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Abstract: The pair correlation function is a fundamental spatial point process char-

acteristic that, given the intensity function, determines second order moments of

the point process. Non-parametric estimation of the pair correlation function is a

typical initial step of a statistical analysis of a spatial point pattern. Kernel esti-

mators are popular but especially for clustered point patterns suffer from bias for

small spatial lags. In this paper we introduce an orthogonal series non-parametric

estimator. It is consistent and asymptotically normal according to our theoretical

and simulation results. In our simulations the new estimator outperforms the kernel

estimators, in particular for Poisson and clustered point processes.
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1. Introduction

The pair correlation function is commonly considered the most informative

second-order summary statistic of a spatial point process (Stoyan and Stoyan

(1994), Møller and Waagepetersen (2003), Illian et al. (2008)). Non-parametric

estimates of the pair correlation function are useful for assessing regularity or

clustering of a spatial point pattern and can be used for inferring parametric

models for spatial point processes via minimum contrast estimation (Stoyan

and Stoyan (1996), Illian et al. (2008)). Although alternatives exist (Yue and

Loh (2013)), kernel estimation is the by far most popular approach (Stoyan and

Stoyan (1994), Møller and Waagepetersen (2003), Illian et al. (2008)) and closely

related to kernel estimation of probability densities.

Kernel estimation is computationally fast and works well except at small

spatial lags. For spatial lags close to zero, kernel estimators suffer from strong

bias, a major drawback if one attempts to infer a parametric model from the non-

parametric estimate since the behavior near zero is important for determining

the right parametric model (Jalilian, Guan and Waagepetersen (2013)).
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In this paper we adapt orthogonal series density estimators (see e.g. the

reviews in Hall (1987) and Efromovich (2010)) to the non-parametric estimation

of the pair correlation function. We derive unbiased estimators of the coefficients

in an orthogonal series expansion of the pair correlation function and propose a

criterion for choosing a certain optimal smoothing scheme. In the literature on

orthogonal series estimation of probability densities, the data are usually assumed

to consist of indendent observations from the unknown target density. In our case

the situation is more complicated as the data used for estimation consist of spatial

lags between observed pairs of points. These lags are neither independent nor

identically distributed and the sample of lags is biased due to edge effects. We

establish consistency and asymptotic normality of our orthogonal series estimator

and study its performance in a simulation study and in an application to a tropical

rain forest data set.

2. Background

2.1. Spatial point processes

We denote by X a point process on Rd, d ≥ 1, a locally finite random subset

of Rd. For B ⊆ Rd, we let N(B) denote the random number of points in X ∩B.

That X is locally finite means that N(B) is finite almost surely whenever B is

bounded. We assume that X has an intensity function ρ and a second-order joint

intensity ρ(2) so that for bounded A,B ⊂ Rd,

E{N(B)} =

∫
B
ρ(u)du,

E{N(A)N(B)} =

∫
A∩B

ρ(u)du+

∫
A

∫
B
ρ(2)(u, v)dudv. (2.1)

The pair correlation function g is defined as g(u, v) = ρ(2)(u, v)/{ρ(u)ρ(v)} when-

ever ρ(u)ρ(v) > 0 (otherwise we define g(u, v) = 0). By (2.1),

Cov{N(A), N(B)} =

∫
A∩B

ρ(u)du+

∫
A

∫
B
ρ(u)ρ(v)

{
g(v, u)− 1

}
dudv

for bounded A,B ⊂ Rd. Hence, given the intensity function, g determines the

covariances of count variables N(A) and N(B). Further, for locations u, v ∈ Rd,
g(u, v) > 1 (< 1) implies that the presence of a point at v yields an elevated

(decreased) probability of observing yet another point in a small neighbourhood

of u (e.g. Coeurjolly, Møller and Waagepetersen (2017)). In this paper we assume

that g is isotropic, with an abuse of notation, g(u, v) = g(‖v − u‖). Examples of

pair correlation functions are shown in Figure 1.
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2.2. Kernel estimation of the pair correlation function

