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MODELING SPIKY FUNCTIONAL DATA

WITH DERIVATIVES OF SMOOTH FUNCTIONS

IN FUNCTION-ON-FUNCTION REGRESSION

Ruiyan Luo and Xin Qi

Georgia State University

Abstract: Smoothness penalties are efficient regularization and dimension reduction

tools for functional regressions. However, for spiky functional data observed on

a dense grid, the coefficient function in a functional regression can be spiky and,

hence, the smoothness regularization is inefficient and leads to over-smoothing.

We propose a novel approach to fit the function-on-function regression model by

viewing the spiky coefficient functions as derivatives of smooth auxiliary functions.

Compared with the smoothness regularization or sparsity regularization imposed

directly on the spiky coefficient function in existing methods, imposing smoothness

regularization on the smooth auxiliary functions can more efficiently reduce the

dimension and improve the performance of the fitted model. Using the estimated

smooth auxiliary functions and taking derivatives, we can fit the model and make

predictions. Simulation studies and real-data applications show that compared with

existing methods, the new method can greatly improve model performance when

the coefficient function is spiky, and performs similarly well when the coefficient

function is smooth.

Key words and phrases: Auxiliary function, derivative, function-on-function regres-

sion, smoothness regularization, spiky functional data

1. Introduction

The function-on-function (FOF) linear regression model is a useful tool for

studying the association between functional variables. The past two decades have

witnessed the development of methods to fit the FOF model for relatively smooth

functional data observed on a moderately sized grid. With the development of

technology, densely observed curves have been collected in different areas, and

usually display complex local features. For example, spectrum curves contain a

number of narrow and high peaks, whereas electroencephalography time series

curves exhibit high local variations over the entire time interval. When applying

the FOF model to these spiky curves, assuming the coefficient functions to be
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smooth is inadequate to capture the association between the complex local fea-

tures of these curves. In this study, we allow the coefficient functions to be spiky,

with various local features. Let Y (t) denote the functional response and Xj(s),

for 1 ≤ j ≤ p, denote multiple functional predictors. The FOF linear regression

model has the form

Y (t) = U(t) +

∫ 1

0
X1(s)B1(s, t)ds+ · · ·+

∫ 1

0
Xp(s)Bp(s, t)ds+ ε(t), 0 ≤ t ≤ 1,

(1.1)

where without loss of generality, we assume that the domains of Xj(s) and Y (t)

are all [0, 1] and Xj(s) have mean zero. To illustrate our idea, we first focus on

the model with a single functional predictor (p = 1),

Y (t) = U(t) +

∫ 1

0
X(s)B(s, t)ds+ ε(t). (1.2)

In most of the literature on the FOF model, such as Ramsay and Dalzell

(1991), Besse and Cardot (1996), Yao, Müller and Wang (2005), Scheipl, Staicu

and Greven (2015), Luo and Qi (2017), and the references therein, both X(s)

and Y (t) are relatively smooth, and a key assumption is that the coefficient func-

tions are smooth. These coefficient functions are estimated by a smooth basis

expansion with smoothness regularization imposed. However, for spiky functional

data, this smoothness assumption on the coefficients may not be true. Another

category of popular methods in functional data analysis (FDA) are based on

the wavelet transformation. With its ability to cope well with discontinuities or

rapid changes in functions, the wavelet expansion has been used for functional

data with sharp local features; see Zhao, Ogden and Reiss (2012) and Reiss et al.

(2015) for the scalar-on-function linear regression, and Luo, Qi and Wang (2016)

for the FOF linear regression. Typically, these methods first conduct a wavelet

transformation on the observed predictor and/or response curves, then impose

sparsity regularization in the wavelet domain, and finally transform back to the

original time domain to obtain estimates of the coefficient functions. The ma-

jor assumption of wavelet-based methods is that the wavelet coefficient vector of

B(s, t) is sparse, which implies that B(s, t) is smooth, except for a few possible

discontinuities or rapid changes (Nason (2010)). However, this sparsity assump-

tion may not be true for spiky functional data with a large number of peaks

or rapid fluctuations spread over the whole time range. Therefore, for the FOF

model with spiky functional data, both the smoothness assumption on B(s, t)

and the sparsity assumption on the wavelet coefficient vector of B(s, t) can be
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false, and hence these methods can be inefficient.

Without using the smoothness or the sparsity assumption on U(t) and B(s, t),

and in contrast to existing methods that estimate the coefficient functions di-

rectly, we introduce a new method for fitting the FOF model, where the coeffi-

cients can be spiky for densely observed functional data. We introduce a novel

viewpoint to explore the spiky data—viewing the spiky functions as certain trans-

formations of unknown smooth functions. Because it is easier and more efficient

to control the smoothness of a smoother function, we propose first estimating the

smooth functions using smooth regularization, and then obtaining estimates of

the spiky functions by taking the inverse transformation of the smooth functions.

The unknown smooth functions play the role of auxiliary variables in this method.

Here, we use the relationship between integration and differentiation, and view

the spiky coefficient functions U(t) and B(s, t) as derivatives of the smooth aux-

iliary functions denoted by µ(t) and β(s, t), respectively. We first estimate µ(t)

and β(s, t), and then, by taking derivatives, we obtain the estimates of U(t) and

B(s, t) and fit the model. Because µ(t) and β(s, t) are smooth functions, to esti-

mate them, we can impose relatively strong smoothness regularization to achieve

efficient dimension reduction.

Specifically, we write (1.2) as Y (t) = Dd2µ(t)+
∫ 1
0 X(s)Dd1

s D
d2
t β(s, t)ds+ε(t),

where D is the differential operator, Ds and Dt are the partial differential op-

erators with respect to s and t, respectively, and the non-negative integers d1
and d2 are the orders of the differential operators. The functions µ(t) and β(s, t)

satisfy the equations Dd2µ(t) = U(t) and Dd1
s D

d2
t β(s, t) = B(s, t), respectively.

When U(t) and B(s, t) are not smooth, there are d1 and d2 large enough such

that their antiderivatives, µ(t) and β(s, t), are smooth functions. Hence, we can

estimate µ(t) and β(s, t) using smoothness regularization. Specifically, let F (t) =

U(t)+
∫ 1
0 X(s)B(s, t)ds denote the true linear regression function ofX(s) in model

(1.2). We find appropriate orders d1 and d2 and smooth functions µ(t) and β(s, t),

such that the linear function F̃ (t) = Dd2µ(t) +
∫ 1
0 X(s)Dd1

s D
d2
t β(s, t)ds is a good

approximation of F (t). Different orders d1 and d2 of derivatives result in different

functions µ(t) and β(s, t). Larger values of d1 and d2 lead to smoother µ(t) and

β(s, t), which allow stronger smoothness regularization and more efficient dimen-

sion reduction. However, higher-order derivatives can increase the variations of

the estimation and reduce the performance of the fitted model. Thus in practice,

we view d1 and d2 as tuning parameters and choose them adaptively to reach a

balance. Using two different orders d1 and d2 for the partial derivatives of s and

t, respectively, we can tackle the situation when B(s, t) has different roughness

levels along the directions of s and t, respectively. The top plots in Figure 2
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illustrate the estimated B(s, t) and the estimated β(s, t) for a real spiky func-

tional data set. The top-left plot shows that the estimated B(s, t) has a rather

coarse surface with lots of spiky peaks, whereas the top-right plot exhibits a quite

smooth estimate of β(s, t).

The rest of this paper is organized as follows. In Section 2, we introduce our

method for model (1.2) with one functional predictor, study its theoretical prop-

erty, and propose algorithms for the computation. In Sections 3, we extend the

method to the general model (1.1) with multiple functional predictors. Simula-

tion studies and a real-data analysis are provided in Sections 4 and 5, respectively.

Proofs of the theorems and additional information about computational issues,

simulations, and a real-data analysis are provided in the Supplementary Material.

2. FOF Regression with One Predictor

A common approach to fitting the FOF model (1.2) is to represent B(s, t)

with basis expansions. Some methods use predetermined basis functions and rep-

resent B(s, t) as
∑K

k=1

∑K
l=1 bklηk(s)θl(t), where ηk(s) and θl(t) are prespecified

bases, such as B-spline or Fourier bases, and bkl is the corresponding expanding

coefficient (Ramsay and Silverman (2005); Scheipl, Staicu and Greven (2015)).

Some methods use data-driven basis functions. For example, Yao, Müller and

Wang (2005) and Chiou, Yang and Chen (2016), based on the functional princi-

pal component analysis (FPCA), represent B(s, t) as
∑K

k=1

∑K
l=1 bklη

X
k (s)θYl (t),

where ηXk (s) and θYl (t) are the eigenfunctions of the covariance functions of X(s)

and Y (t), respectively. Luo and Qi (2017) consider all representations of B(s, t)

of the form
∑K

k=1 ϕk(s)ζk(t), where ϕk(s) and ζk(t) can be any square inte-

grable functions. This is a large family of representations and includes the afore-

mentioned representations as special cases. For example, for the representation

based on the FPCA, let ϕFPCA
k (s) = ηXk (s) and ζFPCA

k (t) =
∑K

l=1 bklθ
Y
l (t); then,∑K

k=1

∑K
l=1 bklη

X
k (s)θYl (t) =

∑K
k=1 ϕ

FPCA
k (s)ζFPCA

k (t) is in this family. Similarly,

the tensor product basis representation
∑K

k=1

∑K
l=1 bklηk(s)θl(t) is also in this

family. Among all representations of B(s, t) of the form
∑K

k=1 ϕk(s)ζk(t), Luo

and Qi (2017) identify the optimal one for estimating the linear regression func-

tion F (t) = U(t) +
∫ 1
0 X(s)B(s, t)ds.

We do not estimate U(t) and B(s, t) directly. Instead, we find smooth func-

tions µ(t) and β(s, t) such that, based by their derivatives, the linear function

F̃ (t) = Dd2µ(t) +
∫ 1
0 X(s)Dd1

s D
d2
t β(s, t)ds is a good estimation of F (t). Because

β(s, t) is a bivariate function, we consider the large family of representations intro-

duced above. Specifically, given d1, d2, and the number K of components, among
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all possible representations of the form β(s, t) =
∑K

k=1 φk(s)ξk(t), we identify the

optimal one, denoted by β
(opt)
K (s, t) =

∑K
k=1 φ

(opt)
k (s)ξ

(opt)
k (t), such that U(t) +∫ 1

0 X(s)Dd1
s D

d2
t β

(opt)
K (s, t)ds = U(t) +

∫ 1
0 X(s){

∑K
k=1D

d1φ
(opt)
k (s)Dd2ξ

(opt)
k (t)}ds

is the best approximation to F (t) among all linear functions of the form U(t) +∫ 1
0 X(s){

∑K
k=1D

d1φk(s)D
d2ξk(t)}ds, where φk(s) and ξk(t) are arbitrary func-

tions with square integrable derivatives of the orders d1 and d2, respectively.

