 (1 + ��)(1� �2)

��2 1� �4 �3 (1� ��)(1 + �2)� 2�2(� � �)

��2 (1� �2)2 �3 (1� ��)(1� �2)

For D-optimality (minimizing the generalized variance) over the main e�ects

together with the f1; 2g interaction, we consider the following labellings: (A, B,
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C, D, E) goes on (1; 2; 5; 3; 4), (1; 3; 5; 2; 4), (1; 2; 3; 4; 5), (1; 3; 2; 4; 5), (3; 4; 1; 2; 5)

and (1; 3; 4; 2; 5). The aliasings are, by turn, f1; 2g with f5g, none, f1; 2g with

f3g, f1; 2g with f3g, f1; 2g with f5g, none. For the �rst two labellings one refers

to Table 2a for the eigenvalues, for the last four one looks to Table 2b. Finally

one computes the variance terms and, if necessary, the covariance terms from

(2.2) and Proposition 3.3.

The relevant covariance matrices are accomodating enough to be diagonal

when there is no aliasing and diagonal except for one 2 � 2 submatrix when

aliasing is present. Moreover when the comparison reduces to that of 2 � 2

subdeterminants, the algebra is simple. In particular, the second labelling is

preferred to the �rst provided Var(�f5g) = Vf5g < �4 � �7. In the present

circumstance this means

2�5(1 + �)4(1� �) < (1 + �2)2 � 4��2 � (1� �2)2:

Thus (1+�)4 < 128�2, or � > :1086. There is no dependence on � and this comes

to the same comparison as was made earlier.

Next compare the third, fourth and �fth labelling (involving aliasing) with

the last (which does not). The same type of calculations show that (1, 3, 4, 2,

5) is preferred over

(1; 2; 3; 4; 5) if Var (�f3g) = Vf3g = 2�5(1 + �)3(1� �)(1 + �) < �4 � �7;

(1; 3; 2; 4; 5) if Var (�f3g) < �1 � �7;

(3; 4; 1; 2; 5) if Var (�f5g) = Vf5g = 2�5(1 + �)4(1� �) < �6 � �7:

Generally speaking these conditions all hold, but not always, and checking

them requires more than algebraic manipulation. Accordingly, we have made a

grid search over the region 0 < � < � < 1 in order to compare all six labellings.

The sense of what results is that (1, 3, 5, 2, 4) is best for most parameter values.

It is beaten by the choice (1, 2, 5, 3, 4) when � is small. Both are beaten by

(3; 4; 1; 2; 5) when � is small, say � < :1, while (1; 3; 4; 2; 5) is best when � is large,

say � > :8.

Now leave interactions aside and concentrate on the prediction of unobserved

site values. The D-optimality problem is one of minimizing the generalized pos-

terior variance of unobserved process values or, equivalently, maximizing the

generalized variance of observed values. We take the correlation function from

(2.2) with �1 � �2 � �3 � �4 � �5, say, the design from Table 1, and the task of

labelling the factors.

From Proposition 3.2, we may content ourselves with maximizing the prod-

uct of the resulting �'s. Thus in Table 1, the entries of the R column are 1, �A�B,

�D�E, �A�B�D�E, etc., and the �'s arise as the inner product of the R column
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with the columns of E. Given speci�c choices of �'s, a computer search can be ac-

comlished over 120 possible assignments. In fact the existence of interchangeable

pairs (A;B) and (D;E) reduces consideration to 15 di�erent assignments. For

two sets of �'s, Table 3 lists the best six assignments together with the associated

determinant value. The minor altering of � values leaves the D-optimum design

unchanged, while some di�erences in the complete orderings do surface.

Table 3

�i = i=10 �i = 2i�6

C (A;B) (D;E) det (R) C (A;B) (D;E) det (R)

5 (1,4) (2,3) .9606 5 (1,4) (2,3) .9983

4 (1,5) (2,3) .9576 5 (1,3) (2,4) .9979

5 (1,3) (2,4) .9545 4 (1,5) (2,3) .9976

3 (1,5) (2,4) .9494 3 (1,5) (2,4) .9970

4 (1,3) (2,5) .9419 5 (1,2) (3,4) .9957

3 (1,4) (2,5) .9400 4 (1,3) (2,5) .9950

G-optimal designs are computationally feasible at this level of complexity

as well, but we defer a more systematic examination of this and other types of

optimality of speci�c fractional factorials to a subsequent paper.
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