Suppose X is observed within a bounded observation window W ⊂ Rd and

let XW = X ∩W . Let kb(·) be a kernel of the form kb(r) = k(r/b)/b, where k

is a probability density and b > 0 is the bandwidth. Then, recalling that g is

assumed to be isotropic, a kernel density estimator (Stoyan and Stoyan (1994),

Baddeley, Møller and Waagepetersen (2000)) of g is

ĝk(r; b) =
1

ςdrd−1

6=∑
u,v∈XW

kb(r − ‖v − u‖)
ρ(u)ρ(v)|W ∩Wv−u|

, r ≥ 0,

where ςd = 2πd/2/Γ(d/2) is the surface area of the unit sphere in Rd,
∑6= denotes

sum over all pairs of distinct points, 1/|W ∩Wh|, h ∈ Rd, is the translation edge

correction factor with Wh = {u − h : u ∈ W}, and |A| is the volume (Lebesgue

measure) of A ⊂ Rd. Variations of this include, (Guan (2007a)),

ĝd(r; b) =
1

ςd

6=∑
u,v∈XW

kb(r − ‖v − u‖)
‖v − u‖d−1ρ(u)ρ(v)|W ∩Wv−u|

, r ≥ 0

and the bias corrected estimator

ĝc(r; b) =
ĝd(r; b)

c(r; b)
, c(r; b) =

∫ rmin{r,b}

−b
kb(t)dt,

assuming k has bounded support [−1, 1]. Regarding the choice of kernel, Illian

et al. (2008) recommend use of the uniform kernel k(r) = I(|r| ≤ 1)/2, where

I( · ) denotes the indicator function; the Epanechnikov kernel k(r) = (3/4)(1 −
r2)I(|r| ≤ 1) is another common choice. The choice of the bandwidth b highly

affects the bias and variance of the kernel estimator. In the planar (d = 2)

stationary case, Illian et al. (2008) recommend b = 0.10/
√
ρ̂ based on practical

experience, where ρ̂ is an estimate of the constant intensity. The default in

spatstat (Baddeley, Rubak and Turner (2015)), following Stoyan and Stoyan

(1994), is to use the Epanechnikov kernel with b = 0.15/
√
ρ̂.

Guan (2007a,b) suggest choosing b by composite likelihood cross validation

or by minimizing an estimate of the mean integrated squared error defined over

some interval I as

MISE(ĝm, w) = ςd

∫
I
E
{
ĝm(r; b)− g(r)

}2
w(r − rmin)dr, (2.2)

where ĝm, m = k, d, c, is one of the aforementioned kernel estimators, w ≥ 0 is a

weight function and rmin ≥ 0. With I = (0, R), w(r) = rd−1 and rmin = 0, Guan

(2007a) suggests estimating the mean integrated squared error by
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M(b) = ςd

∫ R

0

{
ĝm(r; b)

}2
rd−1dr − 2

6=∑
u,v∈XW

‖v−u‖≤R

ĝ
−{u,v}
m (‖v − u‖; b)

ρ(u)ρ(v)|W ∩Wv−u|
, (2.3)

where ĝ
−{u,v}
m , m = k, d, c, is defined as ĝm but based on the reduced data

(X \ {u, v}) ∩ W . Loh and Jang (2010) instead use a spatial bootstrap for

estimating (2.2). We return to (2.3) in Sec. 5.

3. Orthogonal Series Estimation

3.1. The estimator

For an R > 0, our orthogonal series estimator of g(r), 0 ≤ rmin < r <

rmin +R, is based on an orthogonal series expansion of g(r) on (rmin, rmin +R):

g(r) =

∞∑
k=1

θkφk(r − rmin), (3.1)

where {φk}k≥1 is an orthonormal basis of functions on (0, R) with respect to

some weight function w(r) ≥ 0, r ∈ (0, R). Thus,∫ R

0
φk(r)φl(r)w(r)dr = I(k = l)

and the coefficients in the expansion are given by

θk =

∫ rmin+R

rmin

g(r)φk(r − rmin)w(r − rmin)dr =

∫ R

0
g(r + rmin)φk(r)w(r)dr.

For the cosine basis, w(r) = 1, φ1(r) = 1/
√
R, and

φk(r) =

(
2

R

)1/2

cos

(
(k − 1)πr

R

)
, k ≥ 2.

Another example is the Fourier-Bessel basis with w(r) = rd−1 and

φk(r) =
21/2

RJν+1(αν,k)
Jν

(rαν,k
R

)
r−ν , k ≥ 1,

where ν = (d − 2)/2, Jν is the Bessel function of the first kind of order ν, and

{αν,k}∞k=1 is the sequence of successive positive roots of Jν(r). Plots of cosine

and Fourier-Bessel basis functions are shown in Figure S6 of the supplementary

material.

An estimator of g is obtained by replacing the θk in (3.1) by unbiased esti-

mators and truncating or smoothing the infinite sum. A similar approach has a

long history in the context of non-parametric estimation of probability densities,

see e.g. the review in Efromovich (2010). For θk we propose the estimator
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θ̂k =
1

ςd

6=∑
u,v∈XW

rmin<‖u−v‖<rmin+R

φk(‖v − u‖ − rmin)w(‖v − u‖ − rmin)

ρ(u)ρ(v)‖v − u‖d−1|W ∩Wv−u|
, (3.2)

which is unbiased by the second order Campbell formula, see Lemma 1 below.