2.1. Optimal representation for β(s, t) for given orders d1 and d2

Given the number K of components and the orders of derivatives d1 and d2,

we call β
(opt)
K (s, t) =

∑K
k=1 φ

(opt)
k (s)ξ

(opt)
k (t) an optimal representation if {φ(opt)k (s),

ξ
(opt)
k (t) : 1 ≤ k ≤ K} solves

min
φk(s),ξk(t),
1≤k≤K

E

∫ 1

0

(
F (t)−

{
U(t) +

∫ 1

0
X(s)

K∑
k=1

Dd1φk(s)D
d2ξk(t)ds

})2

dt

 ,
(2.1)

where the objective function is the expected integrated squared approximation

error to F (t), the minimization is over all possible functions φk(s) with square

integrable derivatives of order d1 and all possible functions ξk(t) with square

integrable derivatives of order d2. Two facts about the solutions to (2.1) need

to be pointed out. First, even if B(s, t) is spiky, there always exist smooth so-

lutions to (2.1) when d1 and d2 are sufficiently large. Second, with derivatives

involved in (2.1), the solutions to (2.1) are not unique. However, for any solu-

tion {φ(opt)k (s), ξ
(opt)
k (t) : 1 ≤ k ≤ K} to (2.1), U(t) +

∫ 1
0 X(s)

∑K
k=1D

d1φ
(opt)
k (s)

Dd2ξ
(opt)
k (t)ds provides the best approximation to F (t), as defined in (2.1). Using

these two facts, we estimate a smooth solution to (2.1) by imposing a smooth-

ness penalty. The following theorem provides a characterization of the solution

to (2.1) that leads to our estimation approach.

Theorem 1. Let φ
(opt)
k (s) and ξ

(opt)
k (t), for 1 ≤ k ≤ K, be any solution to (2.1).

(a). The functions φ
(opt)
k (s) are solutions to the following sequential optimization

problems:

max
φ

∫ 1

0

∫ 1

0
Dd1φ(s)B(s, s′)Dd1φ(s′)dsds′, (2.2)

s.t.

∫ 1

0

∫ 1

0
Dd1φ(s)Σ(s, s′)Dd1φ(s′)dsds′ = 1,

and

∫ 1

0

∫ 1

0
Dd1φ(s)Σ(s, s′)Dd1φ

(opt)
l (s′)dsds′ = 0 for all 1 ≤ l ≤ k − 1,
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where B(s, s′)=
∫ 1
0 E [X(s)F (t)] E [F (t)X(s′)] dt and Σ(s, s′)=E[X(s)X(s′)]

is the covariance function of X(s).

(b). As K → ∞, U(t) +
∫ 1
0 X(s)

∑K
k=1D

d1φ
(opt)
k (s)Dd2ξ

(opt)
k (t)ds converges to

F (t) in terms of the mean integrated squared error.

Based on Theorem 1 (a), we propose a sample version of the optimization

problem (2.2) with a smoothness penalty to obtain smooth estimates φ̂k(s). To

estimate the functions ξk(t), by Theorem 1 (b), for a sufficiently large K, we have

Y (t) = F (t) + ε(t) ≈ U(t) +

∫ 1

0
X(s)

K∑
k=1

Dd1φ
(opt)
k (s)Dd2ξ

(opt)
k (t)ds+ ε(t),

= Dd2µ(t) +

K∑
k=1

ZkD
d2ξ

(opt)
k (t) + ε(t), (2.3)

where Zk =
∫ 1
0 X(s)Dd1φ

(opt)
k (s)ds is a scalar random variable, and we take U(t) =

Dd2µ(t) so that µ(t) is smooth for a sufficiently large d2. With the estimates φ̂k(s),

we can estimate the values of Zk for different samples. Then, motivated by (2.3),

we propose a penalized least squares approach with a smoothness penalty to

obtain the smooth estimates µ̂(t) and ξ̂k(t), for 1 ≤ k ≤ K. We provide details

of our estimation procedure in the following section.

2.2. Estimation procedure

Let {Xi(s), Yi(t) : 1 ≤ i ≤ n} be a set of independent observations from

model (1.2). Let Y (t) =
∑n

i=1 Yi(t)/n and X(s) =
∑n

i=1Xi(s)/n denote their

mean curves. We propose a two-step procedure to estimate the smooth functions

{φ̂k(s) : 1 ≤ k ≤ K}, µ̂(t), and {ξ̂k(t) : 1 ≤ k ≤ K}. First, we estimate {φ̂k(s)}
sequentially by solving a sample version of the optimization problem (2.2) with

smoothness regularization. Second, we propose a penalized least squares problem

with a smoothness penalty to estimate µ̂(t) and {ξ̂k(t)}.
To get φ̂k(s), note that B(s, s′) and Σ(s, s′) in (2.2) can be estimated by

B̂(s, s′) =
1

n2

n∑
i=1

n∑
j=1

{Xi(s)−X(s)}
[∫ 1

0
{Yi(t)− Y (t)}{Yj(t)− Y (t)}dt

]
{Xj(s

′)−X(s′)},

Σ̂(s, s′) =
1

n

n∑
i=1

{Xi(s)−X(s)}{Xi(s
′)−X(s′)}. (2.4)
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Then, we propose obtaining the estimates φ̂k(s) by sequentially solving the

optimization problem

max
φ

∫ 1
0

∫ 1
0 D

d1φ(s)B̂(s, s′)Dd1φ(s′)dsds′∫ 1
0

∫ 1
0 D

d1φ(s)Σ̂(s, s′)Dd1φ(s′)dsds′ + λ
[∫ 1

0 φ(s)2ds+ τ
∫ 1
0 {D2φ(s)}2ds

] ,
s.t.

∫ 1

0

∫ 1

0
Dd1φ(s)Σ̂(s, s′)Dd1φ(s′)dsds′ = 1, (2.5)

and

∫ 1

0

∫ 1

0
Dd1 φ̂l(s)Σ̂(s, s′)Dd1φ(s′)dsds′ = 0, for all 1 ≤ l < k.

Problem (2.5) is a penalized sample version of (2.2) by noting that the objective

function of (2.2) can be written as∫ 1
0

∫ 1
0 D

d1φ(s)B(s, s′)Dd1φ(s′)dsds′∫ 1
0

∫ 1
0 D

d1φ(s)Σ(s, s′)Dd1φ(s′)dsds′
,

owing to the first constraint
∫ 1
0

∫ 1
0 D

d1φ(s)Σ(s, s′)Dd1φ(s′)dsds′ = 1 in (2.2). In

the denominator of the objective function in (2.5), we add the penalty λ[
∫ 1
0 φ(s)2ds

+ τ
∫ 1
0 {D

2φ(s)}2ds], which consists of two parts. The first part,
∫ 1
0 φ(s)2ds, con-

trols the magnitude of the estimated function φ̂k(s) in the L2-norm, and guar-

antees the uniqueness of the solution to (2.5). Indeed, without this term, the

solution to (2.5) is not unique when d1 > 0, because adding a scalar constant

to a solution does not change its derivative and the obtained function is still a

solution to (2.5). Hence, the first part in the penalty can reduce the estimate

variation and improve the performance of the fitted model. The second part,∫ 1
0 {D

2φ(s)}2ds, controls the smoothness of φ̂k(s). A more detailed discussion on

the effect of this smoothness penalty is provided after Theorem 2 in Section 2.

With the estimates φ̂1(s), . . . , φ̂K(s), we next calculate the estimates µ̂(t)

and {ξ̂k(t)} using a penalized least squares approach motivated by (2.3). Let

zik =
∫ 1
0 {Xi(s) − X(s)}Dd1φ

(opt)
k (s)ds denote the ith centered sample value of

the random variable Zk =
∫ 1
0 X(s)Dd1φ

(opt)
k (s)ds defined in (2.3), and ẑik =∫ 1

0 {Xi(s) −X(s)}Dd1 φ̂k(s)ds denote its estimate for 1 ≤ i ≤ n and 1 ≤ k ≤ K.

By (2.3), we regress Yi(t) on {ẑik : 1 ≤ k ≤ K} to calculate µ̂(t) and {ξ̂k(t)} by

solving the penalized least squares problem

min
µ(t),

ξ1(t),...,ξK(t)

 1

n

n∑
i=1

∫ 1

0

{
Yi(t)−Dd2µ(t)−

K∑
k=1

ẑikD
d2ξk(t)

}2

dt
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+κ

∫ 1

0
{D2µ(t)}2dt+ κ

K∑
k=1

∫ 1

0
{D2ξk(t)}2dt

]
. (2.6)

The first term in the objective function of (2.6) is the mean integrated squared

residuals and the other terms are smoothness penalties.

Using µ̂(t) and {φ̂k(s), ξ̂k(t) : 1 ≤ k ≤ K}, we can calculate the following

estimates:

β̂(s, t) =

K∑
k=1

φ̂k(s)ξ̂k(t), B̂(s, t) =

K∑
k=1

Dd1
s φ̂k(s)D

d2
t ξ̂k(t),

F̂ (t) = Dd2 µ̂(t) +

∫ 1

0
X(s)Dd1

s D
d2
t β̂(s, t)ds.

Given a new observed predictor curve Xnew(s), we predict the response curve as

Ypred(t) = Dd2 µ̂(t) +

∫ 1

0
Xnew(s)Dd1

s D
d2
t β̂(s, t)ds. (2.7)

Designed to fit the FOF model, this method shares some similarities with

Luo and Qi (2017) in that both methods express B(s, t) as the sum of prod-

ucts of separate functions of s and t. Both try to find the optimal expansions

by minimizing the mean squared error ((2.1) in this paper and (2.2) in Luo

and Qi (2017)), which can be characterized similarly as generalized eigenvalue

problems. However, there are several key differences. First, we consider the

FOF model for spiky functional data, and hence do not assume that B(s, t) is

smooth. However, Luo and Qi (2017) is tailored for smooth functional data and

makes a smoothness assumption on B(s, t), which is essential for its two ma-

jor estimation steps. The method in Luo and Qi (2017) can be inefficient for

spiky functional data, as illustrated in the simulations and real-data analysis in

Sections 4 and 5, respectively. Second, let B(opt)(s, t) =
∑K

k=1 ϕ
(opt)
k (s)ζ

(opt)
k (t)

denote the optimal decomposition with K components (note that the notation

in Luo and Qi (2017) is different). With the smoothness assumption on B(s, t),

which implies that the component functions ϕ
(opt)
k (s) and ζ

(opt)
k (t) in the optimal

decomposition B(opt)(s, t) are also smooth, Luo and Qi (2017) identify the optimal

decomposition in the set S1 = {
∑K

k=1 ϕk(s)ζk(t) : ϕk(s) and ζk(t) are smooth}
and impose smooth penalties on ϕ

(opt)
k (s) and ζ

(opt)
k (t) directly. However, be-

cause B(s, t) can be spiky in this study, ϕ
(opt)
k (s) and ζ

(opt)
k (t) may not be

smooth, and the approach in Luo and Qi (2017) may not be applicable. In-

stead, we identify B(opt)(s, t) =
∑K

k=1D
d1φ

(opt)
k (s)Dd2ξ

(opt)
k (t) from the set S2 =
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{
∑K

k=1D
d1φk(s)D

d2ξk(t) : φk(s) and ξk(t) are smooth}, which is much larger

than S1 and includes both smooth functions and nonsmooth functions. This

avoids the smoothness assumption on B(s, t), but we can still use the smooth

regularity on φk(s) and ξk(t) to efficiently reduce the dimension. Third, the

optimization problems characterizing the component functions of the optimal de-

composition are different. The generalized eigenvalue problem (2.2) characterizes

the antiderivatives φ
(opt)
k (s) with the derivative operator Dd1 involved, whereas

the generalized eigenvalue problem in Luo and Qi (2017) characterizes ϕ
(opt)
k (s)

without any derivative operator involved. Fourth, the asymptotic results in Luo

and Qi (2017) essentially rely on the smoothness assumption of B(s, t). Our

asymptotic results do not need this assumption, and can be applied to more

general situations. Even in some cases where the asymptotic results in Luo and

Qi (2017) are applicable, the theorem presented here can provide smaller upper

bounds. Details are given in Section 2.3.

2.3. Asymptotic results

Luo and Qi (2017) provide the asymptotic results for the estimation of F (t)

and the prediction error under the assumption that the optimal decomposition

B(opt)(s, t) =
∑K

k=1 ϕ
(opt)
k (s)ζ

(opt)
k (t) of B(s, t) is smooth, and the results depend

on the second derivatives of ϕ
(opt)
k (s) and ζ

(opt)
k (t). For spiky functional data, the

smooth assumption and the asymptotic results in Luo and Qi (2017) may not

hold. Hence, we need to study the asymptotic properties of the proposed method

for spiky data without the smoothness assumption on B(s, t), and provide results

that do not depend on the derivatives of ϕ
(opt)
k (s) and ζ

(opt)
k (t).

For the ith sample predictive curve Xi(s), let Fi(t) = U(t)+
∫ 1
0 Xi(s)B(s, t)ds

be the corresponding sample curve of F (t), for 1 ≤ i ≤ n, and define the vector

F(t) = (F1(t), . . . , Fn(t))T. Let F̂(t) = (F̂1(t), . . . , F̂n(t))T denote the estimate

of F(t), where F̂i(t) = Dd2 µ̂(t) +
∑K

k=1

∫ 1
0 Xi(s)D

d1
s φ̂k(s)D

d2
t ξ̂k(t)ds, and µ̂(t),

φ̂k(s), and ξ̂k(t) are the estimates described in Section 2.2. We provide the

convergence rate of the estimation error F̂(t)−F(t). In addition, let Xnew(s) be

a new observed predictor curve and Ynew(t) be the corresponding response curve.

This new observation is independent of the data {Xi(s), Yi(t) : 1 ≤ i ≤ n} used

for the estimation. Let Ŷpred(t) = Dd2 µ̂(t)+
∑K

k=1

∫ 1
0 Xnew(s)Dd1

s φ̂k(s)D
d2
t ξ̂k(t)ds

be the predicted response in our approach. We provide an upper bound for the

prediction error Ŷpred(t)− Ynew(t).

Let ‖ · ‖ denote the L2-norm of a function and ‖ · ‖2 denote the l2-norm of a

vector. Let σ2k denote the maximum value of the optimization problem (2.2) in
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Theorem 1, and σ̂2k denote the maximum value of the optimization problem (2.5)

in our estimation procedure, for 1 ≤ k ≤ K. We assume the following regularity

condition that is commonly used in FDA, such as Yao, Müller and Wang (2005)

and Delaigle and Hall (2012), among others.

Condition 1. E[‖X‖4] <∞, E[‖ε‖2] <∞, and σ21 > · · · > σ2K > 0.

With derivatives involved in the definition (2.1) of the optimal representation,

φ
(opt)
k (s) and ξ

(opt)
k (t) are not uniquely defined. In the following Condition 2, we

assume there exists at least one set of φ
(opt)
k (s) and ξ

(opt)
k (t) that are smooth.

Condition 2. There exist a set of φ
(opt)
k (s) and ξ

(opt)
k (t), for 1 ≤ k ≤ K, such

that ‖D2φ
(opt)
k ‖ <∞ and ‖D2ξ

(opt)
k ‖ <∞.

In the following theorem, we arbitrarily choose and fix a set of φ
(opt)
k (s) and

ξ
(opt)
k (t) satisfying Condition 2. The different choice of φ

(opt)
k (s) and ξ

(opt)
k (t) does

not affect the convergence rates provided in the theorem, but does affect the

multiplication constants in these convergence rates.

Theorem 2. Under Conditions 1 and 2 and for 0 ≤ d1 ≤ 2, if we choose

λ = C/
√
n, cτ ≤ τ ≤ Cτ , and κ = Cκ/

√
n, where C and Cκ are sufficiently large

constants, 0 < cτ < Cτ , and all these constants do not depend on n, then for any

ε > 0 and any n, there exists an event Ωn,ε with P (Ωn,ε) > 1 − ε, such that in

Ωn,ε, we have

‖φ̂k‖2 ≤ Hk,1, ‖D2φ̂k‖2 ≤ Hk,2, ‖Dd1 φ̂k‖2 ≤ Hk,d1 , (2.8)

|σ̂2k − σ2k| ≤
Hk,3√
n
, ‖Dd2 µ̂− U‖2 ≤ H0√

n
, ‖Dd2 ξ̂k −Dd2ξ

(opt)
k ‖2 ≤

Hk,5√
n
, (2.9)

1

n

∫ 1

0
‖F̂(t)− F(t)‖22dt ≤

MK√
n

+ 2

∞∑
k=K+1

σ2k, (2.10)

E

[
‖Ŷpred − Ynew‖2

∣∣∣∣Xi(s), Yi(t), 1 ≤ i ≤ n
]
≤ MK√

n
+ 2

∞∑
k=K+1

σ2k + E
[
‖ε‖2

]
,

(2.11)

for all n ≥ n0(ε), where n0(ε), H0, Hk,i, and MK are all constants depending

only on ε, C, Cκ, cτ , Cτ , σ2k, ‖φ(opt)k ‖, ‖D2φ
(opt)
k ‖, ‖ξ(opt)k ‖, and ‖D2ξ

(opt)
k ‖, for

1 ≤ k ≤ K, and not depending on n.

The condition 0 ≤ d1 ≤ 2 stems from the penalties in (2.5) and offers practical

guidance in choosing d1. It guarantees that the norm of Dd1 φ̂k is bounded as
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n→∞. Indeed, with penalties imposed on ‖φ‖2 and ‖D2φ‖2 in the optimization

problem (2.5), we can bound ‖φ̂k‖2 and ‖D2φ̂k‖2 when n→∞, as shown in the

first two inequalities in (2.8). Based on the Gagliardo–Nirenberg interpolation

inequality, if 0 ≤ d1 ≤ 2, the norm of Dd1 φ̂k can also be bounded as n → ∞,

which is shown in the third inequality in (2.8). This, together with the third

inequality in (2.9), leads to the boundedness of the norm of B̂(s, t) as n → ∞,

which is necessary for the good performance of our method in both theory and

practice. Thus, in our algorithm, we choose d1 from {0, 1, 2}. If one wants to

consider a candidate value of d1 larger than two, one needs to replace the second

derivative in the penalty term τ
∫ 1
0 {D

2φ(s)}2ds with a derivative of order at least

as high as the upper bound of d1. For example, if we want to consider 0 ≤ d1 ≤ 4,

we need to replace the penalty term by τ
∫ 1
0 {D

4φ(s)}2ds, and then obtain similar

results to those in Theorem 2.

In the proof of Theorem 2, we obtain the following upper bound ((S1.21) in

Section S1.2 of the Supplementary Material) when n is large:

‖D2φ̂1‖2 ≤
1

τ

(c0c1
C

+ 1
)
‖φ(opt)1 ‖2 +

(c0c2
τC

+ 1
)
‖D2φ

(opt)
1 ‖2, (2.12)

where c0, c1, c2, and C are constants not depending on n and the choice of

φ
(opt)
1 (s). The inequality (2.12) holds for any choice of φ

(opt)
1 (s). With a rel-

atively large τ , the first term and c0c2/(τC) can be small, and ‖D2φ̂1‖2 has

almost the same or smaller magnitude than ‖D2φ
(opt)
1 ‖2. Therefore, the estimate

φ̂1(s) can have at least the same smoothness level as the smoothest choice of

φ
(opt)
1 (s). Similar results hold for φ̂k(s) with k > 1. At the same time, (2.10)

shows that the estimated regression function is close to the true regression func-

tion F (t). Therefore, for models with spiky coefficient functions, unlike existing

methods, which are prone to over-smoothing, our method can impose relatively

strong smoothness regularization on the smooth auxiliary functions, and at the

same time, have good model estimation and prediction.

The upper bound of the mean integrated error of F̂(t) in (2.10) consists of

two terms. The first is from the estimation error and the second is the truncation

error when we estimate only the first K terms in the optimal representation.