This type of estimator has some similarity to the coefficient estimators used for

probability density estimation but is based on spatial lags v − u which are not

independent nor identically distributed. Moreover the estimator is adjusted for

the possibly inhomogeneous intensity ρ and corrected for edge effects.

The orthogonal series estimator is finally of the form

ĝo(r; b) =

∞∑
k=1

bkθ̂kφk(r − rmin), (3.3)

where b = {bk}∞k=1 is a smoothing/truncation scheme. The simplest smoothing

scheme has bk = I[k ≤ K] for some cut-off K ≥ 1. Sec. 3.3 considers several

other smoothing schemes.

3.2. Variance of θ̂k

The factor ‖v − u‖d−1 in (3.2) can cause problems when d > 1 where the

presence of two very close points in XW could imply division by a quantity close

to zero. The expression for the variance of θ̂k given in the proof of Lemma 1 (see

Sec. S2.1 of the supplementary material) indeed shows that the variance is not

finite unless g(r)w(r−rmin)/rd−1 is bounded for rmin < r < rmin +R. If rmin > 0

this is always satisfied for bounded g. If rmin = 0 the condition is still satisfied

in case of the Fourier-Bessel basis and bounded g.

For the cosine basis w(r) = 1, so if rmin = 0 we need the boundedness of

g(r)/rd−1. If X satisfies a hard core condition, two points in X cannot be closer

than some δ > 0, this is trivially satisfied. Another example is a determinantal

point process (Lavancier, Møller and Rubak (2015)) for which g(r) = 1 − c(r)2

for a correlation function c. The boundedness is then e.g. satisfied if c(·) is the

Gaussian (d ≤ 3) or exponential (d ≤ 2) correlation function. In practice, when

using the cosine basis, we take rmin to be a small positive number to avoid issues

with infinite variances.

3.3. Mean integrated squared error and smoothing schemes

The orthogonal series estimator (3.3) has the mean integrated squared error

MISE
(
ĝo, w

)
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= ςd

∫ rmin+R

rmin

E
{
ĝo(r; b)− g(r)

}2
w(r − rmin)dr = ςd

∞∑
k=1

E(bkθ̂k − θk)2

= ςd

∞∑
k=1

[
b2kE{(θ̂k)2} − 2bkθ

2
k + θ2k

]
. (3.4)

Each term in (3.4) is minimized with bk equal to (cf. Hall (1987))

b∗k =
θ2k

E{(θ̂k)2}
=

θ2k
θ2k + Var(θ̂k)

, k ≥ 0, (3.5)

leading to the minimal value ςd
∑∞

k=1 b
∗
kVar(θ̂k) of the mean integrated square

error. Unfortunately, the b∗k are unknown.

In practice we consider a parametric class of smoothing schemes b(ψ). For

practical reasons we need a finite sum in (3.3) so one component in ψ will be a

cut-off index K so that bk(ψ) = 0 when k > K. The simplest smoothing scheme

is bk(ψ) = I(k ≤ K). A more refined scheme is bk(ψ) = I(k ≤ K)b̂∗k where

b̂∗k = θ̂2k/(θ̂k)
2 is an estimate of the optimal smoothing coefficient b∗k given in

(3.5). Here θ̂2k is the asymptotically unbiased estimator of θ2k derived in Sec. 5.

For these two smoothing schemes ψ = K. Adapting the scheme suggested by

Wahba (1981), we also consider ψ = (K, c1, c2), c1 > 0, c2 > 1, and bk(ψ) = I(k ≤
K)/(1 + c1k

c2). In practice we choose the smoothing parameter ψ by minimizing

an estimate of the mean integrated squared error, see Sec. 5.

3.4. Expansion of g(·)− 1

For large R, g(rmin +R) is typically close to one. However, for the Fourier-

Bessel basis, φk(R) = 0 for all k ≥ 1 which implies ĝo(rmin + R) = 0. Hence

the estimator cannot be consistent for r = rmin + R and the convergence of the

estimator for r ∈ (rmin, rmin +R) can be quite slow as the number of terms K in

the estimator increases. In practice we obtain quicker convergence by applying

the Fourier-Bessel expansion to

g(r)− 1 =
∑
k≥1

ϑkφk(r − rmin)

so that the estimator is

g̃o(r; b) = 1 +

∞∑
k=1

bkϑ̂kφk(r − rmin)

where ϑ̂k = θ̂k −
∫ rmin+R
0 φk(r)w(r)dr is an estimator of

ϑk =

∫ R

0
{g(r + rmin)− 1}φk(r)w(r)dr.
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Here Var(ϑ̂k) = Var(θ̂k) and g̃o(r; b)−E{g̃o(r; b)} = ĝo(r; b)−E{ĝo(r; b)}. These

identities imply that the results regarding consistency and asymptotic normality

established for ĝo(r; b) in Sec. 4 are also valid for g̃o(r; b).