With an increase of K, the truncation error decreases, but the estimation error

increases because more terms are estimated. A proper choice of K balances

these two types of errors. The upper bound of the prediction error (2.11) has

an additional term, owing to the noise in the new response function. The first

inequality in (2.9) shows that σ̂2k is a good estimate of σ2k, which we use to choose

the number of components K in Section 2.4.3. The second inequality in (2.9)
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shows that Dd2 µ̂ is a good estimate of the intercept function U in the FOF model

(1.2).

To compare the asymptotic results in Theorem 2 with those in Luo and

Qi (2017), recall that B
(opt)
K (s, t) =

∑K
k=1 ϕ

(opt)
k (s)ζ

(opt)
k (t) denotes the optimal

decomposition of B(s, t) with K components, and β
(opt)
K (s, t) =

∑K
k=1 φ

(opt)
k (s)

ξ
(opt)
k (t) is the solution to the optimization problem (2.1). From (2.1) and the

equation (2.2) in Luo and Qi (2017), we have the following relationships:

Dd1φ
(opt)
k (s) = ϕ

(opt)
k (s), Dd2ξ

(opt)
k (t) = ζ

(opt)
k (t), 1 ≤ k ≤ K. (2.13)

Although Theorem 2 provides similar asymptotic convergence rates for F̂(t) and

the prediction error to those in Theorem 3(a) of Luo and Qi (2017), they have the

following important differences. First, Condition 2 and (2.13) imply that, in this

study, ϕ
(opt)
k (s) and ζ

(opt)
k (t) are only required to belong to the Sobolev space W 1

when d1 = d2 = 1, and belong to the L2 space when d1 = d2 = 2. In Luo and Qi

(2017), ϕ
(opt)
k (s) and ζ

(opt)
k (t) are required to belong to the Sobolev space W 2. It

is well known that W 2 ⊂W 1 ⊂ L2 by the Sobolev embedding theorem (Theorem

4.12 in Adams and Fournier (2003)), and the L2 space is much larger than the W 2

space. Hence, the asymptotic results presented here cover much wider situations

than those in Luo and Qi (2017). In particular, when d1 = d2 = 2 (ϕ
(opt)
k (s) and

ζ
(opt)
k (t) belong to L2), we do not impose any smooth assumptions on B

(opt)
K (s, t)

and, hence, the asymptotic results can be applied to any linear models with spiky

coefficient surfaces. Second, the upper bounds for the estimation error of F (t) and

the prediction error can be lower in Theorem 2 than those in Luo and Qi (2017),

even though they have the same convergence rates, because the multiplicative

constants for these convergence rates are different in these two works. In Theorem

2 of this study, the constant MK depends on and increases with ‖D2φ
(opt)
k ‖ and

‖D2ξ
(opt)
k ‖, and in Theorem 3 of Luo and Qi (2017), the corresponding constant

depends on and increases with ‖D2ϕ
(opt)
k ‖ and ‖D2ζ

(opt)
k ‖. To show the difference,

we take the case d1 = d2 = 2 as an example. By (2.13), the constant MK in

Theorem 2 increases with ‖D2φ
(opt)
k ‖ = ‖ϕ(opt)

k ‖ and ‖D2ξ
(opt)
k ‖ = ‖ζ(opt)k ‖. For

spiky data, ϕ
(opt)
k and ζ

(opt)
k can be spiky, and ‖D2ϕ

(opt)
k ‖ and ‖D2ζ

(opt)
k ‖ may not

exist. Then in this case, the convergence rates in Luo and Qi (2017) no longer

hold. Even if ‖D2ϕ
(opt)
k ‖ and ‖D2ζ

(opt)
k ‖ exist, their values will be large for spiky

ϕ
(opt)
k and ζ

(opt)
k . Hence in this situation, the upper bounds in Theorem 3 of Luo

and Qi (2017) can be much larger than those in Theorem 2.
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2.4. Computation

2.4.1. Solving (2.5)

To solve the optimization problem (2.5), we represent the function φ(s) using

a basis expansion. Let Γ(s) = (b1(s), . . . , bM (s))T be the vector of M basis

functions of s. We use B-spline basis functions with equally spaced knots. We

represent φ(s) = aTΓ(s), where a is the M -dimensional vector of expansion

coefficients, and convert (2.5) to an optimization problem of a as follows. We

first consider the objective function of (2.5). The numerator can be expressed as∫ 1

0

∫ 1

0
Dd1φ(s)B̂(s, s′)Dd1φ(s′)dsds′ = aTΞa, (2.14)

where Ξ =
∫ 1
0

∫ 1
0 D

d1Γ(s)B̂(s, s′)Dd1Γ(s′)Tdsds′ is an M ×M nonnegative def-

inite symmetric matrix, and Dd1Γ(s) is an M -dimensional vector of the d1th

derivatives of M basis functions in Γ(s). The first term in the denominator of

the objective function in (2.5) can be expressed as∫ 1

0

∫ 1

0
Dd1φ(s)Σ̂(s, s′)Dd1φ(s′)dsds′ = aTHa, (2.15)

where H =
∫ 1
0

∫ 1
0 D

d1Γ(s)Σ̂(s, s′)Dd1Γ(s′)Tdsds′ is an M ×M nonnegative def-

inite symmetric matrix. The penalty term in the denominator of the objective

function can be expressed as∫ 1

0
φ(s)2ds+ τ

∫ 1

0
{D2φ(s)}2ds = aT(J0 + τJ2)a, (2.16)

where J0 =
∫ 1
0 Γ(s)Γ(s)Tds and J2 =

∫ 1
0 D

2Γ(s)D2Γ(s)Tds are M ×M nonneg-

ative definite symmetric matrices. By (2.14)–(2.16), the optimization problem

(2.5) can be converted to the following sequential optimization problem of a.

Suppose that we have the solutions of the first k − 1 optimization problems,

denoted by âl, for 1 ≤ l ≤ k − 1. Then the kth problem is

max
0 6=a∈RM

aTΞa

aTQa
, subject to aTHa = 1, âT

l Ha = 0 for 1 ≤ l ≤ k − 1,

(2.17)

where Q = H + λ(J0 + τJ2) is an M ×M positive definite symmetric matrix.

When k = 1, we have only the constraint aTHa = 1. The details for solving

(2.17) are given in Section S2.1 of the Supplementary Material. Let âk denote
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the solution to (2.17). Then, we have the estimated function φ̂k(s) = âT
kΓ(s) and

Dd1 φ̂k(s) = âT
kD

d1Γ(s).

2.4.2. Solving (2.6)

To solve (2.6), we represent µ(t) and {ξk(t)} by basis expansions. Let Π(t) =

(d1(t), . . . , dL(t))T be a vector of L basis functions of t. Let µ(t) = bT
0 Π(t)

and ξk(t) = bT
kΠ(t), for 1 ≤ k ≤ K, where the coefficient vectors bk are L-

dimensional. Then, (2.6) can be converted to

min
b0,...,bK

 1

n

n∑
i=1

∫ 1

0

{
Yi(t)− bT

0D
d2Π(t)−

K∑
k=1

ẑikb
T
kD

d2Π(t)

}2

dt

+κ

∫ 1

0
{bT

0D
d2Π(t)}2dt+ κ

K∑
k=1

∫ 1

0
{bT

kD
d2Π(t)}2dt

]
, (2.18)

which is a convex quadratic optimization problem of {bk : 0 ≤ k ≤ K}. The

explicit solution is given in Section S2.2 of the Supplementary Material.

2.4.3. Choice of tuning parameters and the number of components

In addition to the tuning parameters λ, τ , and κ in the optimization prob-

lems (2.5) and (2.6), we also need to determine the two orders d1 and d2 of the

derivatives, the number K of components, and the number of basis functions. We

first consider the choice of the number of basis functions. Then, by viewing d1,

d2, and K as tuning parameters, we propose a cross-validation (CV) procedure

to choose λ, τ , κ, d1, d2, and K, simultaneously.

To capture the complicated local features in densely observed spiky func-

tional data, we usually need a large number of basis functions. We choose the

(default) number of B-spline basis functions in Γ(s) and Π(t) equal to the number

of observation time points in Xi(s) and Yi(t), respectively. For highly spiky co-

efficient functions in our simulations, we found that when we reduce the number

of basis functions from the default value, the prediction errors increase quickly.

On the other hand, when the number of basis functions is increased from our

default value, the prediction errors remain the same or slightly improve. For rel-

atively smooth coefficient functions, the number of basis functions can be greatly

reduced without impairing the predictive performance of our approach. However,

because the smoothness level of the coefficient function is unknown in practice,

we propose the above default number of basis functions to achieve good predictive

performance and computational efficiency.

As discussed after Theorem 2, d1 cannot exceed the order of the deriva-
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tive used in the smoothness penalty. Because we use
∫ 1
0 {D

2φ(s)}2ds as the

smoothness penalty in (2.5), we choose d1 from {0, 1, 2}. Similarly, we choose d2
from {0, 1, 2}. To take such order derivatives, we need to choose B-spline func-

tions with continuous derivatives up to order two, that is, cubic or higher order

splines. Our empirical studies did not find a significant improvement in perfor-

mance using higher order B-splines than cubic splines, so we use cubic splines in

our implementation.

Algorithm 1 : CV algorithm

1: • Partition n samples into five CV sets with roughly the same sizes. The vth

validation set includes {X(valid)
j (s), Y

(valid)
j (t) : 1 ≤ j ≤ Nv} with size Nv, 1 ≤

v ≤ 5.
2: for 1 ≤ ` ≤ L do
3: • Based on (2.19), use all the data to calculate the upper bound K̂`

upp, which

depends on the tuning parameters.
4: for 1 ≤ v ≤ 5 do
5: • Use the training set to calculate φ̂v,k,`(s), µ̂v,`(t), and ξ̂v,k,`(t) for 1 ≤

k ≤ K̂`
upp.

6: for 1 ≤ k ≤ K̂`
upp do

7: • Use the first k components and the formula (2.7) to get the predicted

response, denoted by Y
(pred)
j,k,` (t), for X

(valid)
j (s) in the vth validation set,

for 1 ≤ j ≤ Nv.

8: • Calculate the CV error ev,k,` =
∑Nv

j=1 ‖Y
(pred)
j,k,` − Y (valid)

j ‖2.

9: • Calculate the total CV error etotal,k,` =
∑5

v=1 ev,k,`, for 1 ≤ k ≤ K̂upp.

10: • Let e`min = min1≤k≤K̂`
upp

etotal,k,` and K`
opt = argmin1≤k≤K̂`

upp
etotal,k,` be

the minimum CV error and the corresponding optimal number of components,
respectively, for the `th combination of the candidate values of λ, τ , κ, d1,
and d2.