4. Consistency and Asymptotic Normality

4.1. Setting

To obtain asymptotic results we assume that X is observed through an in-

creasing sequence of observation windowsWn. For ease of presentation we assume

square observation windows Wn = ×di=1[−nai, nai] for some ai > 0, i = 1, . . . , d.

More general sequences of windows can be used at the expense of more notation

and assumptions. We also consider an associated sequence ψn, n ≥ 1, of smooth-

ing parameters satisfying conditions to be detailed in the following. We let θ̂k,n
and ĝo,n denote the estimators of θk and g obtained from X observed on Wn.

Thus

θ̂k,n =
1

ςd|Wn|

6=∑
u,v∈XWn

v−u∈BR
rmin

φk(‖v − u‖ − rmin)w(‖v − u‖ − rmin)

ρ(u)ρ(v)‖v − u‖d−1en(v − u)
),

where BR
rmin

= {h ∈ Rd | rmin < ‖h‖ < rmin +R} and

en(h) =
|Wn ∩ (Wn)h|
|Wn|

. (4.1)

Further,

ĝo,n(r; b) =

Kn∑
k=1

bk(ψn)θ̂k,nφk(r − rmin)

=
1

ςd|Wn|

6=∑
u,v∈XWn

v−u∈BR
rmin

w(‖v − u‖)ϕn(v − u, r)
ρ(u)ρ(v)‖v − u‖|d−1en(v − u)|

,

where

ϕn(h, r) =

Kn∑
k=1

bk(ψn)φk(‖h‖ − rmin)φk(r − rmin). (4.2)

In the results below we refer to higher order normalized joint intensities g(k)

of X. Define the k’th order joint intensity of X by the identity

E


6=∑

u1,...,uk∈X
I(u1 ∈ A1, . . . , uk ∈ Ak)

 =

∫
A1×···×Ak

ρ(k)(v1, . . . , vk)dv1 . . . dvk
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for bounded subsets Ai ⊂ Rd, i = 1, . . . , k, where the sum is over distinct

u1, . . . , uk. We then let g(k)(v1, . . . , vk) = ρ(k)(v1, . . . , vk)/{ρ(v1) . . . ρ(vk)} and

assume, with an abuse of notation, that the g(k) are translation invariant for

k = 3, 4, i.e. g(k)(v1, . . . , vk) = g(k)(v2 − v1, . . . , vk − v1).

4.2. Consistency of orthogonal series estimator

Consistency of the orthogonal series estimator can be established under fairly

mild conditions following the approach in Hall (1987) (see Sec. S2.1 of the sup-

plementary material for the proof).

Lemma 1. For k ≥ 1, E(θ̂k,n) = θk,n. Moreover, Var(θ̂k,n) ≤ C1/|Wn| for some

0 < C1 <∞, if the following conditions hold.

V 1 There exists 0 < ρmin < ρmax <∞ such that for all u ∈ Rd, ρmin ≤ ρ(u) ≤
ρmax.

V 2 For any h, h1, h2 ∈ BR
rmin

, g(h)w(‖h‖− rmin) ≤ C2‖h‖d−1 and g(3)(h1, h2) ≤
C3 for constants C2, C3 <∞.

V 3 A constant C4 <∞ can be found such that

sup
h1,h2∈BR

rmin

∫
Rd

∣∣∣g(4)(h1, h3, h2 + h3)− g(h1)g(h2)
∣∣∣dh3 ≤ C4.

The first part of V2 is needed to ensure finite variances of the θ̂k,n and

is discussed in detail in Sec. 3.2. The second part simply requires that g(3) is

bounded. The condition V3 is a weak dependence condition which is also used

for asymptotic normality in Sec. 4.3 and for estimation of θ2k in Sec. 5.

Regarding the smoothing scheme, we assume

S1 B = supk,ψ
∣∣bk(ψ)

∣∣ <∞ and for all ψ,
∑∞

k=1

∣∣bk(ψ)
∣∣ <∞.

S2 ψn → ψ∗ for some ψ∗, and limψ→ψ∗ max1≤k≤m
∣∣bk(ψ)−1

∣∣ = 0 for all m ≥ 1.

S3 |Wn|−1
∑∞

k=1

∣∣bk(ψn)
∣∣→ 0.