11: • Let `opt = argmin1≤`≤L e
`
min, which indexes the optimal combination of the

tuning parameters λ, τ , κ, d1, and d2. Then, K
`opt
opt gives the optimal number of

components.

We next propose a CV procedure to determine all the tuning parameters.

We choose λ and κ from {10−10, 10−8, 10−6, 10−4, 10−2, 1, 102}, choose τ , the

ratio of the penalty on ‖D2φ‖2 and ‖φ‖2, from {10−3, 10−1, 10, 103}, and choose

d1 and d2 from {0, 1, 2}. Twice denser grids for λ and κ and a three times

denser grid for τ in a larger range do not lead to an obvious improvement of the

prediction in our simulation. The number K of components can be any positive

integer, but in practice, we need to determine an upper bound K̂upp and choose K

from {1, 2, . . . , K̂upp}. The calculation of K̂upp is motivated by the upper bound
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in (2.10) of the estimation error of the regression function, where the second

part, 2
∑∞

k=K+1 σ
2
k, is due to truncation after K terms in the optimal expansion.

When K is sufficiently large, this part will be small and the upper bound will be

dominated by the first term, which is due to the estimation error and increases

with K. Then, it is unnecessary to explore larger K. Thus, we choose K̂upp such

that
∑∞

k=K̂upp+1
σ2k is sufficiently small. Because σ̂2k is an estimate of σ2k, as shown

in Theorem 2, we determine K̂upp as

K̂upp = min

{
K :

σ̂2K
σ̂21 + · · ·+ σ̂2K

< 0.001

}
, (2.19)

which is the first K such that σ̂2K only accounts for 0.1% of the accumulated sum∑K
k=1 σ̂

2
k.

We use a five-fold CV procedure (Algorithm 1) to choose the tuning parame-

ters, where L denotes the number of all possible combinations of candidate values

of λ, τ , κ, d1, and d2.

3. FOF Regression with Multiple Predictors

To generalize our approach to the FOF model with multiple functional pre-

dictors, we consider smooth auxiliary functions µ(t) and βj(s, t), for 1 ≤ j ≤ p,

such that U(t) = Dd2µ(t) and Bj(s, t) = Dd1
s D

d2
t βj(s, t), where d1 and d2 are

nonnegative integers. Moreover, we will consider all representations for βj(s, t)

of the form
∑K

k=1 φkj(s)ξk(t), for 1 ≤ j ≤ p, and identify the optimal one in ap-

proximating the linear regression function F (t) = U(t)+
∑p

j=1

∫ 1
0 Xj(s)Bj(s, t)ds.

We consider all representations for βj(s, t) of the form
∑K

k=1 φkj(s)ξk(t), for

1 ≤ j ≤ p, rather than the more general form
∑K

k=1 φkj(s)ξkj(t), where given

k, ξkj(t) can be different for different j, for the following reasons. First, the

expansion
∑K

k=1 φkj(s)ξkj(t) involves far more functions than
∑K

k=1 φkj(s)ξk(t),

for 1 ≤ j ≤ K, and hence may require many constraints (e.g., the orthogonal-

ity of ξkj(t)) to ensure the stability of the estimation. This will increase the

difficulty and error of the estimation. Second, with the form
∑K

k=1 φkj(s)ξk(t),

we can characterize the optimal expansion using optimization problems similar

to those in Theorem 1, which lead to an efficient estimate procedure. However,

there is no convenient characterization for the optimal expansion of the form∑K
k=1 φkj(s)ξkj(t). Third, when K is sufficiently large, the approximation error

of the optimal expansion of the form
∑K

k=1 φkj(s)ξk(t), for 1 ≤ j ≤ p, is small,

and the benefit of considering the more general expansion form
∑K

k=1 φkj(s)ξkj(t),

for 1 ≤ j ≤ p, is limited.
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We take the same order partial derivatives, Dd1
s D

d2
t , for all βj(s, t), for

1 ≤ j ≤ p, for the following reasons. First, in the expansions of the form∑K
k=1 φkj(s)ξk(t) for βj(s, t), for 1 ≤ j ≤ p, ξk(t) does not depend on j. Hence,

we can choose the same order d2 of partial derivatives with respect to t for all

1 ≤ j ≤ p. Second, using different d1 for different j greatly increases the number

of tuning parameters, which could result in large variations in the estimation

and a heavy computational burden. Third, although Bj(s, t) may have different

smoothness levels along s or t, we can always choose d1 and d2 sufficiently large

so that βj(s, t) are all smooth functions.

Now, we define the optimal representation of the coefficient functions in ap-

proximating the linear regression function F (t) = U(t)+
∑p

j=1

∫ 1
0 Xj(s)Bj(s, t)ds.

Let Φk = (φk1(s), . . . , φkp(s))
T and Dd1Φk = (Dd1φk1(s), . . . , D

d1φkp(s))
T be the

coordinate-wise derivative of Φk of order d1. Given d1, d2, and K,
∑K

k=1 φ
(opt)
kj (s)

ξ
(opt)
k (t), for 1 ≤ j ≤ p, is called an optimal representation for βj(s, t) if Φ

(opt)
k =

(φ
(opt)
k1 (s), . . . , φ

(opt)
kp (s))T and ξ

(opt)
k (t), for 1 ≤ k ≤ K, is a solution to the follow-

ing optimization problem, which extends (2.1):

min
Φk(s),ξk(t),
1≤k≤K

E

∫ 1

0

F (t)−

U(t) +

p∑
j=1

∫ 1

0
Xj(s)

K∑
k=1

Dd1φkj(s)D
d2ξk(t)ds


2

dt

 .
(3.1)

Analogous to Theorem 1, Φ
(opt)
k = (φ

(opt)
k1 (s), . . . , φ

(opt)
kp (s))T is characterized as

the solution to

max
Φ

∫ 1

0

∫ 1

0
Dd1Φ(s)TB(s, s′)Dd1Φ(s′)dsds′, (3.2)

s.t.

∫ 1

0

∫ 1

0
Dd1Φ(s)TΣ(s, s′)Dd1Φ(s′)dsds′ = 1,

and

∫ 1

0

∫ 1

0
Dd1Φ(s)TΣ(s, s′)Dd1Φl(s

′)dsds′ = 0, for 1 ≤ l ≤ k − 1,

where B(s, s′) and Σ(s, s′) are both symmetric p× p matrices with the (j, j′) el-

ements equal to Bjj′(s, s
′) =

∫ 1
0 E [Xj(s)F (t)] E [F (t)Xj′(s

′)] dt and Σjj′(s, s
′) =

E [Xj(s)Xj′(s
′)], respectively.

Suppose that we have n independent observations {Yi(t), Xi1(t), . . . , Xip(t) :

1 ≤ i ≤ n} from model (1.1). The sample versions of B(s, s′) and Σ(s, s′) are
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respectively denoted as B̂(s, s′) and Σ̂(s, s′), with (j, j′) elements

B̂jj′(s, s
′) =

1

n2

n∑
i=1

n∑
i′=1

{Xij(s)−Xj(s)}
[∫ 1

0
{Yi(t)− Y (t)}{Yi′(t)− Y (t)}dt

]
{Xi′j′(s

′)−Xj′(s
′)},

Σ̂jj′(s, s
′) =

1

n

n∑
i=1

{Xij(s)−Xj(s)}{Xij′(s
′)−Xj′(s

′)},

where 1 ≤ j, j′ ≤ p. Then, motivated by (3.2), we propose the following sequen-

tial penalized optimization problem to calculate the estimate Φ̂k = (φ̂k1(s), . . . ,

φ̂kp(s))
T, for 1 ≤ k ≤ K:

max
Φ

∫ 1
0

∫ 1
0 D

d1Φ(s)TB̂(s, s′)Dd1Φ(s′)dsds∫ 1
0

∫ 1
0D

d1Φ(s)TΣ̂(s, s′)Dd1Φ(s′)dsds′+λ{
∫ 1
0 ‖Φ(s)‖22ds+ τ

∫ 1
0 ‖D2Φ(s)‖22ds}

s.t.

∫ 1

0

∫ 1

0
Φ(s)TΣ̂(s, s′)Φ(s′)dsds′ = 1,

and

∫ 1

0

∫ 1

0
Φ(s)TΣ̂(s, s′)Φ̂l(s

′)dsds′ = 0, for 1 ≤ l ≤ k − 1, (3.3)

where ‖Φ(s)‖22 =
∑p

j=1 φ
2
kj(s) and ‖D2Φ(s)‖22 =

∑p
j=1

{
D2φkj(s)

}2
are the

squared l2-norms of the vectors. Let ẑik =
∑p

j=1

∫ 1
0 (Xij(s) − Xj(s))φ̂kj(s)ds,

for 1 ≤ k ≤ K and 1 ≤ i ≤ n. The estimates µ̂(t), ξ̂1(t), . . . ξ̂K(t) are obtained

by solving the same problem as (2.6) in Section 2. Then, we can calculate the

following estimates:

β̂j(s, t) =

K∑
k=1

φ̂kj(s)ξ̂k(t), B̂j(s, t) =

K∑
k=1

Dd1
s φ̂kj(s)D

d2
t ξ̂k(t),

F̂ (t) = Dd2 µ̂(t) +

p∑
j=1

∫ 1

0
Xj(s)

K∑
k=1

Dd1
s φ̂kj(s)D

d2
t ξ̂k(t)ds.

Given the new observed predictor curves Xnew,j(s), for 1 ≤ j ≤ p, we predict the

response curve as

Ypred(t) = Dd2 µ̂(t) +

p∑
j=1

∫ 1

0
Xnew,j(s)

K∑
k=1

Dd1
s φ̂kj(s)D

d2
t ξ̂k(t)ds.

For practical computation, we use cubic B-spines and choose the number of basis

functions and tuning parameters using the same procedure as in Section 2.4.
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4. Simulation

We conduct three sets of simulations to assess the performance of the pro-

posed method. The first two focus on FOF models with one functional predictor.

We consider coefficient functions with different smoothness levels, from highly

spiky to relatively smooth, and also study the effect of the smoothness level of

the predictors on the performance of our method. In Simulation 3 (Supplemen-

tary Material), we evaluate the performance of proposed method on models with

multiple functional predictors.

We compare our new method based on derivatives (fof.deriv) with the follow-

ing methods. The sSigComp (Luo and Qi (2017)) estimates B(s, t) directly by

considering its optimal representation, as mentioned in Section 2.1, and imposes

smooth penalties. The wSigComp (Luo, Qi and Wang (2016)) first conducts a

wavelet transformation on the functional predictors, and then regresses the func-

tional response on the wavelet coefficients with both sparse and smooth penalties

imposed. Both sSigComp and wSigComp are implemented in the R package

FRegSigCom, and to make the results comparable, we choose the same number of

basis functions as in fof.deriv. We also consider the following three methods. The

fdapace (Yao, Müller and Wang (2005)), implemented in the R package fdapace,

performs an FPCA on both the predictor and the response curves, and uses these

eigenfunctions to expand the coefficient kernel function. The pffr (Ivanescu et al.

(2015)), implemented in the package refund, uses tensor product bases to ex-

pand B(s, t), and fits a penalized additive regression model using the restricted

maximum likelihood approach. The FDboost (Brockhaus, Rügamer and Greven

(2017)), implemented in FDBoost, uses tensor product bases to expand B(s, t),

and fits the model using a component-wise gradient boosting algorithm.

For each setting of all three simulations, we conduct 100 simulation runs, and

each run has Ntrain = 100 observations as training data and another Ntest = 500

independent observations as test data. All sample curves are defined in [0, 1].

For each method, we use the training set to select the tuning parameters and

fit the model. Then, we apply the fitted model to the test data to estimate the

regression function F (t) and calculate the mean integrated squared estimation

error MISEE = 1/Ntest
∑Ntest

i=1

∫ 1
0 {F̂i(t) − F test

i (t)}2dt, where (Xtest
i1 , . . . , Xtest

ip )

is a vector of the predictor curves in the ith sample in the test data, p is the

number of predictor curves, F test
i (t) = U(t) +

∑p
j=1

∫ 1
0 X

test
ij (s)Bj(s, t)ds is the

corresponding true regression function, and F̂i(t) is its estimate.
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4.1. Simulation 1

We generate data from model (1.2) with one functional predictor (p = 1), as

follows, with specific forms of B1(s, t), B2(s, t), and U1(t) given in Section S3.1

of the Supplementary Material.

(1). We consider two types of X(s) (Figure S1 of the Supplementary Material).

The first type has wiggly sample curves generated from a Gaussian pro-

cess with covariance function exp{−2500(s− s′)2}, and the second type has

smooth sample curves X(s) =
∑10

k=1 {Vk1sin(2kπs) + Vk2cos(2kπs)}, where

Vkj ∼ N(0, 1/k2) independently for 1 ≤ k ≤ 10 and j = 1, 2.

(2). We consider three types of B(s, t), denoted by B1(s, t) ∼ B3(s, t) and shown

in Figure S2 of the Supplementary Material, where B1(s, t) and B2(s, t) are

highly spiky and generated from triangle or square waves with different

frequencies, and B3(s, t) = e−20(s−0.5)
2−20(t−0.5)2 is smooth.

(3). We consider two types of U(t), denoted by U1(t) and U2(t) and shown in

Figure S4 of the Supplementary Material, where U1(t) is highly spiky and is

a linear combination of square waves with different frequencies, and U2(t) =

sin(2πt) is a smooth function.

(4). The random error ε(t) ∼ N(0, σ2) independently, for all 0 ≤ t ≤ 1. We

consider three noise levels, σ = 0.01, 0.1, and 1. In each simulation, we

scale the coefficient function by a scalar factor such that when σ = 1, the

signal to noise ratio is equal to one.

The method wSigComp needs the fast wavelet transformation, which requires

that the number of observation points is equal to a power of two. Hence, we

choose T = 27 or T = 29 observation points equally spaced between zero and

one for all sample curves. The smaller number, 27, is chosen to run all methods,

and their MISEEs and running times from 100 runs are summarized in Tables S1

and S2, respectively, of Section S3.1.1 in the Supplementary Materials. These

tables show that the methods pffr and FDboost, which are designed for small or

moderate numbers of observation points from smooth curves, have much higher

MISEEs in all settings (except when both U(t) and B(s, t) are smooth) and need

much longer running times than other methods. Thus, for the cases with denser

observations, T = 29, we exclude these two smooth methods and summarize the

averages and standard deviations of the MISEEs for the other four methods in

Table 1. For the method fof.deriv, we summarize the most frequently selected

orders of derivatives, d1 and d2, in Table S3, the frequencies of the selected
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numbers Kopt of components in Figure S5, and the frequencies of selected tuning

parameters, κ, λ, and τ , in Figures S6–S8 of Section S3.1.2 of the Supplementary

Material, for T = 29. The following discussion focuses on the results of fof.deriv,

sSigComp, and wSigComp with T = 29, because fdapace has an obviously much

higher MISEE in all settings. From these tables and figures, we observe the

following patterns.

(1). When B(s, t) is spiky (Types 1 and 2), the fof.deriv has the lowest pre-

diction error in all settings. In particular, when the noise is relatively small

(σ = 0.01, 0.1), fof.deriv has a significant advantage over the smooth method

sSigComp and the wavelet-based method wSigComp, regardless of whether

X(s) and U(t) are smooth or spiky. For example, for Type 1 B(s, t) and

σ = 0.01, the average MISEEs of sSigComp and wSigComp are, respectively,

36.2 and 7.8 times as high as that of fof.deriv when both X(s) and U(t) are

spiky (Type 1), and 1.9 and 15.4 times as high when both X(s) and U(t)

are smooth (Type 2). The advantage of fof.deriv over the other methods de-

creases when the noise level increases. The sSigComp is much more sensitive

to the smoothness of X(s) than are the other two methods.

(2). When U(t), B(s, t), and X(s) are all smooth (Type 2 U(t), Type 3 B(s, t),

and Type 2 X(s)), the three methods have close average MISEEs, with

the new method fof.deriv and the smooth method sSigComp being slightly

better than the wavelet-based method wSigComp. When U(t) and B(s, t)

are smooth and X(s) is spiky, fof.deriv and sSigComp perform similarly and

are better than wSigComp. When B(s, t) is smooth and U(t) is spiky, if

σ = 0.01, 0.1, fof.deriv is much better than the other two, and if σ = 1, all

three methods perform similarly.

(3). As shown in Table S3 of the Supplementary Material, when B(s, t) is spiky

(Types 1 and 2) and the noise is relatively small (σ = 0.01, 0.1), both selected

d1 and d2 are nonzero, except for a few iterations. This indicates that for

spiky B(s, t), estimating auxiliary smooth functions is more efficient than

directly estimating the spiky coefficient surface. When the noise is large

(σ = 1), zero d1 or d2 is chosen in more iterations. This is because the

large noise masks the signal in the response curves and makes it difficult to

estimate the complex local variations in B(s, t).

(4). When B(s, t) is smooth (Type 3) and U(t) is smooth (Type 2), both d1 and

d2 are chosen to be zero in most iterations, regardless of the noise level and

the smoothness level of X(s). When B(s, t) is smooth and U(t) is spiky, d1
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Table 1. Average (and standard deviation) of MISEEs from 100 replicates for Simulation
1 with 29 observation time points on each curve.

X σ U B fof.deriv sSigComp wSigComp fdapace

1

0.01

1

1 7.12(1.40)·10−4 2.58(0.55)·10−2 5.52(5.20)·10−3 6.61(0.12)·10−1

2 1.69(0.12)·10−4 1.29(0.17)·10−2 6.52(4.10)·10−3 6.53(0.04)·10−1

3 7.61(0.20)·10−6 3.11(0.00)·10−3 9.60(0.01)·10−4 6.45(0.01)·10−1

2

1 7.12(1.27)·10−4 2.32(0.56)·10−2 4.32(3.00)·10−3 2.21(1.36)·10−2

2 1.64(0.13)·10−4 1.02(0.20)·10−2 5.06(3.53)·10−3 1.22(0.33)·10−2

3 1.85(0.33)·10−7 1.81(0.35)·10−7 5.47(5.18)·10−7 3.22(1.19)·10−3

0.1

1

1 1.70(0.12)·10−3 2.66(0.57)·10−2 7.16(4.16)·10−3 6.69(0.10)·10−1

2 1.92(0.11)·10−3 1.46(0.18)·10−2 1.02(0.81)·10−2 6.62(0.04)·10−1

3 2.13(0.19)·10−4 3.30(0.03)·10−3 1.19(0.03)·10−3 6.54(0.01)·10−1

2

1 1.69(0.12)·10−3 2.34(0.54)·10−2 7.32(7.20)·10−3 3.22(1.72)·10−2

2 1.93(0.12)·10−3 1.18(0.18)·10−2 8.82(7.83)·10−3 2.04(0.32)·10−2

3 1.82(0.36)·10−5 1.65(0.32)·10−5 3.24(1.05)·10−5 1.23(0.19)·10−2

1

1

1 4.89(0.35)·10−2 1.83(0.37)·10−1 5.28(0.39)·10−2 1.54(0.04)

2 1.01(0.07)·10−1 1.44(0.15)·10−1 1.00(0.06)·10−1 1.53(0.03)

3 2.05(0.19)·10−2 2.26(0.18)·10−2 2.18(1.96)·10−2 1.53(0.03)

2

1 2.73(0.28)·10−2 1.13(0.08)·10−1 3.04(0.22)·10−2 9.01(0.40)·10−1

2 7.01(0.46)·10−2 1.20(0.11)·10−1 7.16(0.32)·10−2 8.84(0.40)·10−1

3 6.64(2.16)·10−4 6.61(2.42)·10−4 1.10(0.26)·10−3 8.82(0.34)·10−1

2

0.01

1

1 2.44(0.47)·10−4 3.57(0.11)·10−3 4.67(2.50)·10−3 6.54(0.07)·10−1

2 5.64(1.97)·10−4 4.50(0.42)·10−3 1.72(0.13)·10−3 8.94(0.73)·10−1

3 7.57(0.21)·10−6 3.11(0.00)·10−3 9.63(0.44)·10−4 6.43(0.00)·10−1

2

1 2.46(0.64)·10−4 4.64(1.20)·10−4 3.80(2.84)·10−3 1.29(0.58)·10−2

2 5.93(1.72)·10−4 1.36(0.33)·10−3 1.06(1.78)·10−3 2.53(0.62)·10−1

3 1.57(0.27)·10−7 1.68(0.28)·10−7 2.82(0.59)·10−7 1.19(0.03)·10−3

0.1

1

1 1.25(0.06)·10−3 4.51(0.11)·10−3 5.90(2.63)·10−3 6.57(0.09)·10−1

2 9.57(1.49)·10−4 5.00(0.34)·10−3 2.52(2.26)·10−3 8.82(0.69)·10−1

3 2.09(0.20)·10−4 3.30(0.34)·10−3 1.18(0.17)·10−3 6.45(0.00)·10−1

2

1 1.23(0.06)·10−3 1.39(0.08)·10−3 4.53(2.36)·10−3 1.41(0.76)·10−2

2 9.68(1.41)·10−4 1.87(0.28)·10−3 1.30(0.83)·10−3 2.47(0.68)·10−1

3 1.33(0.27)·10−5 1.15(0.24)·10−5 1.48(3.73)·10−5 3.09(0.00)·10−3

1

1

1 7.16(0.42)·10−2 7.27(0.41)·10−2 7.37(0.43)·10−2 0.85(0.02)·10−1

2 3.30(0.25)·10−2 4.94(0.70)·10−2 3.46(0.38)·10−2 1.08(0.07)