E.g. for the simplest smoothing scheme, ψn = Kn, ψ∗ = ∞ and we assume

Kn/|Wn| → 0.

The following result is proved in Sec. S2.3 of the supplementary material.

Theorem 1. Under conditions V 1-V 3 and S1-S3, ĝo,n is a consistent estimator

of go,n.
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4.3. Asymptotic normality

The estimators θ̂k,n as well as the estimator ĝo,n(r; b) are of the form

Sn =
1

ςd|Wn|

6=∑
u,v∈XWn

v−u∈BR
rmin

fn(v − u)

ρ(u)ρ(v)en(v − u)
(4.3)

for a sequence of even functions fn : Rd → R. We let τ2n = |Wn|Var(Sn).

To establish asymptotic normality of estimators of the form (4.3) we need

certain mixing properties for X as in Waagepetersen and Guan (2009). The

strong mixing coefficient for the point process X on Rd is given by, (Ivanoff

(1982), Politis, Paparoditis and Romano (1998)),

αX(m; a1, a2) = sup
(∣∣P(E1 ∩ E2)− P(E1)P(E2)

∣∣ : E1 ∈ FX(B1),

E2 ∈ FX(B2), |B1| ≤ a1, |B2| ≤ a2,D(B1, B2) ≥ m,B1, B2 ∈ B(Rd)
)
,

where B(Rd) denotes the Borel σ-field on Rd, FX(Bi) is the σ-field generated by

X ∩Bi and

D(B1, B2) = inf

(
max
1≤i≤d

|ui − vi| : u = (u1, . . . , ud) ∈ B1, v = (v1, . . . , vd) ∈ B2

)
.

To verify asymptotic normality we need assumptions beyond V1 (the condi-

tions V2 and V3 are not needed here due to conditions N2 and N4 below).

N1 The mixing coefficient satisfies αX(m; (s+ 2R)d,∞) = O(m−d−ε) for some

s, ε > 0.

N2 There exists a η > 0 and L1 < ∞ such that g(k)(h1, . . . , hk−1) ≤ L1 for

k = 2, . . . , 2(2 + dηe) and all h1, . . . , hk−1 ∈ Rd.

N3 lim infn→∞ τ
2
n > 0.

N4 There exists L2 <∞ so that |fn(h)| ≤ L2 for all n ≥ 1 and h ∈ BR
rmin

.

The conditions N1-N3 are standard in the point process literature, see e.g. the

discussions in Waagepetersen and Guan (2009) and Coeurjolly and Møller (2014).

The condition N3 is difficult to verify and is usually left as an assumption, see

Waagepetersen and Guan (2009), Coeurjolly and Møller (2014) and Dvořák and

Prokešová (2016). We will discuss N4 in further detail when applying the general

framework to θ̂k,n and ĝo,n. The following result is proved in Sec. S2.4 of the

supplementary material.
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Theorem 2. Under conditions V1, N1 − N4, τ−1n |Wn|1/2
{
Sn − E(Sn)

} D−→
N(0, 1).

4.4. Application to θ̂k,n and ĝo,n

In case of estimation of θk, θ̂k,n = Sn with fn(h) = φk(‖h‖ − rmin)w(‖h‖ −
rmin)/‖h‖d−1. The assumption N4 then holds in the case of the Fourier-Bessel

basis where |φk(r)| ≤ |φk(0)| and w(r) = rd−1. For the cosine basis, N4 does not

hold in general and further assumptions are needed, cf. the discussion in Sec. 3.2.

For simplicity we here assume rmin > 0.

Corollary 1. Assume V1, N1−N4, and, in case of the cosine basis, that rmin >

0. Then

{Var(θ̂k,n)}−1/2(θ̂k,n − θk)
D−→ N(0, 1).

For ĝo,n(r; b) = Sn, fn(h) = ϕn(h, r)w(‖h‖ − rmin)/‖h‖d−1, where ϕn is

defined in (4.2). In this case, fn is typically not uniformly bounded since the

number of not necessarily decreasing terms in the sum defining ϕn in (4.2) grows

with n. We therefore introduce one more condition.

N5 There exist an ω > 0 and Mω <∞ so that

K−ωn

Kn∑
k=1

bk(ψn)
∣∣φk(r − rmin)φk(‖h‖ − rmin)

∣∣ ≤Mω

for all h ∈ BR
rmin

.

Given N5, we can simply take S̃n := K−ωn Sn and τ̃2n := K−2ωn τ2n. Then, assuming

lim infn→∞ τ̃
2
n > 0, Thm. 2 gives the asymptotic normality of τ̃−1n |Wn|1/2{S̃n −

E(S̃n)} which is τ−1n |Wn|1/2{Sn − E(Sn)}.

Corollary 2. Assume V1, N1−N2, N5 and lim infn→∞K
−2ω
n τ2n > 0. In case of

the cosine basis, assume further that rmin > 0. Then, for r ∈ (rmin, rmin +R),

τ−1n |Wn|1/2
[
ĝo,n(r; b)− E{ĝo,n(r; b)}

] D−→ N(0, 1).

In case of the simple smoothing scheme bk(ψn) = I(k ≤ Kn), we take ω = 1

for the cosine basis. For the Fourier-Bessel basis we take ω = 4/3 when d = 1 and

ω = d/2 + 2/3 when d > 1 (see the derivations in Sec. S3 of the supplementary

material).
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5. Tuning the Smoothing Scheme

In practice we choose K, and other parameters in the smoothing scheme

b(ψ), by minimizing an estimate of the mean integrated squared error. This is

equivalent to minimizing

ςdI(ψ) = MISE(ĝo, w)−
∫ rmin+R

rmin

{
g(r)− 1

}2
w(r)dr

=

K∑
k=1

[
bk(ψ)2E{(θ̂k)2} − 2bk(ψ)θ2k

]
. (5.1)

In practice we must replace (5.1) by an estimate. Let θ̂2k be

6=∑
u,v,u′,v′∈XW

v−u,v′−u′∈BR
rmin

φk(‖v−u‖−rmin)φk(‖v′−u′‖−rmin)w(‖v−u‖−rmin)w(‖v′−u′‖−rmin)

ς2dρ(u)ρ(v)ρ(u′)ρ(v′)‖v−u‖d−1‖v′−u′‖d−1|W ∩Wv−u||W ∩Wv′−u′ |
.

The estimator θ̂2k is obtained from (θ̂k)
2 by retaining only terms in which all four

points u, v, u′, v′ involved are distinct. In simulation studies, θ̂2k had a smaller root

mean squared error than (θ̂k)
2 for estimation of θ2k. The proof of the following is

given in Sec. S2.2 of the supplementary material.

Lemma 2. Assuming condition V3, θ̂2k,n is an asymptotically unbiased estimator

of θ2k.

Thus

Î(ψ) =

K∑
k=1

{
bk(ψ)2(θ̂k)

2 − 2bk(ψ)θ̂2k
}

(5.2)

is an asymptotically unbiased estimator of (5.1). Moreover, (5.2) is equivalent

to a slight modification of Guan (2007a)’s criterion (2.3):∫ rmin+R

rmin

{
ĝo(r; b)

}2
w(r − rmin)dr − 2

ςd

6=∑
u,v∈XW

v−u∈BR
rmin

ĝ
−{u,v}
o (‖v − u‖; b)w(‖v − u‖ − rmin)

ρ(u)ρ(v)|W ∩Wv−u|
.

For the simple smoothing scheme bk(K) = I(k ≤ K), (5.2) reduces to

Î(K) =

K∑
k=1

{
(θ̂k)

2 − 2θ̂2k
}

=

K∑
k=1

(θ̂k)
2(1− 2b̂∗k), (5.3)

where b̂∗k = θ̂2k/(θ̂k)
2 is an estimator of b∗k in (3.5).

In practice, uncertainties of θ̂k and θ̂2k lead to numerical instabilities in the

minimization of (5.2) with respect to ψ. To obtain a numerically stable procedure
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we first determine K as

K̂ = inf
(
2 ≤ k ≤ Kmax : (θ̂k+1)

2 − 2θ̂2k+1 > 0
)

= inf

(
2 ≤ k ≤ Kmax : b̂∗k+1 <

1

2

)
. (5.4)

Here K̂ is the first local minimum of (5.3) larger than 1 and smaller than an

upper limit Kmax that we chose to be 49 in our applications. This choice of K

is also used for the refined and the Wahba smoothing schemes. For the refined

smoothing scheme we take bk = I(k ≤ K̂)b̂∗k. For the Wahba smoothing scheme

bk = I(k ≤ K̂)/(1 + ĉ1k
ĉ2), where ĉ1 and ĉ2 minimize

∑K̂
k=1{(θ̂k)2/(1 + c1k

c2)2−
2θ̂2k/(1 + c1k

c2)} over c1 > 0 and c2 > 1.

The expected value of K̂ in (5.4) depends on how fast the coefficients θk tend

to zero. The smoothness of g(r) and its behavior near boundaries of the interval

(rmin, rmin + R) determine the decay rate of the coefficients θk. For example, if

g(r) is twice differentiable and
∫ R
0 |g

′′(rmin + r)|w(r)dr < ∞ then θk = O(k−2).