3 2.02(0.17)·10−2 2.23(0.17)·10−2 2.13(0.17)·10−2 8.35(0.11)·10−1

2

1 2.82(0.16)·10−2 3.27(0.16)·10−2 2.83(0.21)·10−2 2.06(0.14)·10−1

2 2.44(0.16)·10−2 3.83(0.44)·10−2 2.84(0.36)·10−2 4.40(0.67)·10−1

3 6.13(1.93)·10−4 6.26(2.28)·10−4 8.09(2.33)·10−4 1.93(0.13)·10−1
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is zero in most iterations, but d2, the order of the derivative on t, is always

chosen as one to capture the local variations caused by the spiky U(t).

(5). As shown in Figure S5 in the Supplementary Material, the selected number

of components usually focuses on a single value or two consecutive values.

More components are chosen for a spiky B(s, t) than for a smooth one. Given

U(t) and X(s), for a spiky B(s, t), fewer components are selected when the

noise level is high (σ = 1).

(6). As shown in Figure S6 in the Supplementary Material, the selection of κ for

tuning the smoothness of µ(t) and ξk(t) is quite stable, with a single value

selected in most settings. A smaller κ is usually selected when both U(t) and

B(s, t) are spiky and σ is smaller. For the tuning parameters λ and τ that

control the magnitude and smoothness, respectively, of φk(s), we observe

that only one or two values are selected for each of them when both X(s)

and B(s, t) are spiky. When X(s) or B(s, t) is smooth, more variations in

the selection of these two tuning parameters are observed. We also used

denser grids {10−12, 10−11, . . . , 102} for λ, τ , and κ simultaneously, but did

not observe an obvious improvement in prediction.

(7). The average running time is summarized in Table S4 in the Supplementary

Material for the settings with Type 1 U(s) (similar for Type 2 U(s)). The

fof.deriv is slower than sSigComp and fdapace, but faster than the wavelet-

based method wSigComp, which involves a sparse penalty.

(8). When there are fewer observation points (T = 27), as shown in Table S1 of

the Supplementary Material, for σ < 1, the fof.deriv has the lowest MISSEs

(when U(t) or B(s, t) is spiky) or is among the methods with the lowest

MISSEs (when both U(t) and B(s, t) are smooth). When σ = 1, fof.deriv

performs similarly to sSigComp and/or wSigComp, which have MISSEs that

are lower than those of the other methods when U(t) or B(s, t) is spiky, and

similar to pffr and FDboost when both U(t) and B(s, t) are smooth.

We also consider predictor curves with observation errors. Let X̃(s) =

X(s) + εX(s) denote the observed predictor, where the observation noise εX(s)

independently follows N(0, σ2X) for all 0 ≤ s ≤ 1, and is independent of the true

predictor curve X(s). We consider two noise levels: σX is equal to 1% or 10%

of the square root of the integrated variance of X(s) in [0, 1], for all the settings

with Type 1 X(s) in Table 1. The results are summarized in Table S5 of the

Supplementary Material. The fof.deriv has the lowest MISSEs in all cases, ex-

cept when both U(t) and B(s, t) are smooth (Type 2 U(t) and Type 3 B(s, t)),
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where sSigComp performs best and fof.deriv has a slightly higher error than that

of sSigComp, but lower than those of the other methods. When the observation

error εX(s) becomes larger, the fof.deriv, sSigComp, and wSigComp tend to have

larger MISEEs.

4.2. Simulation 2

We consider the model (1.2), where B(s, t) has relatively large values only

in a narrow region around the diagonal line s = t. This type of B(s, t) implies

that the association between X(s) and Y (t) quickly declines as |s− t| increases.

We generate data as follows.

(1). We consider wiggly sample curves X(s) generated from a Gaussian process

with covariance function exp{−2500(s− s′)2}. This is the first type of pre-

dictor curve in Simulation 1.

(2). We consider two types of B(s, t), denoted by B4(s, t) and B5(s, t) and shown

in Figure S9 of the Supplementary Material. The coefficient B4(s, t) =

exp{−400(s− t)2}cos{20π(s− t)} has a high and narrow ridge along the di-

agonal line s = t and exponentially decays as |s− t| increases, and B5(s, t) =∑3
i=1 exp{−1600(s − ci)

2 − 1600(t − ci)
2}, where c1 = 0.2, c2 = 0.5, and

c3 = 0.8, has three narrow peaks centered at (0.2,0.2), (0.5,0.5), and (0.8,0.8)

along the diagonal line.

(3). We set U(t) = 0 and generate ε(t) in the same way as in Simulation 1 with

three noise levels, σ = 0.01, 0.1, and 1. In each simulation, we scale the

coefficient function by a scalar factor such that when σ = 1, the signal to

noise ratio is equal to one.

(4). We consider T = 29 and 210 equally spaced observation points on each sample

curve.

As in Simulation 1, for each setting, we conduct 100 iterations. The MISEEs

in 100 iterations are summarized in Table 2, from which we have the following

observations.

(1). The new method fof.deriv has the lowest average MISEEs in all settings

except two cases of σ = 1, where its average MISEE is slightly larger than

the smallest ones. In general, the smooth method sSigComp has a lower

error than that of the wavelet-based method wSigComp for the ridge-shaped

B4(s, t), whereas for B5(s, t), wSigComp is better than sSigComp. This is
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Table 2. The average (and standard deviation) of MISEEs for Simulation 2.

T σ B fof.deriv sSigComp wSigComp fdapace

29

0.01
4 4.27(1.15)·10−3 1.56(0.34)·10−2 9.43(2.04)·10−2 5.42(0.98)·10−3

5 6.16(0.49)·10−6 4.62(2.41)·10−3 1.50(8.05)·10−4 5.59(2.07)·10−3

0.1
4 5.20(0.99)·10−3 1.58(0.30)·10−2 9.80(1.66)·10−3 1.42(0.11)·10−2

5 1.81(0.24)·10−4 4.34(2.12)·10−3 2.00(0.22)·10−4 1.43(0.20)·10−2

1
4 7.15(0.30)·10−2 1.03(0.11)·10−1 1.02(0.07)·10−1 8.76(0.38)·10−1

5 1.25(0.13)·10−2 2.09(0.30)·10−2 1.15(0.17)·10−2 8.76(0.35)·10−1

210

0.01
4 4.21(1.10)·10−3 1.60(0.34)·10−2 9.69(2.27)·10−2 5.55(1.36)·10−3

5 4.96(0.43)·10−6 4.53(2.44)·10−3 4.88(21.2)·10−5 5.49(1.77)·10−3

0.1
4 4.51(1.08)·10−3 1.60(0.38)·10−2 9.94(1.78)·10−2 1.40(0.12)·10−2

5 1.20(0.18)·10−4 4.17(2.29)·10−3 1.33(0.22)·10−4 1.46(0.23)·10−2

1
4 5.50(0.17)·10−2 5.41(0.17)·10−2 7.69(0.65)·10−2 8.81(0.41)·10−1

5 6.16(0.53)·10−3 1.72(0.21)·10−2 7.00(0.91)·10−3 8.81(0.36)·10−1

because B5(s, t) only has three isolated peaks, which satisfies the sparsity as-

sumption in the wavelet domain required by the wavelet-based method wSig-

Comp. The fdapace has slightly higher MISSEs than fof.deriv for B4(s, t)

when σ = 0.01, but much higher errors in other settings.

(2). When the observation points get denser (T changes from 29 to 210), the

fof.deriv has decreased MISEEs in all settings, the wSigComp has decreased

MISEEs for B5(s, t), where the assumption of sparse wavelet coefficients is

satisfied, and the sSigComp has an obvious reduction in the MISEE for large

variance (σ = 1).

(3). The frequencies of the selected order of derivatives (d1, d2) are provided in

Table S6 of Section S3.2 in the Supplementary Material. For B4(s, t), d2 = 0

is selected in all iterations of all settings, and the most likely selected value

of d1 decreases from one (when σ = 0.01) to zero (when σ = 0.1 or 1). For

B5(s, t), the selected values for d1 and d2 are one when σ = 0.01 and decrease

to zero when σ = 1, with 100% frequency, indicating that large noise can

mask complex local features.

5. Application to HPLC-PDA Data

To illustrate the performance of our proposed method, we analyze the high

performance liquid chromatography-photodiode array (HPLC-PDA) data. This

is a metabolite profiling data set (http://www.models.life.ku.dk/Bonnie) con-

http://www.models.life.ku.dk/Bonnie
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taining HPLC measurements of commercial extracts of St. John’s wort, a plant

that grows in the wild and is used for the treatment of mild to moderate de-

pression. HPLC is a technique in analytical chemistry used to separate, identify,

and quantify components in a mixture. It relies on pumps to pass a pressurized

liquid and a sample mixture through a column filled with adsorbent, leading to

the separation of the sample components. The time taken for a solute to pass

through a chromatography column is called the retention time and is an iden-

tifying characteristic of a given analyte under particular conditions. It depends

on the chemical nature of the component and its interaction with the column.