To ensure that θk decreases faster than k−2 we need to assume that g(r) has

three derivatives and g′(rmin) = g′(rmin +R) = 0 (see Efromovich (2008, p. 32)).

Finally, as in the case of probability density estimation (Efromovich (2010)),

the orthogonal series estimator may result in negative values of ĝo(r; b) for some

rmin < r < rmin + R. Since g(r) ≥ 0 for any r ≥ 0, a natural solution is to use

ĝ+o (r; b) = max{0, ĝo(r; b)} in practice.

6. Simulation Study

We compared the performance of the orthogonal series estimators and the

kernel estimators for data simulated on W = [0, 1]2 or W = [0, 2]2 from four point

processes with constant intensity ρ = 100; here the expected number of points

(100 for W = [0, 1]2 and 400 for W = [0, 2]2) are the same for all point processes.

More specifically, we took nsim = 1,000 realizations from a Poisson process, a

Thomas process (parent intensity κ = 25, dispersion standard deviation ω =

0.0198), a Variance Gamma cluster process (parent intensity κ = 25, shape

parameter ν = −1/4, dispersion parameter ω = 0.01845, see Jalilian, Guan and

Waagepetersen (2013)), and a determinantal point process with pair correlation

function g(r) = 1 − exp(−2(r/α)2) and α = 0.056. The parameters of the

processes were chosen such that they had the same scale of pairwise correlation;

|g(r)− 1|/|g(0)− 1| ≤ 0.01 for r ≥ 0.08. The pair correlation functions of these

point processes are shown in Figure 1.

For each realization, g(r) was estimated for r in (rmin, rmin +R), with rmin =
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Figure 1. Pair correlation functions for the point processes considered in the simulation
study.

10−3 and R = 0.06, 0.085, 0.125, using the kernel estimators ĝk(r; b), ĝd(r; b) and

ĝc(r; b) or the orthogonal series estimator ĝo(r; b). The Epanechnikov kernel with

bandwidth b = 0.15/
√
ρ̂ was used for ĝk(r; b) and ĝd(r; b) while the bandwidth

of ĝc(r; b) was chosen by minimizing Guan (2007a)’s estimate (2.3) of the mean

integrated squared error. For the orthogonal series estimator, we considered both

the cosine and the Fourier-Bessel bases with simple, refined or Wahba smoothing

schemes. For the Fourier-Bessel basis we used the modified orthogonal series

estimator described in Sec. 3.4. The parameters for the smoothing scheme were

chosen according to Sec. 5.

From the simulations we estimated the mean integrated squared error (2.2)

with w(r) = 1 of each estimator ĝm, m = k, d, c, o, over the intervals [rmin, 0.025]

(small spatial lags) and [rmin, rmin + R] (all lags). We considered the kernel

estimator ĝk as the baseline estimator and compared any of the other estimators

ĝ with ĝk using the log relative efficiency eI(ĝ) = log{M̂ISEI(ĝk)/M̂ISEI(ĝ)},
where M̂ISEI(ĝ) denotes the estimated mean squared integrated error over the

interval I for the estimator ĝ. Thus eI(ĝ) > 0 indicates that ĝ outperforms ĝk
on the interval I. Results for W = [0, 1]2 are summarized in Figure 2.

For all types of point processes, the orthogonal series estimators outper-

formed or did as well as the kernel estimators both at small lags and over all

lags. The detailed conclusions depended on whether the non-repulsive Poisson,

Thomas and Var Gamma processes or the repulsive determinantal process was

considered. Orthogonal-Bessel with refined or Wahba smoothing was superior

for Poisson, Thomas and Var Gamma but only better than ĝc for the determi-

nantal point process. The performance of the orthogonal-cosine estimator was

between or better than the performance of the kernel estimators for Poisson,

Thomas and Var Gamma and as good as the best kernel estimator for determi-

nantal. The above conclusions were stable over the three R values considered.

For W = [0, 2]2 (see Figure S1 in the supplementary material) the conclusions
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−

−

−

−

−

Figure 2. Plots of log relative efficiencies for small lags (rmin, 0.025] and all lags (rmin, R],
R = 0.06, 0.085, 0.125, and W = [0, 1]2. Lines serve to ease visual interpretation.

were similar but with clearer superiority of the orthogonal series estimators for

Poisson and Thomas. For Var Gamma the performance of ĝc was similar to the

orthogonal series estimators. For determinantal and W = [0, 2]2, ĝc was bet-

ter than orthogonal-Bessel-refined/Wahba but still inferior to orthogonal-Bessel-

simple and orthogonal-cosine. Figure 3 and Figure S2 in the supplementary ma-

terial give a more detailed insight in the bias and variance properties for ĝk, ĝc,

and the orthogonal series estimators with simple smoothing scheme. Table S1 in

the supplementary material shows that the selected K in general increases when

the observation window is enlargened, as required for the asymptotic results.