A stronger interaction means a longer interaction time. The separated compo-

nents are monitored and expressed electronically via detectors, such as a PDA

detector, that measure the amount of light of variable wavelengths absorbed by

components of the mixture. The PDA detects an entire spectrum simultaneously

and the recorder (computer-based data processor) generates a chromatogram at

each wavelength. A chromatogram curve is a function of the retention time and

its value gives the concentration. Because compounds have different absorbance

sensitivity at different wavelengths, it is helpful to study chromatograms across

wavelengths when discerning between analytes with dissimilar absorbance spec-

tra and determining an unknown peak in the chromatograms. However, owing

to economic reasons, not all wavelengths are used in practice. It would beneficial

to accurately estimate the chromatograms at unused wavelengths based on those

generated.

The data set in this study was obtained at 3 nm wavelengths from 260 nm

to 550 nm. In Figure 1, we show the chromatogram curves for all samples at

eight equally spaced wavelengths, 296, 332, 368, 404, 440, 476, 512, 548 nm,

which almost cover the range of wavelengths in this data set. The retention time

has been scaled to [0, 1] from the original range [12, 22.9] minutes. They show

various smoothness/spikiness patterns. The chromatogram curves at lower wave-

lengths (296, 332, 368 nm) have more spiky peaks, while the curves at higher

wavelengths gradually include smoother components and have fewer peaks. Fit-

ting FOF models using these curves, we can evaluate the performance of our

proposed method for functional data with various smoothness or spikiness pat-

terns. To show by example, we fit seven FOF models using seven data sets formed

using the chromatogram curves at the neighboring aforementioned wavelengths,

each of which has curves at the lower wavelength as the predictor and curves at

the higher wavelength as the response. For example, the first model takes the

chromatogram curves at wavelengths 296 and 332 nm as X(s) and Y (t), respec-

tively. Table 3 lists the wavelengths of the curves used as the functional predictor
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Figure 1. Chromatogram curves for all samples at eight equally spaced wavelengths (296,
332, 368, 404, 440, 476, 512, 548 nm) in the HPLC-PDA data. The x-axis is the retention
time, which is scaled to [0, 1], and the y-axis is the signal intensity.

Table 3. Average (and standard deviation) of MISPEs from 100 replicates for the HPLC-
PDA data in seven models. The Y and X columns specify the wavelengths (nm) at which
the chromatogram curves are used as the functional response and predictor, respectively,
in each model.

Model Y X fof.deriv sSigComp wSigComp fdapace pffr FDboost

1 332 296 0.012(0.006) 0.049(0.011) 0.035(0.024) 1.228(0.056) 3.945(0.148) 2.551(0.114)

2 368 332 0.017(0.020) 0.039(0.019) 0.054(0.082) 1.267(0.140) 3.774(0.191) 2.580(0.199)

3 404 368 0.021(0.020) 0.106(0.033) 0.055(0.039) 1.388(0.456) 2.853(0.407) 2.242(0.364)

4 440 404 0.077(0.073) 0.166(0.032) 0.109(0.075) 0.594(0.097) 0.581(0.105) 0.524(0.055)

5 476 440 0.047(0.009) 0.058(0.009) 0.061(0.012) 0.099(0.020) 0.467(0.069) 0.405(0.063)

6 512 476 0.084(0.029) 0.083(0.021) 0.082(0.023) 0.199(0.035) 0.972(0.169) 0.878(0.154)

7 548 512 0.087(0.023) 0.110(0.023) 0.081(0.022) 0.206(0.054) 1.060(0.231) 0.959(0.220)

and the response in each of the seven models. The first three models have spiky

predictive and response curves (296–404 nm), the last two models have smooth

response curves (512 nm and 548 nm), except for a spike, and the fourth model

has the greatest difference in the smoothness/spikiness patterns of the predictor

(404 nm) and response curves (440 nm).

To compare the methods, we repeat the following procedure 100 times for

each model. In each repetition, we randomly split the total 89 observations into
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training data with Ntrain = 60 observations and test data with Ntest = 29 ob-

servations. For each method, we choose the tuning parameters and estimate the

final model using the training data, and then apply the final model to the test

data. For each method, we also calculate the mean integrated squared predic-

tion error (MISPE) MISPE = (1/TNtest)
∑Ntest

l=1

∑T
m=1(Ŷ

pred
l (tm)− Y test

l (tm))2,

where 0 = t1 < t2 < · · · < tT = 1 denote the T = 29 equally spaced observation

points, {Y test
l (t) : 1 ≤ l ≤ Ntest} denote the response curves in the test set, and

{Ŷ pred
l (t) : 1 ≤ l ≤ Ntest} are the corresponding predicted curves.

The MISPEs for the seven models are summarized in Table 3. The new

method fof.deriv has significantly lower averaged MISPEs than all other meth-

ods in the first five models, where there are at least half a dozen peaks in both the

response and the predictive curves. In Models 1 to 3, where both the response

and the predictor are spiky, the averaged MISPEs of all other methods are 2.3

to 328 times as high as those of fof.deriv. In Models 4 and 5, where the response

curve has both smooth and spiky parts, the average MISPEs of the other meth-

ods are 1.3 to 10 times as high as that of fof.deriv. In Models 6 and 7, the new

method has a slightly higher MISPE than wSigComp, which has the smallest

averaged MISPEs. In these two models, both the predictive and the response

curves are smooth, except for a few peaks. This implies that the wavelet coeffi-

cient vectors of these curves are sparse, and hence the sparsity assumption for the

wavelet-based method wSigComp is well satisfied. In Models 4 to 7, with smooth

components in the response or in both the response and the predictive curves,

the smooth methods fdapace, pffr, and FDboost have an obvious improvement in

their performance than in the first three models. However, they still have a much

higher error than those of the fof.deriv, sSigComp, and wSigComp.

We next apply the new method fof.deriv to all 89 observations and fit the

seven models separately. In Figure 2, we provide the estimated functions in the

first model with spiky predictor (296 nm) and response (332 nm) curves. The

selected orders of the partial derivatives are d1 = 2 and d2 = 1 in this model. The

top panel of Figure 2 shows the estimated coefficient surface B̂(s, t) (left) and the

corresponding auxiliary function β̂(s, t) (right), with B̂(s, t) = D2
sDtβ̂(s, t). The

β̂(s, t) is smooth. By taking partial derivatives, we obtain the estimate B̂(s, t) of

the coefficient surface, which is spiky, especially when s ≤ 0.2 or s ≥ 0.8, together

with an isolated peak around (0.5, 0.5). This corresponds to the large spikes in

Y (t) and X(s) and indicates their associations. Similarly, the estimated intercept

function Û(t) and its corresponding auxiliary function µ̂(t) with Û(t) = Dµ̂(t) are

shown in the bottom panel of Figure 2. The Û(t) is wiggly in the whole range

of t, with deep valleys and large peaks corresponding to the main spikes in the
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Figure 2. Estimated functions from the first model of the HPLC-PDA data, where X(s)
and Y (t) are the chromatogram curves at wavelengths 296 and 332 nm, respectively. Top:

the estimated coefficient surface B̂(s, t) (left) and its corresponding auxiliary smooth

function β̂(s, t) (right), where B̂(s, t) = D2
sDtβ̂(s, t); Bottom: the estimated intercept

function Û(t) (left) and the corresponding auxiliary function µ̂(t) (right), with Û(t) =
Dµ̂(t).

samples curves at wavelengths 296 nm and 332 nm of Figure 1. We show the

estimated functions for the other six models in Figures S13–S18 in Section S3.4

of the Supplementary Material. These figures all show that we can efficiently get

spiky coefficient estimates using smooth auxiliary functions. Compared to the
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estimate B̂(s, t) in Figure 2 for Model 1, the figures for Models 2 to 7 do not

have the isolated peak around (0.5, 0.5), the peaks at s ≤ 0.2 in B̂(s, t) gradually

weaken (Models 2 to 4), and then completely disappear (Models 5 to 7), and

bulks show up around s = 0.6 in Model 4, get smoother in Models 5 and 6, and

finally dampen in Model 7. All figures of B̂(s, t) have spikes for s ≥ 0.8, but

the spikes get much fewer and weaker in Models 6 and 7. All these observations

match the gradually changed patterns shown in the sample curves in Figure 1.

6. Conclusion

By introducing a novel perspective for spiky estimates, we propose a new

method for fitting the FOF regression model for spiky functional data observed

on a dense grid. We view the coefficient functions as the derivatives of smooth

auxiliary functions. By imposing smoothing penalties on such auxiliary functions,

we do not need the smoothness assumption on the coefficient functions, which is

common in FDA, and can produce nonsmooth estimates by taking the deriva-

tives of the smooth auxiliary functions. Compared with existing methods, which

directly estimate the coefficient function, our new approach is more efficient in

terms of dimension reduction and overcomes over-smoothing. Simulations and

a real-data analysis show that the new method outperforms existing methods

for spiky coefficient functions, and has comparable prediction accuracy with the

competing smooth method when both the intercept and the slope coefficient func-

tions are smooth. The asymptotic theory is applicable to models with coefficient

functions in a larger space than the usual Sobolev space, and can provide smaller

upper bounds for spiky functional data than those of the method designed for

smooth functional data.

We used CV to selected tuning parameters. Other methods can be explored,

such as generalized cross-validation (GCV) and population-based training (PBT)

(Jaderberg et al. (2017)). PBT is an adaptive method for a hyperparameter

search used in a neural network. It starts with an initial set of parameter com-

binations and repeatedly updates the set by exploitation and exploration. There

are various exploration and exploitation strategies, the performance of which in

our model deserves further investigation.

We have empirically explored the performance of the proposed method when

the predictor curves contain observation errors in one simulation, and the results

show that the proposed method still has good performance. However, it is not

trivial to extend our theoretical results to the general cases of predictor curves

with noise. The proof of our theoretical results relies on the fact that B̂(s, s′) and
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Σ̂(s, s′) are consistent estimates of B(s, s′) and Σ(s, s′), respectively, in the gen-

eralized eigenvalue problem in Theorem 1. However, when the observed predictor

curves have noise, Σ̂(s, s′) defined in (2.4) cannot be calculated directly, and the

sample covariance function of the noisy observations may not be a good estimate

of Σ(s, s′). Hence, the current proof cannot be extended directly to the situation

of predictor curves with observation errors. Further investigation is needed.

We use the relationship between integration and differentiation and consider

smooth auxiliary functions whose derivatives give the original coefficient func-

tions. It is possible to consider other operators to get smooth auxiliary functions

for coefficient functions. The idea of regularizing smooth auxiliary functions can

also be applied to other analyses involving spiky functional data.

Supplementary Material

The online Supplementary Material contains proofs for the theorems, addi-

tional details for computation, simulations, and a real-data analysis.
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