The cutoff K in Table S1 tends to be larger for the Variance Gamma process

than for the other processes because the boundary condition g′(rmin) = 0 holds

for all processes but the Variance Gamma. See also the difference between the

Variance Gamma pair correlation function and the mean of the orthogonal-Bessel

and orthogonal-cosine estimates in Figure 3. Table S1 also shows that a larger

K tends to be needed for cosine than for Fourier-Bessel. The general conclusion,

taking into account the simulation results for all four types of point processes,

is that the best overall performance is obtained with orthogonal-Bessel-simple,

orthogonal-cosine-refined or orthogonal-cosine-Wahba.

To supplement our theoretical results in Sec. 4 we considered the distribution

of the simulated ĝo(r; b) for r = 0.025 and r = 0.1 in case of the Thomas process

and using the Fourier-Bessel basis with the simple smoothing scheme. In addition
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r

Figure 3. True pair correlation function (solid line), Monte Carlo mean (dashed lines) and
95% pointwise probability interval (grey area) of estimates based on 1,000 simulations
from the Poisson (first row), Thomas (second row), Variance Gamma (third row) and

determinantal (fourth row) point processes on W = [0, 1]
2
.
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Table 1. Monte Carlo mean, standard error, skewness (S) and kurtosis (K) of ĝo(r)
using the Bessel basis with the simple smoothing scheme in case of the Thomas process
on observation windows W1 = [0, 1]2, W2 = [0, 2]2 and W3 = [0, 3]3.

r g(r) Ê{ĝo(r)} [V̂ar{ĝo(r)}]1/2 Ŝ(ĝo(r)) K̂(ĝo(r))

W1
0.025 3.972 3.961 0.923 1.145 5.240
0.1 1.219 1.152 0.306 0.526 3.516

W2
0.025 3.972 3.959 0.467 0.719 4.220
0.1 1.219 1.187 0.150 0.691 4.582

W3
0.025 3.972 3.949 0.306 0.432 3.225
0.1 1.2187 1.2017 0.0951 0.2913 2.9573

to W = [0, 1]2 and W = [0, 2]2, W = [0, 3]2 was considered. The mean, standard

error, skewness and kurtosis of ĝo(r) are given in Table 1 while histograms of the

estimates are shown in Figure S3 in the supplementary material. The standard

error of ĝo(r; b) scales as |W |1/2 in accordance with our theoretical results. Also

the bias decreases and the distributions of the estimates become increasingly

normal as |W | increases.

7. Application

We consider point patterns of locations of Acalypha diversifolia (528 trees),

Lonchocarpus heptaphyllus (836 trees) and Capparis frondosa (3,299 trees) species

in the 1995 census for the 1,000m × 500m Barro Colorado Island plot (Hubbell

and Foster (1983), Condit (1998)). To estimate the intensity function of each

species, we used a log-linear regression model depending on covariates related to

soil conditions and topographical variables. The regression parameters were esti-

mated using the quasi-likelihood approach in Guan, Jalilian and Waagepetersen

(2015). The point patterns and fitted intensity functions are shown in Figure S4

in the supplementary material.

The pair correlation function of each species was then estimated using the

bias corrected kernel estimator ĝc(r; b) with b determined by minimizing (2.3)

and the orthogonal series estimator ĝo(r; b) with both Fourier-Bessel and cosine

basis, refined smoothing scheme and the optimal cut-offs K̂ obtained from (5.4);

see Figure 4.

For Lonchocarpus the three estimates were quite similar, while for Acalypha

and Capparis the estimates deviated markedly for small lags, then similar for

lags greater than respectively 2 and 8 meters. For Capparis and the cosine basis,

the number of selected coefficients coincided with the chosen upper limit 49 for
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Figure 4. Estimated pair correlation functions for tropical rain forest trees.

the number of coefficients. The cosine estimate displays oscillations which appear

to be artifacts of using high frequency components of the cosine basis. The

function (5.3) decreases very slowly after K = 7 (Figure S5 in the supplementary

material) so we also tried the cosine estimate with K = 7 which gives a more

reasonable estimate.

8. Conclusion

The orthogonal series estimators introduced in this paper have a sound the-

oretical basis, being consistent and asymptotically normal under reasonable con-

ditions. Our simulations suggest that they perform very well compared with the

usual kernel estimators. The methodology is by no means confined to the con-

sidered Fourier-Bessel and cosine bases. A topic of future research is to consider

such other bases as Laguerre polynomials and wavelet bases.
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